有机化学波谱分析知识要点

合集下载

有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结一、有机波谱分析概述有机波谱分析是有机化学领域中非常重要的研究手段,它能够帮助我们确定有机化合物的结构和成分。

常见的有机波谱分析方法包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振(NMR)和质谱(MS)等。

二、红外光谱(IR)(一)原理分子中的化学键会在特定的波长处吸收红外光,从而产生红外光谱。

不同的化学键具有不同的振动频率,因此可以通过红外光谱来确定分子中存在的官能团。

(二)要点1、官能团的特征吸收峰:例如,羰基(C=O)在 1700 cm⁻¹左右有强吸收峰,羟基(OH)在 3200 3600 cm⁻¹有宽吸收峰。

2、指纹区:虽然难以准确归属,但对于区分不同的化合物具有重要意义。

(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹处有强吸收峰,可能含有什么官能团?答案:羰基(C=O)。

例 2:一个化合物在 3300 cm⁻¹左右有强而宽的吸收峰,在 1050 1100 cm⁻¹有吸收峰,推测其可能的结构。

答案:可能含有羟基(OH)和醚键(COC)。

三、紫外可见光谱(UVVis)(一)原理分子中的电子在吸收特定波长的紫外或可见光后,会从低能级跃迁到高能级,从而产生吸收光谱。

(二)要点1、生色团和助色团:生色团如 C=C、C=O 等能产生紫外可见吸收,助色团如 OH、NH₂等会增强吸收。

2、吸收波长与分子结构的关系:共轭体系越长,吸收波长越长。

(三)例题例 1:比较苯和甲苯的紫外吸收波长。

答案:甲苯由于甲基的助色作用,吸收波长比苯长。

例 2:某化合物的最大吸收波长在 250 nm 左右,可能含有什么结构?答案:可能含有苯环或简单的共轭双键。

四、核磁共振(NMR)(一)原理在外加磁场的作用下,原子核会发生能级分裂,当吸收特定频率的射频辐射时,会发生共振跃迁,产生核磁共振信号。

(二)要点1、化学位移:不同环境的氢原子或碳原子具有不同的化学位移,可以用于判断其所处的化学环境。

有机化合物波谱全面分析

有机化合物波谱全面分析

6. 溶液pH值对光谱的影响
(a) 苯酚的UV光谱图
(b) 苯胺的UV光谱图
为什么?
OHOH
H+ NH2
O NH3+
紫外光谱吸收强度的 主要影响因素
➢ 紫外光谱中,通常用摩尔吸光系数ε表示紫外光谱 的强度,根据ε的大小,通常将峰强分为以下几类
➢ ε>10000(lgε>4) 很强吸收
➢ ε= 5000~10000 强吸收
➢ K带
共轭双键的π→π*跃迁所产生的吸收带,吸收强 度大,ε>10000 (lgε>4),吸收峰在210~250 nm
吸收带的种类
➢ B带
苯环的π→π*跃迁所产生的吸收带,一般出现在 230~270 nm之间,吸收强度中等,在非极性溶 剂中呈现精细结构 (图1-9)
➢ E带
苯环烯键电子π→π*跃迁所产生的吸收带,为芳 香化合物的特征吸收,分为E1和E2两个吸收带, 为强吸收带(图1-9)
原子A的s轨道和原子B的p轨道相互作用得到σsp和σsp*两 种分子轨道
在分子轨道中,未与另一原子相互作用的原子轨道称 为n轨道
分子轨道电子跃迁能级图
分子轨道有 σ、σ*、π、π*、n 能量高低 σ<π< n <π*< σ* 跃迁所需能量的大小次序为:
σ→σ*>n→σ*≧π→π*>n→π* 其中σ→σ*及n→σ*的跃迁能量大, E 吸收的光的波长落在远紫外区域, 而n→π*和π→π*>跃迁能量较小, 落在紫外可见光的范围内
原子种类基本无关 有关
强吸收 104~105 弱吸收 <102
向长波方向移动 向短波方向移动
练习
例 判断下列化合物中电子的跃迁类型

