华师版初中数学中考模拟试卷(最新整理)
华师附中初三数学模拟试卷

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. 2.5B. √2C. 1/3D. 0.333...2. 已知 a > b > 0,下列不等式正确的是()A. a² > b²B. a³ > b³C. a⁴ > b⁴D. a⁵ > b⁵3. 下列函数中,是奇函数的是()A. y = x²B. y = 2xC. y = |x|D. y = x³4. 已知等腰三角形ABC中,AB = AC,∠BAC = 30°,则∠B =()A. 30°B. 45°C. 60°D. 75°5. 下列各式中,绝对值最小的是()A. |x| + |x + 1|B. |x| + |x - 1|C. |x - 1| + |x + 1|D. |x - 2| + |x + 2|6. 下列函数中,是单调递增函数的是()A. y = x²B. y = 2xC. y = |x|D. y = x³7. 已知 a、b、c 是等差数列,且 a + b + c = 0,则下列各式中,一定成立的是()A. a² + b² + c² = 0B. ab + bc + ca = 0C. a²b + b²c + c²a = 0D. abc = 08. 已知 a、b、c 是等比数列,且 a + b + c = 0,则下列各式中,一定成立的是()A. ab + bc + ca = 0B. a²b + b²c + c²a = 0C. a²b³ + b³c² + c²a³ = 0D. abc = 09. 已知函数y = kx² + bx + c(k ≠ 0),若该函数图象开口向上,且顶点坐标为(-1,2),则下列各式中,正确的是()A. k > 0,b = -2,c = -1B. k > 0,b = 2,c = -1C. k < 0,b = -2,c = -1D. k < 0,b = 2,c = -110. 下列各式中,正确的是()A. (a² + b²)(c² + d²)= (ac + bd)² + (ad - bc)²B. (a² + b²)(c² + d²)= (ac - bd)² + (ad + bc)²C. (a² + b²)(c² + d²)= (ac + bd)² + (ad + bc)²D. (a² + b²)(c² + d²)= (ac - bd)² + (ad - bc)²二、填空题(每题5分,共50分)1. 已知 a、b、c 是等差数列,且 a + b + c = 0,则a² + b² + c² = _______。
中考数学模拟试题(华师大版)

2008年中考数学模拟试题(华师大版)注意事项:本卷考试时间为120分钟,满分120分. 卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出准确结果.一、精心选一选(本大题共10小题,每题2分,共20分.在每题所给出的四个选项中,只有一项符合题意.把所选项前的字母代号填在题后的括号内.相信你一定会选对!)1.三峡工程 是具有防洪、发电、航运、养殖、供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22150000000m 3,这个数用科学记数法表示为( )A .221.5×108 m 3B .22.15×109 m 3C .2.215×1010 m 3D .2.215×1011 m 3 2.如果某物体的三视图是如图所示的三个图形,那么该物体的形状是( ) A 、正方体 B 、长方体 C 、三棱柱 D 、圆锥3.我们知道,五星红旗上有五颗五角星,每一颗五角星有五个相等的锐角(如图),每个锐角等于( )A .30oB .36oC .45oD .60o 4.下列事件中,属于必然事件的是( )A . 明天我市下雨B .我走出校门,看到的第一辆汽车的牌照的末位数字是偶数C .抛一枚硬币,正面朝上D .一口袋中装有2个红球和1个白球,从中摸出2个球,其中有红球 5.方程x 2 = 2x 的解是 ( )A 、x=2B 、x 1=2 ,x 2= 0C 、x 1=2,x 2=0D 、x = 06.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其A . B.C. D.7. 某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b , 都有a+b ≥2ab成立.某同学在做一个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( ) A .1202 B . 602 C . 120 D . 608. 如图,已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD =BC . 将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是 ( )A. 1B. 2C. 3D. 4第3题 左视图俯视图第11题主视图第2题9. .如图:三个正比例函数的图象对应的关系式分别是①y=ax ;②y=bx ;③y=cx ,则a 、b 、c 的大小关系是( ) A .a >b >c B .c >b >a C .b >a >c D .b >c 10.在边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证( ) (A )222()2a b a ab b +=++ (B )222()2a b a ab b -=-+(C )22()()a b a b a b -=+- (D )22(2)()2a b a b a ab b +-=+-二、细心填一填(本大题共5小题,每空3分,共15分. 请把结果直接填在题中的横线上. 只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 11.图(1)(2)是根据某地近两年6月上旬日平均气温情况绘制的折线统计图,通过观察图表,可以判断这两年6月上旬气温比较稳定的年份是__。
2024届广东省华师附中新世界校中考数学模拟精编试卷含解析

