第三讲 体硅加工

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲:体硅加工――1

多晶硅有很多优点,也有非常系统深入的研究积累,但是,人们经常费力地刻蚀单晶硅以获得硅膜:

选择单晶硅作为MEMS的结构材料的主要因素:

1.基于IC技术的基础,硅提供了集成制造的可能性2.对单晶硅各种性质特别是物理特性的研究非常透彻3.硅相关的技术和设备可以借用IC工业的积累

4.没有那一种高纯度的单晶材料能够拥有像硅材料这样高的性价比,并且可以大批量廉价提供。

5.单晶硅的许多重要特性非常适合作为微结构材料。除了精细结构成型加工特性之外,它的机械特性、压阻效应、结构稳定性等也是吸引人的优点

600度以下不会蠕变,除非破裂,否则会回复固有形状。硅的物理特性

关于脆裂(breaking),由于单晶硅晶体的完整性,一旦有任何细微裂纹产生,就没有制约的因素存在(比如晶界),在张力作用下迅速扩展,故单晶硅的断裂是它的缺点之一。因此,即使是表面细微的损伤也会显著改变断裂强度的测试结果。

硅的压阻系数与多种因素有关,主要有掺杂水平、温度、晶格取向和电流相对于张力的走向,系数可以在+120到-120之间变化,一般金属该数值约为2。

压阻效应相当灵敏,成为许多物理传感器检测信号的基础。热传导系数与一般金属相当,考虑到微结构一般尺寸比较小,多数情况下足以承担散热的重任。

为什么还要研究硅的微机械加工技术?

半导体工艺虽然对硅相关的基本性质和微细加工技术已经有了透彻的认识,但是与MEMS的要求尚有比较大的差距,主要表现在纵身方向大加工深度上,在半导体工艺中,即使是最深的隔离工艺,其加工深度也不会超过10微米,绝大多数在1微米之内,但是MEMS结构很多情况下加工深度与宽度相仿,相当一部分要求高深宽比结构,而且这些结构还要沟通不同的结构层次,是半导体加工难以实现的,所以必须开展针对性的研究。

体硅加工的本质就是有选择地去掉部分硅材料,使留下的硅结构满足器件构造的需求

体硅加工的硅微结构,基本的形式有以下几种:

各向同性刻蚀

各向异性刻蚀

悬臂梁等运动

结构释放

实现上述结构的体硅加工技术主要有三种工艺路线:

湿法刻蚀、表面微机械多孔硅技术和干法刻蚀,还有一些辅助技术也是必须的,如掩膜突角补偿技术、电化学控制刻蚀、SOI衬底技术等,无论采用哪一种工艺路线,借助掩膜实现选择性是一样的,因此,关于硅刻蚀,下面一些问题是共性的:掩膜图形设计(包括可能的凸角补偿、底切量预置等)掩膜材料的选择、掩膜薄膜图形化技术、刻蚀反应的选择性、各向异性、终止层(面)、掩膜材料清除、精细结构脱水或者表面修饰等,它们针对不同的体系有不同的解决方案,也有一些惯例可以借鉴,下面将结合用途逐一加以简单介绍:

湿法刻蚀

湿法刻蚀分为各向同性和各向异性刻蚀两类

其中各向同性刻蚀主要以含氧化性添加剂的氢氟酸为酸性刻蚀剂,各向异性以各类强碱性溶液为主,其中又以KOH、THAM、EDP等为最常用。

各向同性刻蚀

各向同性刻蚀完全依赖掩膜图形产生选择性,刻蚀速率没有晶面选择性,预示它的刻蚀反应机制与碱性溶液有本质不同,无法得到精确的横向尺寸控制效果,也只在很少数情况下可以实现掺杂控制,所以总体上讲它的用途有限。

各向同性刻蚀主要采用含有硝酸、氢氟酸和水或者醋酸的HNA体系作为刻蚀剂,其总体反应方程式:

最常用的配方比例:

其中硝酸的氧化性导致在硅表面产生空穴,并进一步吸引溶液中的氢氧根到硅表面形成配合物,进而转化成薄层氧化

硅,再被溶液中的氢氟酸反应,生成可溶性或挥发性的氟化物离开刻蚀面,刻蚀反应继续进行。分步反应式:

各向同性刻蚀的掩膜材料选择很是困难,最常用的是氮化硅和氧化硅,其中,氮化硅的耐腐蚀性较好,特别是高温工艺生成的氮化硅,能够刻蚀数百微米的硅而不至完全消失,炭化硅也有相似的能力,但是氧化硅在HNA体系中是很不稳定的,这从它的腐蚀机理中也可以看到,它们只是有腐蚀速度的差异,原则上不可以作为掩膜材料使用,可见其掩膜介质难以令人满意。

如果不考虑重金属污染的因素,金应该是一种候选材料,特别是当它与硅形成合金化层之后,能够抵挡一阵。

炭化硅和氮化硅均需采用干法刻蚀图形化,氧化硅可以湿法刻蚀

SU-8负胶图形也有被用于类似体系的掩膜材料,据称效果良好,但尚未见大量应用,可能的原因是去胶还是难题。综合以上因素,各向同性刻蚀的用途越来越少,仅用于个别场合,如抛光性浅腐蚀(3mLHF+25mLHNO3+10mLHAc),与金刚石薄膜匹配的衬底硅刻蚀镂空操作等

但是,各向同性的氢氟酸体系通过适当通电,以电化学刻蚀机制进行微加工,就能够显著改变上述特征。前面曾讲过硅可以在电化学氧化过程中形成多孔硅,多孔硅与表面微机械加工技术相结合可以显著增加可动薄膜结构的运动空间,但是,适当调整电化学刻蚀的工作条件,可以使基于氢氟酸溶液的刻蚀得到各向异性的高深宽比微结构。

刻蚀液的组成:

48%HF:99.8%C2H5OH:H2O=1:2:17(体积比)

室温工作,300W卤素灯背照明,直流2.5V或者小于30mA/cm2的电流密度,Pt阴极。

研究表明:

借助该技术实现的微结构,具有优良的横向和纵向均匀性,优越的可重复性和高深宽比,以及非常灵活的外形图案。图形化方向应与110方向一致。

详细情况可以参阅有关文献。

碱性各向异性刻蚀

优缺点:

工艺开发水平较高;结构几何尺寸能够精确控制(晶体结构);整体的设备投资少,成本相对低;潜在的可以与CMOS 工艺集成能力;

但是无法或者很难获得垂直的侧面,因而结构的体积和构造方式有一定制约;

一般需双面光刻,成本有所上升

KOH与半导体工艺不兼容,只能安排在最后完成

刻蚀设备简单,但是控制不够精确,而且加工时间比较长,可能导致其它的问题

依据晶相结构的成型规律显著制约了微结构设计的灵活性,复杂且难以精确预计的凸角补偿使人望而却步。

湿法各向异性刻蚀因为这些缺点正在被逐渐进步的干法刻蚀工艺排挤,但是,目前和不久的将来它仍然是广泛应用的技术,特别是在深度微结构大规模生产工艺中。

相关文档
最新文档