有机波谱分析知识点

有机波谱分析知识点

名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。

助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。

红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。

蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。

增色效应(hyperchromic effect):使吸收强度增加的作用。

减色效应(hypochromic effect):使吸收强度减弱的作用。

吸收带:跃迁类型相同的吸收峰。

指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

但该区中各种官能团的特征频率不具有鲜明的特征性。

共轭效应(conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。

诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。

核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。

化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。

弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。

分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。

有机化学-第七章有机化合物的波谱分析

有机化学-第七章有机化合物的波谱分析
课件
分子化学键的振动和红外光谱
1.振动方程式
式中:μ为折合质量;ml和m2分别为化学键所连的两个原子的质量,单位为g, 是为化学键的力常数,单位为N·cm-1(牛顿·厘米-1),其含义是两个原子由平衡位置伸长0.1 nm后的恢复力。
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的简谐振动。根据Hooke定律可得其振动频率为:
本章讨论的红外光谱和核磁共振谱为吸收光谱。质谱是化合物分子经电子流轰击形成正电荷离子,在电场、磁场的作用下按质量大小排列而成的图谱,不是吸收光谱。
7.2红外吸收光谱
用红外光照射试样分子,引起分子中化学键振动能级的跃迁所测得的吸收光谱为红外吸收光谱,简称红外光谱(Infrared Spectroscopy,缩写为IR)。红外光谱是以波长λ或波数σ为横坐标,表示吸收峰的峰位;以透射比T(以百分数表示)为纵坐标,表示吸收强度。
1H的自旋量子数I为1/2,它在磁场中有两种取向,与磁场方向相同的,用+1/2表示,为低能级;与磁场方向相反的,用-1/2表示,为高能级。两个能级之差为△E,见图7–4。
有机化学经常研究的是1H和13C的核磁共振谱,下面主要介绍1H核磁共振谱(质子核磁共振谱)。
式中:γ 称为磁旋比,是物质的特征常数,对于质子其量值为2.675×108A·m2·J-1·s-1; h为Plank常量; ν为无线电波的频率。
测量核磁共振谱时,可以固定磁场改变频率,也可以固定频率改变磁场,一般常用后者。 若以通过电流所表现的吸收能量为纵坐标,磁场强度为横坐标,则可得到如图7–6所示的NMR谱。
一张核磁共振谱图,通常可以给出四种重要的结构信息:化学位移、自旋裂分、偶合常数和峰面积(积分线)。如图7–7所示。
峰面积大小与质子数成正比,可由阶梯式积分曲线求出。峰面积(积分线高度)之比为质子个数之比,图中积分线高度比为1:2:3,等于质子个数之比(OH:CH2:CH3)。

