浅析价格战中的博弈论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

价格战中博弈论的浅析

2011-2012学年第一学期

课程名称:博弈论

班级:10物流管理(采购与供应链1班)

学号:1040407122

:曾维乐

二〇一一年十二月十八日

价格战中的博弈论浅析

摘要:博弈论研究互动决策行为,大多数时候是研究对抗性行为,但并不是所有的对抗行为。博弈论是运筹学的一个重要分支,类型众多。本文在简要介绍了博弈论相关容的基础上,重点介绍了纳什均衡。通过案例,充分运用囚徒困境、智猪博弈、反向归纳法等进行分析,从而得出在经济决策中行为人如何决定最优决策的方法。在此基础上,结合博弈论相关知识,分析解决经济生活中的一些实际问题。如:针对商家的价格战问题。

关键词:囚徒困境懦夫博弈安全博弈纳什均衡

一、理论介绍

1、博弈论简介

博弈论(game theory),也称对策论,它是运筹学的一个重要分支,是研究决策主体的行为发生直接相互作用时的决策以及这种决策的均衡问题,简单说来就是一些个人或其他组织,面对一定的环境条件,在一定的规则下,同时或先后,一次或多次,从各自允许选择的行为或策略中进行选择并加以实施,各自取得相应结果的过程。

从上述定义中可以看出,一个完整的博弈一般由以下几个要素组成:博弈的参加者,各博弈方各自选择的全部策略或行为的集合、博弈方的得益(得益

矩阵)、结果、均衡等。

1、参与人指的是博弈中选择行动以最大化自己效用的决策主体(可以是个人,也可以是团体)。

2、行动是指参与人在博弈进程中轮到自己选择时所作的某个具体决策。

3、策略是指参与人选择行动的规则,即在博弈进程中,什么情况下选择什么行动的预先安排。

4、信息指的是参与人在博弈中所知道的关于自己以及其他参与人的行动、策略及其得益函数等知识。

5、得益是参与人在博弈结束后从博弈中获得的效用,一般是所有参与人的策略或行动的函数,这是每个参与人最关心的事情。

6、均衡是所有参与人的最优策略或行动的组合;均衡结果是指博弈结束后博弈分析者感兴趣的一些要素的集合,如在各参与人的均衡策略作用下,各参与人最终的行动或效用集合。

上述要素中,参与人、行动和结果统称为博弈规则,博弈分析的目的是使用博弈规则来决定均衡。

2、博弈模型

(1)囚徒困境。“囚徒困境”在博弈论中是最基本的理论,指两个共同犯罪的犯罪嫌疑人同时被抓,他们都存在两种选择,要么坦白从宽,减轻处罚或无罪释放,要么抗拒抵赖,加重惩罚或因证据不足而释放。如两人均不坦白被判入狱一年;均坦白入狱五年;一方坦白,一方不坦白,一方立即释放,另一方入狱八年。

但囚犯选择哪一种好呢?这要从两名囚徒选择的条件和结果来分析。现在我们假定两名囚犯分别为甲和乙两人,如果甲选择抵赖,这里的结果就有两种,如果乙选择坦白,那么甲将加重惩罚;如果乙也选择抵赖,那么他们两个都将因证据不足而被释放,很明显这需要他们两个人的通力合作。但通常警方会把两名囚犯放在不同的囚房里,使这种合作难以顺利进行而使得结果预测的不确定性加大,或者说增加了抵赖合作的风险性。如果基于人是自私的这一前提出发的话,那么甲乙两囚徒各自最好的选择就是坦白从宽,因为不管甲乙两人谁坦白,都将得到减轻惩罚的结果:如果甲坦白了,乙抵赖,甲将免于惩罚,如

果乙也坦白了,那么罪名各担一半,从甲个人看来,也减轻了惩罚,甲乙互换位置,结果依然是一样。因此,在博弈论中认为他们两者之间存在一个均衡点,即纳什均衡点,我们把它称为严格优势策略。

但我们从上面的分析也可以看出,这个均衡点是建立在两个囚徒非合作的基础上的,并且两者的非合作还可以获得一定的利益(从宽惩罚),如果没有从宽惩罚的这一利益条件,那么这个严格优势策略也就不复存在。此时,两个囚徒就很容易走上合作了。

3、纳什均衡的一致预测性

纳什均衡之所以有这么重要的地位,关键就在于它具有一致性。这里所说的“一致预测性”是指这样一种性质:如果所有博弈方都预测一个特定的博弈结果会出现,那么所有的博弈方都不会利用该预测或者这种预测能力,选择与预测结果不一致的策略,即没有哪个博弈方有偏离这个预测结果的愿望,因此这个预测结果最终会成为博弈的结果.也就是说,这里“一致预测性”中的“一致”的意义是,各博弈方的实际行为选择与他们的预测一致,而不是不同博弈方的预测相同、无差异。

一致预测性是纳什均衡的本质属性,也是保证纳什均衡的价值,使纳什均衡有不同于其他分析概念的特殊地位的重要性质。因为首先一致预测性在博弈论分析中具有十分重要的地位,其次是只有纳什均衡才具有一致预测的性质。

一致预测性在博弈论分析中重要的原因,主要在于一个博弈方在博弈中所作预测的容包括他自己的选择,因此博弈方有可能会利用预测改变自己的选择,而具有一致预测性质的博弈分析概念就能避免这样的矛盾,从而是稳定的和自我强制的,相应选择也才是真正可预测的。不具有一致预测性的博弈分析概念,在分析和预测博弈结果时,则难以避免预测和行为之间的矛盾,因此是不稳定的。纳什均衡的一致预测性为我们研究具体应用提供了理论保证。

二、问题提出

在我们日常生活中,我们经常会遇到商家与商家之间打价格战,互相降价或运用各种方式促销。在我们外语外贸大学南国商学院里的食堂也有类似现象。一楼和二楼都有扒饭供应,因此,这两家扒饭店也曾经上演过价格战。二楼为了能吸引更多的顾客,把扒饭的价格降低,而一楼被迫也做出反击,重新调整价格。因为顾客人数不会有太大变化,一楼和二楼之间的博弈陷入囚徒困境。

三、问题分析

在上述的背景之下,我们对食堂价格战的相关问题进行博弈论分析。在这个博弈过程中,博弈三要素表述如下:

博弈的参与者(players):一楼扒饭店和二楼扒饭店

博弈的策略(actions):降价和不降价

博弈方的得益(payoffs):一楼扒饭店降价而二楼怕饭店不降价,一楼扒饭店扩大了市场,赢利增加8个单位,二楼扒饭店市场缩小,赢利增加-10单位;反之,二楼扒饭店降价而一楼扒饭店不降价,则二楼扒饭店增加8个单位,一楼扒饭店增加-10个单位。倘若都降价,则各增加-5个单位。都不降价,则都保持原来的价格,增加0个单位。整个选择及其结果可以用赢利表表示,如

从上表我们可以看出其博弈结构式典型的囚徒困境:对于两个商家来说,

相关文档
最新文档