2024学年广东省华师附中新世界校中考数学模拟精编试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.31 的值是()A.1 B.﹣1 C.3 D.﹣32.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)0 1 2 3 4人数(人) 2 2 3 1 1 A.3,2.5 B.1,2 C.3,3 D.2,23.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1444.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a2+a2=a3D.a6÷a2=a35.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠16.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y (cm2),则y与x之间的函数图象大致是()A .B .C .D .7.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣4B .bd >0C .|a |>|b |D .b +c >08.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .49.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根 B .0一定不是关于x 的方程x 2+bx+a=0的根 C .1和﹣1都是关于x 的方程x 2+bx+a=0的根 D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根 10.下列各式:①a 0=1 ②a 2·a 3=a 5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x 2+x 2=2x 2,其中正确的是 ( ) A .①②③B .①③⑤C .②③④D .②④⑤二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.12.已知正比例函数的图像经过点M ( )、、,如果,那么________.(填“>”、“=”、“<”)13.计算:(π﹣3)0﹣2-1=_____.14.如图,在平面直角坐标系中,以坐标原点O 为位似中心在y 轴的左侧将△OAB 缩小得到△OA′B′,若△OAB 与△OA′B′的相似比为2:1,则点B (3,﹣2)的对应点B′的坐标为_____.15.新定义[a ,b]为一次函数(其中a≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m+2]所对应的一次函数是正比例函数,则关于x 的方程的解为 .16.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 .17.不等式组2012x x x -≤⎧⎪⎨-<⎪⎩的最大整数解是__________.三、解答题(共7小题,满分69分)18.(10分)如图,矩形ABCD 中,点P 是线段AD 上一动点, O 为BD 的中点, PO 的延长线交BC 于Q .(1)求证: OP OQ =;(2)若=8AD cm ,6AB cm =,P 从点A 出发,以l /cm s 的速度向D 运动(不与D 重合).设点P 运动时间为()t s ,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.19.(5分)如图1,三个正方形ABCD 、AEMN 、CEFG ,其中顶点D 、C 、G 在同一条直线上,点E 是BC 边上的动点,连结AC 、AM. (1)求证:△ACM ∽△ABE.(2)如图2,连结BD 、DM 、MF 、BF ,求证:四边形BFMD 是平行四边形.(3)若正方形ABCD 的面积为36,正方形CEFG 的面积为4,求五边形ABFMN 的面积.20.(8分)化简求值:212(1)211x x x x -÷-+++,其中31x =-.21.(10分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.22.(10分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 23.(12分) “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.24.(14分)已知抛物线y =ax 2+(3b +1)x +b ﹣3(a >0),若存在实数m ,使得点P (m ,m )在该抛物线上,我们称点P (m ,m )是这个抛物线上的一个“和谐点”. (1)当a =2,b =1时,求该抛物线的“和谐点”;(2)若对于任意实数b ,抛物线上恒有两个不同的“和谐点”A 、B . ①求实数a 的取值范围; ②若点A ,B 关于直线y =﹣x ﹣(21a +1)对称,求实数b 的最小值. 参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、B 【解题分析】直接利用立方根的定义化简得出答案. 【题目详解】 因为(-1)3=-1,﹣1.故选:B . 【题目点拨】此题主要考查了立方根,正确把握立方根的定义是解题关键., 2、D 【解题分析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数. 所以本题这组数据的中位数是1,众数是1. 故选D .考点:1.众数;1.中位数. 3、D 【解题分析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2, 即所列的方程为100(1+x )2=144, 故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键. 4、B 【解题分析】试题解析:A.235,a a a ⋅=故错误. B.正确.C.不是同类项,不能合并,故错误.D.624.a a a ÷= 故选B.点睛:同底数幂相乘,底数不变,指数相加. 同底数幂相除,底数不变,指数相减. 5、D 【解题分析】试题解析:由题意可知:x-1≠0, x≠1 故选D. 6、B 【解题分析】根据题意,Q 点分别在BC 、CD 上运动时,形成不同的三角形,分别用x 表示即可. 【题目详解】 (1)当0≤x ≤2时, BQ =2x14242y x x =⨯⨯=当2≤x ≤4时,如下图()()()()211144448242428222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知 故选:B . 【题目点拨】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式. 7、C 【解题分析】根据数轴上点的位置关系,可得a ,b ,c ,d 的大小,根据有理数的运算,绝对值的性质,可得答案. 