有机化合物波谱分析

有机化合物波谱分析

有机化合物波谱分析有机化合物波谱分析是一种重要的手段,可用于确定有机物的分子结构和功能基团。

其中,核磁共振波谱(NMR)和红外光谱(IR)是两种常用的波谱技术。

本文将重点介绍这两种波谱分析技术的基本原理、应用和解读方法。

核磁共振波谱(NMR)是一种基于核自旋的波谱分析方法。

它通过测量核自旋与外加磁场相互作用导致的能量变化来获得信息。

核磁共振波谱图通常由若干个特征峰组成,每个峰对应于一种不同类型的核。

峰的位置称为化学位移,可以通过参考物质(如四氯化硅)来标定。

峰的形状和强度可以提供有关分子结构和相互作用的信息。

核磁共振波谱提供了关于有机分子的碳氢骨架以及官能团、取代基等信息,因此在有机化学和药物化学领域有广泛应用。

红外光谱(IR)是一种基于分子振动的波谱分析方法。

它通过测量物质吸收红外辐射的能量来获得信息。

由于不同分子具有不同的振动模式和结构,它们吸收红外辐射的方式也不同。

红外光谱图通常由一系列特征峰组成,峰的位置称为波数,可以用来标识不同的官能团和化学键。

峰的强度和形状可以提供关于分子的结构和取向的信息。

红外光谱在有机化学、聚合物化学和无机化学等领域都有广泛的应用。

在进行有机化合物波谱分析时,需要先对样品进行样品制备。

核磁共振波谱通常需要溶解样品,然后将溶液转移到核磁共振管中进行测量。

红外光谱则可以对固体、液体和气体样品进行测量,通常需要将样品制备成固体片或涂在透明载体上。

波谱仪器通常会提供相应的样品制备方法和参数设置。

在分析核磁共振波谱和红外光谱时,需要注意以下几个方面。

首先,对于核磁共振波谱,要正确解读峰的化学位移。

化学位移受到许多因素的影响,如官能团、电子效应、取代基等。

因此,需要结合文献和经验来确定不同类型核的化学位移范围。

其次,对于红外光谱,要正确解读峰的波数。

不同的官能团和化学键都有特定的波数范围,可以用来确定它们的存在。

最后,对于波谱图的解读,需要综合考虑各种信息,如位置、形状、强度和相对强度等。

有机波谱知识点总结

有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。

有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。

本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。

一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。

红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。

2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。

红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。

3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。

此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。

二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。

紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。

2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。

紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。

3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。

此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。

三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。

质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。

有机波普分析知识点总结

有机波普分析知识点总结

有机波普分析知识点总结1. 概述有机波普分析是一种利用有机物的挥发性成分进行分析的方法,它是从气相中分析有机化合物的一种有效手段。

有机波普分析是通过气相色谱-质谱联用技术进行分析的,它广泛应用于环境监测、食品安全、生物医药等领域。

有机波普分析的关键技术是气相色谱-质谱联用技术,它具有分辨能力高、灵敏度高、选择性好等特点。

2. 基本原理有机波普分析是基于有机物质挥发性成分进行分析的,它利用气相色谱-质谱联用技术将有机物质挥发性成分分离并进行检测与定性。

气相色谱利用气态载气将有机物质挥发成分进行分离,质谱则利用质谱仪对分离后的物质进行检测与定性。

有机波普分析的原理是分析样品挥发蒸馏后的气体混合物,然后利用气相色谱将其分离,最后通过质谱对分离后的物质进行检测与定性。

3. 分析步骤有机波普分析的分析步骤包括样品的制备、挥发蒸馏、气相色谱分离、质谱检测、数据分析等几个主要步骤。

样品的制备是将待分析的有机样品制备成适合进行气相色谱-质谱联用分析的形式;挥发蒸馏是将有机样品中挥发性成分进行蒸馏分离;气相色谱分离是利用气相色谱将挥发性成分进行分离;质谱检测是利用质谱对分离后的物质进行检测与定性;数据分析是对分析结果进行处理与解释。

4. 应用领域有机波普分析广泛应用于环境监测、食品安全、生物医药等领域。

在环境监测领域,有机波普分析可以用于监测水质、大气、土壤中的有机物质,检测环境中的有机物污染情况;在食品安全领域,有机波普分析可以用于检测食品中的有机污染物,保障食品安全;在生物医药领域,有机波普分析可以用于检测药物中的有机成分,分析药物的成分与含量,保证药物的质量。

5. 技术发展有机波普分析技术发展较快,主要表现在以下几个方面:一是仪器技术的提高,气相色谱-质谱联用仪器的灵敏度、分辨率及稳定性都有所提高;二是分析方法的改进,有机波普分析的分析方法不断完善,能够更好地适应各种样品的分析要求;三是应用领域的拓展,有机波普分析技术被广泛应用于环境、食品、医药等领域,对于保障公共健康具有重要意义。

有机化学基础知识点整理核磁共振波谱在结构鉴定中的应用

有机化学基础知识点整理核磁共振波谱在结构鉴定中的应用

有机化学基础知识点整理核磁共振波谱在结构鉴定中的应用核磁共振波谱(Nuclear Magnetic Resonance Spectroscopy,简称NMR)是一种重要的结构鉴定技术,广泛应用于有机化学领域。

