鲁教版七年级上册数学第四章实数辅导讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自信是成功的起点,坚持是成功的终点!
七年级数学
个性化辅导讲义
第四讲:实数
任课教师:***
数学学科辅导讲义
1、注意算术平方根与平方根的区别:一个正数的算术平方根只有一个,平方根却
有两个,它们互为相反数;
2、注意特殊数字的平方根、算术平方根和立方根(如:-1、0、1);
3、估算与比较,别忘开方与乘方。
【经典例题】
类型一.有关概念的识别
1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()
A、1
B、2
C、3
D、4
解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,
是无理数
举一反三:
【变式1】下列说法中正确的是()
A、的平方根是±3
B、1的立方根是±1
C、=±1
D、是5的平方根的相反数
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()
A、1
B、1.4
C、
D、
【变式3】
类型二.计算类型题
2.设,则下列结论正确的是()
A. B.
C. D.
举一反三:
【变式1】
1)1.25的算术平方根是__________;平方根是__________.
2)-27立方根是__________. 3)___________,
3)___________,___________.
【变式2】求下列各式中的
(1)(2)(3)
类型三.数形结合
3. 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B 两点的距离为______
解析:在数轴上找到A、B两点,
举一反三:
【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().
A.-1 B.1- C.2- D.-2
[变式2]已知实数、、在数轴上的位置如图所示:
化简
类型四.实数绝对值的应用
4.化简下列各式:
(1) |-1.4| (2) |π-3.142|
(3) |-| (4) |x-|x-3|| (x≤3)
分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。
举一反三:
【变式1】化简:
类型五.实数非负性的应用
5.已知:=0,求实数a, b的值。
举一反三:
【变式1】已知(x-6)2++|y+2z|=0,求(x-y)3-z3的值。
【变式2】已知那么a+b-c的值为___________
类型六.实数应用题
6.有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。
解:设新正方形边长为xcm,
根据题意得x2=112+13×8
∴x2=225
∴x=±15
∵边长为正,∴x=-15不合题意舍去,
∴只取x=15(cm)
答:新的正方形边长应取15cm。
举一反三:
【变式1】拼一拼,画一画:请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。(4个长方形拼图时不重叠)
(1)计算中间的小正方形的面积,聪明的你能发现什么?
(2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积多24cm2,求中间小正方形的边长.
解析:(1)如图,中间小正方形的边长是:
,所以面积为=
大正方形的面积=,
一个长方形的面积=。
所以,
答:中间的小正方形的面积,
发现的规律是:(或)
(2)
类型七.易错题
7.判断下列说法是否正确()
(1)的算术平方根是-3;(2)的平方根是±15.
(3)当x=0或2时,(4)是分数
类型八.引申提高
8.(1)已知的整数部分为a,小数部分为b,求a2-b2的值.
(2)把下列无限循环小数化成分数:①②③(1)分析:确定算术平方根的整数部分与小数部分,首先判断这个算术平方根在哪两个整数之间,那么较小的整数即为算术平方根的整数部分,算术平方根减去整数部分的差即为小数部分.
解:
【课堂检测】
21)1(2=+, 2
11=s ; 31)2(2=+, 2
22=s ; 41)3(2=+, 233=
s ;…… (1)请用含n 的(n 为正整数)的等式表示上述变化的规律;
(2)推算出=5OA ,=10OA ;=4s ,=9s ;
(3)求出2
102221s s s +++ 的值。
实数习题精选
一、选择题:
1.的算术平方根是()
A.0.14 B.0.014 C.D.
2.的平方根是()
A.-6 B.36 C.±6 D.±
3.下列计算或判断:①±3都是27的立方根;②;
③的立方根是2;④,
其中正确的个数有()
A.1个B.2个 C.3个D.4个
4.在下列各式中,正确的是()
A.; B.;
C.; D.
5.下列说法正确的是()
A.有理数只是有限小数B.无理数是无限小数
C.无限小数是无理数 D.是分数
6.下列说法错误的是()
A.B.
C.2的平方根是D.
7.若,且,则的值为()
A. B.C.D.
8.下列结论中正确的是()
A.数轴上任一点都表示唯一的有理数; B.数轴上任一点都表示唯一的无理数;
C. 两个无理数之和一定是无理数;
D. 数轴上任意两点之间还有无数个点9.-27 的立方根与的平方根之和是()
A.0 B.6 C.0或-6 D.-12或6
10.下列计算结果正确的是()
A.B. C. D.