【题目详解】解:由数轴上点的位置,得 a <﹣4<b <0<c <1<d . A 、a <﹣4,故A 不符合题意; B 、bd <0,故B 不符合题意;C 、∵|a|>4,|b|<2,∴|a|>|b|,故C 符合题意;D 、b+c <0,故D 不符合题意; 故选:C . 【题目点拨】本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键 8、A 【解题分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x =4y 代入即可得. 【题目详解】解:∵原式=223x y y x y-•+ =()()3x y x y y x y +-•+=33x y y- ∵3x -4y =0, ∴3x =4y 原式=43y yy-=1 故选:A . 【题目点拨】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 9、D 【解题分析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根. 【题目详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根; 当b=-(a+1)时,有a+b+1=0,此时1是方程x 2+bx+a=0的根. ∵a+1≠0, ∴a+1≠-(a+1),∴1和-1不都是关于x 的方程x 2+bx+a=0的根. 故选D . 【题目点拨】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键. 10、D【解题分析】根据实数的运算法则即可一一判断求解. 【题目详解】①有理数的0次幂,当a=0时,a0=0;②为同底数幂相乘,底数不变,指数相加,正确;③中2–2= 14,原式错误;④为有理数的混合运算,正确;⑤为合并同类项,正确.故选D.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12∠ACB=1°.【题目详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=12∠ACB=1°,故答案为1.【题目点拨】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.12、>【解题分析】分析:根据正比例函数的图象经过点M(﹣1,1)可以求得该函数的解析式,然后根据正比例函数的性质即可解答本题.详解:设该正比例函数的解析式为y=kx,则1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函数的图象经过点A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案为>.点睛:本题考查了正比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用正比例函数的性质解答.13、【解题分析】分别利用零指数幂a0=1(a≠0),负指数幂a-p=(a≠0)化简计算即可. 【题目详解】解:(π﹣3)0﹣2-1=1-=.故答案为:.【题目点拨】本题考查了零指数幂和负整数指数幂的运算,掌握运算法则是解题关键.14、(-32,1)【解题分析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.【题目详解】解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)则点B(3,−2)的对应点B′的坐标为:(-32,1),故答案为(-32,1).【题目点拨】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.15、.【解题分析】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=,经检验x=是分式方程的解考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.16、.【解题分析】试题分析:画树状图得:∵共有12种等可能的结果,点(m,n )恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n )在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.17、2【解题分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【题目详解】解:2012xxx-≤⎧⎪⎨-<⎪⎩①②,由不等式①得x≤1,由不等式②得x>-1,其解集是-1<x≤1,所以整数解为0,1,1,则该不等式组的最大整数解是x=1.故答案为:1.【题目点拨】考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2) PD=8-t,运动时间为74秒时,四边形PBQD是菱形.【解题分析】(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ ;(2)根据已知条件得出∠A 的度数,再根据AD=8cm ,AB=6cm ,得出BD 和OD 的长,再根据四边形PBQD 是菱形时,利用勾股定理即可求出t 的值,判断出四边形PBQD 是菱形.【题目详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又∵O 为BD 的中点,∴OB=OD ,在△POD 与△QOB 中,PDO QBO OD OBPOD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△POD ≌△QOB ,∴OP=OQ ;(2)PD=8-t ,∵四边形PBQD 是菱形,∴BP=PD= 8-t ,∵四边形ABCD 是矩形,∴∠A=90°,在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2,即62+t 2=(8-t)2,解得:t=74, 即运动时间为74秒时,四边形PBQD 是菱形. 【题目点拨】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.19、(1)证明见解析;(2)证明见解析;(3)74.