通过分析样品分子各个原子核的运动状态,利用NMR可以获得关于化合物结构的丰富信息。

本文将对有机化学基础知识点进行整理,并重点探讨核磁共振波谱在结构鉴定中的应用。

一、有机化学基础知识点1. 基本概念有机化学是研究碳元素化合物及其它元素与碳元素之间的化学性质和反应机理的学科。

有机物由碳和氢元素组成,同时也可含有氧、氮、硫等其他元素。

有机物的化学性质与它们的结构密切相关。

2. 化学键和分子结构有机物中的化学键主要有共价键、极性键和离子键。

共价键由共用电子对连接,是有机化合物稳定的键类型。

分子结构包括直线链状、分支链状、环状和立体中心等多种形式。

3. 功能团有机化合物中的功能团决定了其化学性质。

常见的功能团包括羧基、醇基、醛基、酮基、酯基、胺基等。

不同的功能团会导致有机物的不同性质和反应活性。

4. 碳谱和氢谱碳谱是通过测定有机物中碳原子的化学位移和峰面积来分析化合物的结构。

氢谱则是通过测定有机物中氢原子的化学位移和峰面积来分析化合物的结构。

碳谱和氢谱常用的单位是ppm(部分百万),可以提供关于化合物的信息。

二、核磁共振波谱在结构鉴定中的应用1. 化学位移化学位移是核磁共振波谱中的重要参数,用于确定不同核的环境和结合状态。

通过与特定参考物质相比较,可以推断出样品中各核的化学位移,并进一步确定化合物的结构。

2. 峰强度与个数关系核磁共振波谱中的峰代表了不同核的存在,其强度与该核在分子中的个数成正比。

通过分析峰的数量和相对强度,可以推断出化合物的分子式,进一步辅助结构的鉴定。

3. 耦合常数耦合是指不同核之间的相互作用,通过耦合常数可以确定化合物的骨架和连接方式。

常见的耦合常数有J值,该值可用于确定相邻核之间的化学键数目和键的种类。

有机化学波谱分析

有机化学波谱分析
,形成质谱图。
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。

有机波谱分析总结

有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。

本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。

一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。

通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。

有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。

二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。

通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。

红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。

2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。

质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。

3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。

通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。

核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。

4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。

紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。

三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。

结构鉴定法常用于核磁共振谱和质谱。

2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。

有机波谱分析总结

有机波谱分析总结
•(1)远紫外光区也称为真空紫外区 •(2)有文献把远紫外区与近紫外区的界限定于190nm
需要掌握的概念:

红移 蓝移 增(减)色效应 吸收带的分类(文献中直接出现): K(R/B/E)带吸收
常见类型有机物的紫外光谱
烷烃 含杂原子的饱和化合物 共轭烯烃 (1)Woodward-Fieser规则 链状、环状共轭烯烃波长计算方法 (2)Fieser-Kuhn规则 用于推算分子中含有四个以上的双键
各类有机化合物的化学位移
①饱和烃
-CH3: CH3=0.791.10ppm -CH2: CH2 =0.981.54ppm -CH: CH= CH3 +(0.5 0.6)ppm H=3.2~4.0ppm
O CH3 N CH3 C C CH3 O C CH3 CH3
H=2.2~3.2ppm
¡ Ô Ð Î Ê Ñ ñ Ô ü Õ Ç ÷Ç » Ò Æ » Â
â × ¸ Æ
Ö Ó Ë ¯ ¹ ¼ ¯ ¢ ñ ¯ ¢ ª ¯ ¢ Ë â ç Ó Ë ¯ È ·×Ô ¶ £ Æ ¶ ¡ Õ ¶ ¡ ׶ ¡ ¹ Í µ ×Ô ¶ µ £ ¾ Ó ¯ Ä ¨Ü ¾ ä ¯ º ¬ ø £ Á ׺ µ £ Ä Á ±º ² Á Ð © ¾ ö Ö Ó Ð º Ü æ Ú º ¨ý ¾ Ä ª à · ·×Ö Ö Ä ´ Ô Ò ¶ Ê Á µ ×é ¯ ¢ ñ ¯ ¡ ç Ó ½ ¨Ü ¶ ¶ ¡ Õ ¶ ¢ µ ×Ô Ç Ä »
Planck量子理论:电磁辐射能的发射和吸收不是连续的 是量子化的。这种能量的最小单位为 “光子”
E hv
hc

式中: E 为光量子能量,单位为 J h 为Planck 常数,其量值为 6.63 × 10-34 J s-1

有机化合物的波谱分析

有机化合物的波谱分析

(4)已知物的鉴定:若被测物的IR与已知物的谱 峰位置和相对强度完全一致,则可确认为一种物 质(注意仪器的灵敏度及H2O的干扰)。 (5)未知物的鉴定:可推断简单化合物的结构。 对复杂的化合物,需要UV、NMR、MS的数据。
B.红外谱图解析实例
(1) (2) (3) (4) (5) (6) (7) (8) (9) 烷烃---正辛烷 2-甲基庚烷 2,2-二甲基己烷 烯烃---(E)-2-己烯 1-己烯 (Z)-3-己烯 2-甲基-1-丙烯 炔烃--- 1-己炔 2-己炔 卤代烷---1-氯丁烷 2-甲基-2-溴丙烷 醇---1-己醇 2-丁醇 2-甲基-2-丙醇 醚--- 丙醚 甲基叔丁基醚 醛---丁醛 酮---丁酮 丙酸 丁酰氯 丁酸酐 羧酸及衍生物--- 乙酰胺 N-甲基丙酰胺
2.分子振动与红外光谱
振动方程式:
1 v振 2
m1 m2 k m1m2
k:力常数,与化学键的强度有关(键长越短,键能 越高,k越大) m1和m2分别为化学键所连的两个原子的质量,单 位为克
即:化学键的振动频率(红外吸收峰的频 率)与键强度成正比,与成键原子质量成 反比。
亚甲基的振动模式:
试样 TMS 106 0
ν试样 试样共振频率频率 νTMS 四甲基硅烷的共振频率 ν0 操作仪器选用频率
影响化学位移的因素:
A.电负性影响:取代基的电负性越大,相应碳上 质子的化学位移越大。 B.磁各向异性效应:
自旋偶合和自旋裂分
1.定义:
自旋偶合:指自旋核受邻近自旋核所产生的感应磁场影响 的现象。 自旋裂分:指自旋偶合引起的谱线增多的现象。
1.常见有机波谱
常 见 有 机 波 谱
2、有机四大谱及其特点

有机化合物波谱解析复习总结

有机化合物波谱解析复习总结

(一)常用解谱数据总结关于数据,是一定要记的···大家想怎么记爱怎么记就怎么记吧,建议自己总结,这样记的好一些。

下面是鄙人的,嘻嘻。

(老师PPT上有很多总结的)一、氢谱化学位移值δ(ppm)影响化学位移值的因素:只有空间效应和共轭效应是屏蔽效应增大,向高场位移,即σ↑,δ↓.(一)0.4~4.0为饱和C上的H① 0.4~1.8 连饱和C的饱和C上的H② 1.8~2.5 连不饱和C的饱和C上的HI. 1.8~2.1 连C=C、C≡C的饱和C上的HII. 2.1~2.5 连C=O、N、S、苯环的饱和C上的H③ 3.0~4.6 连-O-的饱和C上的H其中,4.1左右可能有酯基④例外的:2.3~3.0是叁键上的H(二)4.6~8.0为不饱和C上的H① 4.6~6.0 C=C上的H② 6.0~8.0 苯环上的H(三)4.0~5.5为脂肪醇-OH的H若有0.5~1.0,为稀溶液(四)3.5~7.7为酚的-OH的H若有10~16,为分子内氢键(五)9.0~10.0为H-C=0的H(六)10.5~13为-COOH的H(七)胺类①~1.0 脂肪胺②4~5(气泡峰)芳香胺③6~7(气泡峰)酰胺,仲胺类其它:J值:①任何情况下J顺<J反②总体情况:J苯环H<J邻(烯H)<J邻(烷H)<J偕H③苯环H:J对<J间<J邻(J对0 ~1Hz;J间1~3Hz;J邻6~12Hz)④烯烃H:J邻(顺)<J邻(反)(J邻(顺)6~14Hz;J邻(反)11~18Hz)⑤烷烃H:J邻6~8Hz⑥同碳上的H:J偕10~16Hz要求掌握给图能测量算得J值,再推化合物种类。

二、碳谱碳谱的DEPT值:季碳消失!θ=45°,季C消失;θ=90°,季C消失,只有CH向上;θ=135°,季C消失,只有CH2向下。

COM谱:峰全部为单峰。

OFR谱:裂分峰只有同一C上的,临近C不影响裂分。

有机化学波谱分析知识要点

有机化学波谱分析知识要点

波谱分析第一章紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。

反映了有机分子中发色团的特征,可以提供物质的结构信息。

2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。

3、Lamber-Beer 定律适用于单色光吸光度:A= lg(I 0/I) = lc透光度:-lgT = bcA :吸光度;l :光在溶液中经过的距离;:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。