【解题分析】(1)根据四边形ABCD 和四边形AEMN都是正方形得AB AC AC AM ==CAB=∠MAC=45°,∠BAE=∠CAM ,可证△ACM∽△ABE;(2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=2BE,FC=2CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【题目详解】(1)证明:∵四边形ABCD和四边形AEMN都是正方形,∴12AB ACAC AM==,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)证明:连结AC因为△ACM∽△ABE,则∠ACM=∠B=90°,因为∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因为2BE,2CE,所以2,所以四边形BFMD是平行四边形(3)S 五边形ABFMN =S 正方形AEMN +S 梯形ABFE +S 三角形EFM=62+42+12(2+6)⨯4+12 ⨯2⨯6 =74.【题目点拨】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度. 20、33【解题分析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+ 当31x =时,131311x ==+-+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.21、1.5千米【解题分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【题目详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==,∴AC AM AB AN =,∵∠A=∠A ,∴△ABC ∽△ANM , ∴AC AM BC MN =,即30145MN =,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米.【题目点拨】此题考查相似三角形的应用,解题关键在于掌握运算法则22、22(1)a +,15. 【解题分析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a =9,∴(a +1)2=1.∴原式=21105=. 23、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解题分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【题目详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩.故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x<50时,w随x的增大而增大,∴x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x1=55,x2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【题目点拨】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24、(1)(11,22)或(﹣1,﹣1);(1)①2<a<17②b的最小值是13【解题分析】(1)把x=y=m,a=1,b=1代入函数解析式,列出方程,通过解方程求得m的值即可;(1)抛物线上恒有两个不同的“和谐点”A、B.则关于m的方程m=am1+(3b+1)m+b-3的根的判别式△=9b1-4ab+11a.①令y=9b1-4ab+11a,对于任意实数b,均有y>2,所以根据二次函数y=9b1-4ab+11的图象性质解答;②利用二次函数图象的对称性质解答即可.【题目详解】(1)当a =1,b =1时,m =1m 1+4m +1﹣4,解得m =12或m =﹣1. 所以点P 的坐标是(12,12)或(﹣1,﹣1); (1)m =am 1+(3b +1)m +b ﹣3,△=9b 1﹣4ab +11a .①令y =9b 1﹣4ab +11a ,对于任意实数b ,均有y >2,也就是说抛物线y =9b 1﹣4ab +11的图象都在b 轴(横轴)上方. ∴△=(﹣4a )1﹣4×9×11a <2.∴2<a <17.②由“和谐点”定义可设A (x 1,y 1),B (x 1,y 1),则x 1,x 1是ax 1+(3b +1)x +b ﹣3=2的两不等实根,123122x x b a++=-. ∴线段AB 的中点坐标是:(﹣312b a +,﹣312b a +).代入对称轴y =x ﹣(21a+1),得 ﹣312b a +=312b a +﹣(21a+1), ∴3b +1=1a+a . ∵a >2,1a >2,a •1a =1为定值, ∴3b +1=1a +a 1a a=1, ∴b ≥13. ∴b 的最小值是13. 【题目点拨】此题考查了二次函数综合题,其中涉及到了二次函数图象上点的坐标特征,抛物线与x 轴的交点,一元二次方程与二次函数解析式间的关系,二次函数图象的性质等知识点,难度较大,解题时,掌握“和谐点”的定义是解题的难点.。
华师版九年级数学中考备考训练联考测试题含参考答案

(2) 若表演会盈余为92元,问售出门票多少张
(3) 若表演会盈余许多于90元,问售出门票为
多少张
(4) 表演会售出门票150张,问盈余多少元
(5) 若一场表演会盈亏金额不超出
20元,
问售出门票多少张
25、(10分)某工厂拟建一座平面图形为矩形且面积为200
(1)已知圆m的半径r是x2- x+3=0的一个根,求 的度数。
(2) 以直线ab为x轴,直线om为y轴,(分别以ob,om
为正方向)成立平面直角坐标系,设函数y=x2+bx+c的图象
经过点p,m两点,求此函数的分析式。
之和等于()
a21b 13c-21d56
14、用一批相同的正多边形地砖辅地,要求极点聚在一同,
且砖与砖之间不留缝隙,这样的地砖是()
a正五边形
b正三角形,正方形
c正三角形
正五边形
正六边形
d正三角形,正方形,
正六边形
15、某种商品进价为800元,销售时标价为1200元,以后
因为商品积压,商品准备打折销售,但要保持收益率不低于
(1)已知圆m的半径r是x2- x+3=0的一个根,求 的度数。
(2) 以直线ab为x轴,直线om为y轴,(分别以ob,om
为正方向)成立平面直角坐标系,设函数y=x2+bx+c的图象
经过点p,m两点,求此函数的分析式。
问当三级污水池的总造价为47200元时,求池边长x.