4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。

5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。

吸收强度即摩尔吸光系数增大或减小的现象分别称为增色效应或减色效应。

6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。

2. n →σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。

3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。

4. n →π*跃迁:含杂原子不饱和基团(-C ≡N,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。

7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,↑,吸收峰红移,↑3. 极性的影响:π→π*跃迁:极性↑,红移,↑;↓。

有机化合物光谱及波谱分析

有机化合物光谱及波谱分析

(3)红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶 剂使最大吸收波长λ max和吸 收强度发生变化:
λ max向长波方向移动称
为红移,向短波方向移动称 为蓝移 (或紫移)。
如图所示。
(4) 增色效应和减色效应 增色效应:使吸收带的吸收强度增加的效应 减色效应:使吸收带的吸收强度降低的效应
c ν= λ
ν : Hz c 8 c : 光速 (3×10 m/s) E = hν =h λ λ : m
= hcν
※ 频率与波长成反比, 即波长越长, 频率越低, 波数越小 ※ 光量子的能量(E)与波长成反比, 而与频率及波数成正比.
二、电子能级跃迁类型
ultraviolet spectrometry of organic compounds
讨论:
④不同浓度的同一种物质,在某一定波长下吸光度 A
有差异,在λ max处吸光度A 的差异最大。此特性可作作
为物质定量分析的依据。
⑤在λ max处吸光度随浓度变化的幅度最大,所以测定
最灵敏。吸收曲线是定量分析中选择入射光波长的重要
依据。
3.紫外光谱的波段
紫外吸收光谱的波长范围是100-400nm(纳米), 其中 100-200nm 为远紫外区(这种波长的光能够被空气中的氮、氧、 二氧化碳和水所吸收,因此只能在真空中进行研究,故这个区域 的吸收光谱称真空紫外),200-400nm为近紫外区, 一般的紫 外光谱是指近紫外区。波长在400~800nm范围的称为可见光谱。 常用的分光光度计一般包括紫外及可见两部分,波长在200~ 800nm(或200~1000nm) 波长范围:100-800 nm.
1、苯及其衍生物
E1带:184nm——远紫外区

08有机化合物的波谱分析

08有机化合物的波谱分析
用下产生一个感应磁场。
• 一般,感应磁场H感存在使质子实际感受到
的 效磁 应场 叫强做屏度蔽H’0效比应外。加磁场强度H0小,这种
• 所以要发生共振必须:

H0=H’0+ H感
由于不同化学环境的质子受到的屏蔽效应不同, 因此它们发生核磁共振所需的外磁场强度也不同。
质子周围电子云密度 感应磁强 H感 屏蔽效应 发生共振吸收的磁场强度 H0
倍频区
官能团特征区
指纹区
8.3. 有机化合物的红外光谱 烷烃:
~2850
~1370 ~1470
~720
2850~3000 cm-1 1450~1470 -1 1370~1380 –1 720~725 -1
C-H 伸缩振动
-CH3 –CH2-剪式弯曲振动 CH3-平面摇摆弯曲振动 (注意分裂峰) -CH2-平面摇摆弯曲振动(n>=4)
总之:在核磁共振谱中:
吸收峰的个数(组数)——质子的类型
吸收峰的强度(面积)之比— 各类质子的 相对数目
吸收峰的位置(化学位移) 质子所处的
吸收峰的裂分情况
化学环境
【例6-1】 图6-22所 示两个 1HNMR谱 图分别代 表化合物 1-氯丙烷 和2-氯丙 烷。试说 明其归属 。
【例6-2】
每个有机化合物都有它自己的吸收光谱。
(一) 红外光谱 (IR)
• 红外光谱图的表示方法 • 红外光谱与分子结构的关系 • 有机化合物的红外光谱
8.1. 红外光谱的表示方法
红外光谱(infrared,spectroscopy,简记为IR) 是分子吸收红外区光波时,分子中原于的振动能级 和转动能级发生跃迁而产生的吸收光谱。
在核磁共振谱上就出现不同位置的吸收峰。