26、(11分)如图圆o1和圆o2订交于点a和点b,且o1在
班级姓名学号成绩
一、填空题()
1、1-的相反数是,绝对值是,倒数是。
九年级数学中考模拟试题华师大版-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷

九年级数学中考模拟试题华师大版-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载---------------------------------------九年级数学中考模拟试题(华师大)一、选择题(每小题4分,共40分)1、下列各组数中,互为相反数的是()A、3与B、-1与C、与-1D、3与│-3│2、下列各式与相等的是()A、B、C、D、3、下列运算正确的是()A、B、C、D、4、已知M是⊙O内一点,过M点的⊙O的最长弦为10㎝,最短弦为8㎝,则OM的长度是()A、2㎝B、5㎝C、4㎝D、3㎝5、在下面四种正多边形中用同一种图形不能平面镶嵌的是()A、B、C、D、6、已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=x2图像上,则()A、y1<y2<y3B、y1<y3<y2C、y3<y2<y1D、y2<y1<y37、螺旋藻是一种营养特别丰富的保健品,已知1克的螺旋藻相当于1000克蔬菜营养的综合,那没么3吨重的螺旋藻相当于()千克蔬菜营养的综合。
A、3×B、3×C、3×D、3×8、如图,是正方体表面展开图,如果将其合成原来的正方体时,与点P重合的两点应是()A、S和EB、T和YC、V和YD、T和V9、一个袋中装有两个黄球和两个红球,任意摸出一个球后放回,再任意摸出一个球,则两次都摸到红球的机会大小是()A、B、C、D、110、如图在Rt⊙ABC中,⊙C=60°,AC=㎝,将⊙ABC绕点B旋转至⊙BDE位置,且使点A、B、D 三点在同一直线上,则点A经过的最短路线长度是()A、㎝B、㎝C、㎝D、㎝二、填空题(每题4分,共20分)11、分解因式:。
12、等腰⊙ABC中,已知⊙A=40°,则另两角大小是。
13、观察一列数:3,8,13,18,23,……依此规律,在此数列中比2005大的最小整数是。
华师版数学试卷中考模拟

1. 已知函数f(x)=x²-2x+1,其图像的对称轴是()A. x=1B. y=1C. x=0D. y=02. 若等差数列{an}的前n项和为Sn,且a1=3,d=2,则S10等于()A. 105B. 110C. 120D. 1303. 在平面直角坐标系中,点A(2,3),点B(4,1),则线段AB的中点坐标是()A. (3,2)B. (3,1)C. (2,1)D. (4,2)4. 若等比数列{bn}的首项b1=2,公比q=3,则b5等于()A. 54B. 162C. 486D. 16205. 在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数是()A. 75°B. 105°C. 120°D. 135°6. 若a、b、c是等差数列,且a+b+c=18,则a²+b²+c²等于()A. 108B. 126C. 144D. 1627. 已知函数f(x)=x³-3x²+4x-1,则f(2)等于()A. 3B. 5C. 7D. 98. 在平面直角坐标系中,点P(-2,3),点Q(2,-3),则线段PQ的中点坐标是()A. (0,0)B. (-1,1)C. (1,-1)D. (0,0)9. 若等比数列{cn}的首项c1=1,公比q=2,则c4等于()A. 16B. 32C. 64D. 12810. 在三角形ABC中,∠A=90°,∠B=30°,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°11. 若a、b、c是等差数列,且a²+b²+c²=18,则a+b+c等于()A. 6B. 9C. 12D. 1512. 已知函数f(x)=2x²-4x+3,则f(1)等于()A. 1B. 3C. 5D. 713. 在平面直角坐标系中,点P(-3,4),点Q(3,-4),则线段PQ的中点坐标是()A. (0,0)B. (-1,1)C. (1,-1)D. (0,0)14. 若等比数列{dn}的首项d1=1,公比q=3,则d4等于()A. 9B. 27C. 81D. 24315. 在三角形ABC中,∠A=90°,∠B=45°,则∠C的度数是()A. 45°B. 60°C. 90°D. 120°16. 若a、b、c是等差数列,且a²+b²+c²=18,则a+b+c等于()A. 6B. 9C. 12D. 1517. 已知函数f(x)=x³-3x²+4x-1,则f(2)等于()A. 3B. 5C. 7D. 918. 在平面直角坐标系中,点P(-2,3),点Q(2,-3),则线段PQ的中点坐标是()A. (0,0)B. (-1,1)C. (1,-1)D. (0,0)19. 若等比数列{en}的首项e1=1,公比q=2,则e4等于()A. 16B. 32C. 64D. 12820. 在三角形ABC中,∠A=90°,∠B=30°,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°二、填空题(本大题共10小题,每小题5分,共50分)21. 已知等差数列{fn}的首项f1=3,公差d=2,则f5等于______。