有机波谱分析入门

有机波谱分析入门

有机波谱分析入门在化学领域,有机波谱分析是一项极其重要的技术,它为我们揭示了有机化合物的结构和性质,就像为我们打开了一扇了解微观世界的神秘之门。

对于初学者来说,掌握有机波谱分析的基础知识是走进这个神奇世界的第一步。

有机波谱分析主要包括紫外可见光谱(UVVis)、红外光谱(IR)、核磁共振谱(NMR)和质谱(MS)等几种方法。

每一种方法都有其独特的原理和应用,让我们逐一来看。

先来说说紫外可见光谱。

它所依据的原理是分子中的电子在不同能级之间的跃迁。

当有机化合物吸收了特定波长的紫外或可见光时,我们就能通过测量吸收峰的位置和强度来推断分子中存在的官能团和共轭体系。

比如,含有双键或苯环结构的化合物通常在紫外区域有明显的吸收。

但要注意的是,紫外可见光谱对于结构的鉴定相对比较有限,往往需要结合其他波谱方法才能得到更准确的结构信息。

接下来是红外光谱。

这可是有机化学中的“大功臣”。

红外光谱通过检测分子振动和转动引起的能量变化来确定官能团的种类。

不同的官能团会在特定的波数范围内产生吸收峰,就像每个官能团都有自己独特的“指纹”。

例如,羰基(C=O)在 1700 cm⁻¹左右有强烈的吸收,羟基(OH)在 3200 3600 cm⁻¹之间有特征吸收。

通过分析红外光谱图上的吸收峰,我们可以大致判断化合物中存在哪些官能团,从而为结构的解析提供重要线索。

核磁共振谱则是有机波谱分析中的“重磅武器”。

它基于原子核在磁场中的自旋现象。

常见的有氢谱(¹H NMR)和碳谱(¹³C NMR)。

氢谱能够告诉我们分子中氢原子的化学环境和数量,通过化学位移、峰的裂分和积分面积等信息,我们可以推断出氢原子的连接方式和分子的结构。

而碳谱则能提供碳原子的信息,虽然灵敏度相对较低,但对于复杂结构的解析有着不可或缺的作用。

比如说,通过观察化学位移,我们可以判断碳原子是处于烷基、芳基还是羰基等环境中。

最后是质谱。

有机化学波谱分析知识要点

有机化学波谱分析知识要点

有机化学波谱分析知识要点一、红外光谱分析(IR Spectroscopy)红外光谱是利用物质对红外辐射的吸收、散射和透射特性进行分析的方法。

它可以提供关于有机化合物中的官能团、键的类型和官能团的有关信息。

IR光谱仪通常以波数(单位为cm-1)来表示光谱的X轴。

1. 标定标样:红外光谱的波数标定通常以空气中的CO2吸收峰为基准,波数为2349 cm-12.关键峰值:红外光谱中有一些常见的峰值对应着特定的官能团或基团,如OH伸缩振动、C=O伸缩振动等。

3. 官能团特征波数:红外光谱可以通过分析官能团的特征波数,如羧酸(1700-1720 cm-1)、酯(1735-1745 cm-1)等。

二、核磁共振波谱分析(NMR Spectroscopy)核磁共振波谱是通过分析核自旋在外加磁场中的共振吸收来获得有机化合物结构信息的方法。

常见的核磁共振波谱有质子核磁共振(1HNMR)和碳-13核磁共振(13CNMR)。

1.核磁共振吸收峰:核磁共振谱图中出现的各个峰对应着不同核成分的共振吸收。

2.位移:核磁共振谱图中每个峰的信号在横轴上的位置(化学位移)可以提供有关它们所对应原子的环境和化学环境的信息。

3.耦合:在核磁共振谱图中,出现在特定峰附近的小峰是由于核自旋耦合引起的。

耦合的模式和数量可以提供关于分子中不同核之间的相互关系。

三、质谱分析(Mass Spectrometry)质谱分析是通过将有机化合物中的分子离子化,并在电磁场作用下测量其质量/电荷比,从而确定分子的质谱图(mass spectrum)。