初三中考模拟试卷[下学期]华师大版华师大版-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷
![初三中考模拟试卷[下学期]华师大版华师大版-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷](https://img.taocdn.com/s3/m/5bcf3ca9ba1aa8114431d9ba.png)
初三中考模拟试卷[下学期]华师大版华师大版-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载初三期末试题(总分120分,时间120分钟)一、选择题:(本大题共10小题,每小题3分,共30分)1.如右图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=4,OA=3,则cos⊙APO的值为()A.B.C.D.2.已知二次函数的图象如右图所示,a、b、c满足()A.a<0,b<0,c>0 B. a<0,b<0, c<0C.a<0,b>0,c>0 D. a>0,b<0,c>03.Rt⊙ABC中,⊙C=90°,AC=3cm,BC=4cm.给出下列三个结论:① 以点C为圆心,2.3cm长为半径的圆与AB相离;② 以点C为圆心,2.4cm长为半径的圆与AB相切;③ 以点C为圆心,2.5cm长为半径的圆与AB相交;则上述结论中正确的个数是()A.0个B.1个C.2个D.3个4.若半径为2cm和3cm的两圆相外切,那么与这两个圆都相切且半径为5cm的圆的个数是()A.5个B.4个C.3个D.2个5.已知抛物线,图象与y轴交点的坐标是()A.(0,3) B.(0,-3) C.(0,) D.(0,-)6.以正方形ABCD的顶点A为圆心,AB长为半径画⊙A,则经过B、D两点的直线和⊙A的位置关系()(A)相离(B)相切(C)相交(D)不能确定7.如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A.10米B.15米C.25米D.30米8.在通常情况下,地面到10km高空的范围内,从地面开始高度每增加1km,气温就下降一定的数值.如下表所示,能表示通过测量得到的气温y(⊙)与增加的高度x(km)之间关系的式子(不考虑自变量x的取值范围)是增加的高度x(km)2458910气温y(⊙)2-11-17.5-37-43.5-50(A)(B)(C)y=x(D)9.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A. 1个B. 2个 C . 3个 D. 4个10、如图,点P按A→B→C→M的顺序在边长为1的正方形边上运动,M是CD边上的中点.设点P经过的路程x为自变量,⊙APM的面积为y,则函数y的大致图像是()二、填空题(本大题共10小题,每小题3分,共30分)11.如图11,在⊙O中,已知⊙ACB=⊙CDB=60°,AC=3,则⊙ABC的周长是.图11图1212.根据某市去年7月份中某21天的各天最高气温(⊙)记录,制作了如图的统计图12,由图中信息可知,,其中最高气温的中位数是⊙,13. 用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.14.如图,已知正方形ABCD的边长为2.如果将线段BD 绕着点B旋转后,点D落在CB的延长线上的D′点处,那么′等于__________.15.在RtΔABC中,⊙C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E,则.AD=_______.16. 在直径为10m的圆柱形油槽内装入一些油后,截面如图16所示,如果油面宽AB=8m,那么油的最大深度是______m.图16图18图1717.如图17,已知⊙AOB = 30 ,M为OB边上一点,以M为圆心、2cm为半径作⊙M.若点M 在OB边上运动,则当OM=cm时,⊙M与OA相切.18.如图18,⊙O是⊙ABC的内切圆,切点分别为E、F、G,若GC=10,BF=3,AG=2,则⊙ABC为________三角形.19.已知抛物线的顶点坐标为(2,3),则的根是。
华师大数学初三试卷答案

---华师大数学初三模拟试卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 2D. -52. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 5或-53. 下列哪个图形是轴对称图形?A. 正方形B. 等腰三角形C. 梯形D. 平行四边形4. 在一次函数y=kx+b中,若k>0,b<0,那么函数图像:A. 经过第一、二、四象限B. 经过第一、二、三象限C. 经过第一、三、四象限D. 经过第二、三、四象限5. 下列哪个方程的解是x=2?A. 2x+3=9B. 3x-4=2C. 4x+1=9D. 5x-2=86. 一个等腰三角形的底边长为8,腰长为10,那么这个三角形的面积是:A. 32B. 40C. 48D. 647. 下列哪个函数是单调递增的?A. y=x^2B. y=-x^2C. y=x^3D. y=-x^38. 在直角坐标系中,点A(2,3)关于原点的对称点是:A. (2,3)B. (-2,-3)C. (2,-3)D. (-2,3)9. 下列哪个数是实数?A. iB. √(-1)C. √9D. √(-9)10. 如果a、b是方程x^2-5x+6=0的两个根,那么a+b的值是:A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)11. 如果|a|=5,那么a的可能值有______。
12. 在直角坐标系中,点P(-3,4)到原点的距离是______。
13. 函数y=2x-3的图像与x轴的交点坐标是______。
14. 一个等边三角形的边长是6,那么它的面积是______。
15. 下列数列:2, 4, 8, 16, ...的第n项是______。
三、解答题(每题10分,共30分)16. 解方程:2(x-3)+5=3(2x-1)-4。
17. 已知一次函数y=kx+b经过点A(2,3)和B(4,5),求该函数的解析式。
18. 一个长方形的长是12cm,宽是8cm,求这个长方形的对角线长度。
2024年广东省天河区华南师范大学附属中学中考模拟数学试题

2024年广东省天河区华南师范大学附属中学中考模拟数学试题一、单选题1.下列四个实数中,无理数是( )A B C D 2.中汽协发布数据显示,2024年1~2月,新能源汽车产销分别完成125.2万辆和120.7万辆,同比分别增长28.2%和29.4%,市场占有率达到30%.将数据125.2万用科学记数法表示为( )A .512.5210⨯B .61.25210⨯C .70.125210⨯D .71.25210⨯ 3.下列运算结果正确的是( )A .22422a a a +=B .236()a a -=-C .()23622a a a ⋅-=D .22330a a ÷=4.如图,直线AB CD ,相交于点O ,OE OF ⊥,若180∠=︒,230∠=︒,则3∠的度数为( )A .30︒B .40︒C .50︒D .60︒5.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为( )A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩ 6.若关于x 的不等式1x m +<的正整数解有且只有2个,则m 可能的值是( ) A .3.5 B .3 C .2.5 D .27.如图,在平面直角坐标系中,点()3,0A ,点()0,4B ,连结AB ,将线段AB 绕点A 顺时针旋转90︒得到线段AC ,连接OC ,则线段OC 的长度为( )A .5BCD 8.如图,在ABC V 中,18,30,AC C BAD AD BC ∠∠===⊥o ,垂足为D ,BE 平分ABC ∠交AD 于点E ,则DE 的长为( )AB .3C .D .69.等腰三角形的一边长是3,另两边的长是关于x 的方程240x x k -+=的两个根,则k 的值为( )A .3B .4C .3或4D .710.如图,一个点在第一象限及x 轴,y 轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到()0,1,然后接着按图中箭头所示方向运动[即()()()()0,00,11,11,0→→→→L ],那么第35秒时该点所在位置的坐标是( )A .()4,0B .()0,5C .()5,0D .()5,5二、填空题11x 的取值范围是. 12.分解因式:22x y xy y ++=.13.当a >3时,化简:2a -=.14.如图,在Rt ABC △中,90C ∠=︒,4AC =,tan 2A =,则AB =.15.如图,正方形MNPQ 内接于ABC V ,点M ,N 在BC 上,点P ,Q 分别在AC 和AB 边上,且BC 边上的高6AD =,12BC =,则正方形MNPQ 的面积为.16.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 四边形AFOE :S △COD =2:3.其中正确的结论有.(填写所有正确结论的序号)三、解答题17.计算:2123tan 302-⎛⎫-- ⎪⎝⎭︒; 18.如图,E ,F 是ABCD Y 的对角线AC 上的两点,且AE CF =.求证:DE BF =.19.已知21122244a W a a a a ⎛⎫=+÷ ⎪-+-+⎝⎭. (1)化简W ;(2)若a ,2,3恰好是等腰ABC V 的三边长,求W 的值.20.如图所示,在平面直角坐标系中xOy 中,点()4,1,A ABC -V 的三个顶点都在格点上.将ABC V 在坐标系中平移,使得点A 平移至图中点()1,1D -的位置,点B 对应点E ,点C 对应点F .(1)点B 的坐标为______,点F 的坐标为______;(2)在图中作出DEF V ,并连接AD ;(3)求在线段AB 平移到线段DE 的过程中扫过的面积;21.