质谱技术可提供有机化合物的分子式和分子结构信息。

1.分子离子峰(M+):质谱图中最高峰对应分子的分子离子峰。

它的质荷比等于分子质量除以电子的质量。

2.碎片离子峰:质谱图中其他峰位来自分子断裂后的离子。

通过分析这些峰可推断出有机化合物的结构。

3.分子离子峰和碎片离子峰之间的相对丰度:通过分析质谱图中分子离子峰和碎片离子峰之间的相对丰度的比例,可以推断出有机化合物中不同官能团的相对含量。

有机化学波谱分析

有机化学波谱分析

2.指纹区: <1600 cm-1的低频区,主要是:C-C、C-N、C-O等单键和各种弯曲振动的吸收峰,其特点是谱带密集、难以辨认。
1) 外界因素,如,状态、溶剂极性等
2) 分子内部结构的影响
3、影响特征吸收频率(基团吸收位置)的因素
a. 电子效应的影响 吸电子基使吸收峰向高频区域移动,供电子基使吸收峰向低频区域移动。
结论: 当振动频率和入射光的频率一致时,入射光就被吸收。对于固定的基团,其折合质量和键力常数是固定的,根据胡克定律,其振动频率也相应固定。因而同一基团基本上总是相对稳定地在某一稳定范围内出现吸收峰.
4. 分子的振动能级跃迁和红外吸收峰位
分子的振动是量子化的,其能级为:
式中:v — 为振动量子数(0,1,2,…);ν振为化学键的振动频率。
⑵振动光谱 在振动光谱中分子所吸收的光能引起振动能级的变化。分子中振动能级之间能量要比同一振动能级中转动能级之间能量差大100倍左右。振动能级的变化常常伴随转动能级的变化,所以,振动光谱是由一些谱带组成的,它们大多在红外区域内,因此,叫红外光谱。
⑶电子光谱 在电子光谱中分子所吸收的光能使电子激发到较高的电子能级,使电子能级发生变化所需的能量约为使振动能级发生变化所需能量的10~100倍。 电子能级发生变化时常常同时发生振动和转动能级的变化。因此从一个电子能级转变到另一个电子能级时,产生的谱线不是一条,而是无数条。实际上观测到的是一些互相重叠的谱带。在一般情况下,也很难决定电子能级的变化究竟相当于哪一个波长,一般是把吸收带中吸收强度最大的波长λmax(最大吸收峰的波长)表出,电子光谱在可见及紫外区域内出现。
C―C
0.154
347.3
4.5
700~1200

第六章 有机化合物的波谱分析

第六章 有机化合物的波谱分析

HO
H
CO
CC
H
HH CC CO
HO
通常 反式异构体 大于顺式异构体的:
。。。。。
。。。。。
反式异构体 max = 273nm(= 21000)
顺式异构体 max = 264nm(= 1400)
6.3 红外光谱 ( I R )Infrared Spectroscopy
物质吸收的电磁辐射如果在红外光区域,用红外光谱仪把产生的红外谱带记录下来,就得到红 外光谱图。 所有有机化合物在红外光谱区内都有吸收,因此,红外光谱的应用广泛,在有机化合物的结构 鉴定与研究工作中,红外光谱是一种重要手段,用它可以确证两个化合物是否相同,也可以确 定一个新化合物中某一特殊键或官能团是否存。 6.2.1 红外光谱图的表示方法 红外光谱图用波长(或波数)为横坐标,以表示吸收带的位置,用透射百分率(T%)为纵坐标 表示吸收强度。 横坐标 --- 波数(cm-1, 下方), 波长(mm,上方) 纵坐标 --- 吸光强度(A)或透过率(T,%) 谱区 --- 4000 – 600 cm-1
化学的迅速发展。
一、 电磁波的一般概念
• 光是电磁波,有波长和频率两个特征。电磁波包括了一个极广阔的区域,从波长只有千万
分之一纳米的宇宙线到波长用米,甚至千米计的无线电波都包括再内,每种波长的光的频
率不一样,但光速都一样:即 3×1010cm/s。
光的频率与波长
波长与频率的关系为: υ= c /λ
υ=频率,单位:赫(HZ);
K 吸收带为 n π * 跃迁引起的吸收带,其特点为吸收峰很强,εmax > 10000。共轭双键增加, λmax 向长波方向移动,εmax 也随之增加。
B 吸收带为苯的 n π * 跃迁引起的特征吸收带,为一宽峰,其波长在 230~270nm 之间,中 心再 254nm,ε 约为 204 左右。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档