如图,在四边形ABCD 中,90ABC ∠=︒,点E 是AC 的中点,且AC AD =(1)尺规作图:作CAD ∠的平分线AF ,交CD 于点F ,连结EF 、BF (保留作图痕迹,不写作法);(2)在(1)所作的图中,若45BAD ∠=︒,且2CAD BAC ∠=∠,证明:BEF △为等边三角形.22.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购买电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.23.某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB 的影子为BC ,与此同时在C 处立一根标杆CD ,标杆CD 的影子为CE ,1.8m CD =,5BC CD =.(1)求BC 的长;(2)从条件①、条件②这两个条件中选择-一个作为已知,求旗杆AB 的高度.条件①: 1.2m CE =;条件②:从D 处看旗杆顶部A 的仰角α为52.46︒.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin52.460.79︒≈,cos52.460.61︒≈,tan52.46 1.30︒≈.24.如图,二次函数 ²221(0)y x mx m m =--->. 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点 C ,顶点为D ,其对称轴与线段BC 交于点 E ,与x 轴交于点 F . 连接AC BD 、.(1)若 1,m =, 求B 点和C 点坐标;(2)若 ,ACO CBD ∠=∠求m 的值;(3)若在第一象限内二次函数 ²221(0)y x mx m m =--->的图象上,始终存在一点P ,使得 75.ACP ∠=︒请结合函数的图象,直接写出m 的范围.25.在ABC V 和DEC V 中,90ACB DCE ∠=∠=︒,BC kAC =,EC kDC =(k 是常数),点E 在ABC V 内部运动(不包含边界),直线AD 与BE 交于点F .(1)如图(1),若1k =,并且点D 、F 重合时,求证:BF AF =;(2)如图(2),一般情形下,探究AF BF CF ,,之间的数量关系,并给出证明;(3)如图(3),BF 与AC 交于点G ,若k =FG BG的最大值.。
华师版中考数学模拟试卷华师大版-中考数学试题、初中数学中考试卷、模拟题-初中数学试卷

华师版中考数学模拟试卷华师大版-中考数学试题、初中数学中考试卷、模拟题、复习资料-初中数学试卷-试卷下载中考数学模拟试卷(1)(华东师大版)时间:120分钟满分:150一、选择题(本题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内.)1.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。
某地今年计划栽插这种超级水稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是()A.2.5×106千克B.2.46×106千克C.2.5×105千克D.2.46×105千克2.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是()3.如图,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是()A.1:1B.1:2C.1:3D.1:44.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.120°B.80°C.60°D.150°5.在下列图形中,既是中心对称图形又是轴对称图形的是()A.等腰三角形B.圆C.梯形D.平行四边形6.把分式方程的两边同时乘以(x-2), 约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)=x-2D.1+(1-x)=x-27.相交两圆的公共弦长为16cm,若两圆的半径长分别为10cm和17cm,则这两圆的圆心距为()A.21cm B.16cm C.7cm D.27cm8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。
车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。
下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是()(A)(B)(C)(D)9.右图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是()A.180万B.200万C.300万D.400万10.如图,ABCD中,对角线AC和BD相交于点O,如果AC=12、BD=10、AB=m,那么m的取什范围是A.2<m<22B.1<m<11C.10<m<12D.5<m<6二、填空题(本题共有5小题,每题4分,共20分.请把结果直接填在题中的横线上.)11.分解因式:a3-a=。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。