航天飞行训练模拟器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

载人航天飞行训练模拟器

核心提示:一个典型的全任务航天飞行训练模拟器通常由8大部分组成,分别是实时仿真计算分项系统、模拟座舱分项系统、运动分项系统、仪表仿真分项系统、视景分项系统、音响分项系统、教员控制台分项系统、辅助支持分项系统。(1)模拟座舱模拟座舱主要为航天员训练提供航天

国防科技网(81tech)讯:一个典型的全任务航天飞行训练模拟器通常由8大部分组成,分别是实时仿真计算分项系统、模拟座舱分项系统、运动分项系统、仪表仿真分项系统、视景分项系统、音响分项系统、教员控制台分项系统、辅助支持分项系统。

(1)模拟座舱

模拟座舱主要为航天员训练提供航天器的界面环境,在半实物仿真中提供身临其境的实物环境。根据所仿真的航天器以及承担的训练任务不同,模拟座舱的结构形式和数量也不相同。例如,针对航天飞机的飞行训练模拟器,其模拟座舱是乘员舱,主要用于操作和任务训练;而对于全尺寸的航天飞机训练器,其模拟座舱包括了乘员舱、中舱和货舱等舱段,主要用来让航天员熟悉航天飞机内各系统的位置,以及机上的实验、生活环境;针对飞船的全任务飞行训练模拟器,其模拟座舱包括返回舱和轨道舱;针对空间站的训练模拟器,其模拟座舱可包含多个舱段;对于单项任务训练模拟器,根据训练任务的不同,可以是单一座舱,也可以是多个模拟座舱。为了安放模拟座舱并为使用、维护提供方便,模拟座舱一般还设有基座和舱外工作平台。图7-13为神舟飞船模拟座舱的内部画面。

航天飞行训练模拟器主要用于航天员的操作和任务训练,因此一般情况下不模拟压力、气体成分、失重和超重等因素,这些物理环境有专门的设施进行仿真模拟。对于操作和任务训练,模拟座舱主要是提供与实际航天器一致的舱内布局界面和操作界面,结构上没有必要像实际航天器一样。通常模拟座舱不是气密舱,没有密封要求,也不用热防护和辐射防护设备,只要求外形、尺寸、内部布局与实际航天器保持一致,材质上通常采用金属或者木质。

模拟座舱内部通常安装有仪表系统、舱内操作照料设备、舱内工艺模拟设备、舱内医监设备、航天员座椅、电气管路接口、通话装置、照明装置等,并为视景显示装置、音响模拟设备、座舱空调、航天服气源、电视监视摄像机等提供安装的环境和接口。模拟座舱内所有设备的安装位置、尺寸大小、操作特性与实际航天器一致,训练模拟器特有的设施,一般在不破坏舱内布局界面的情况下,尽可能隐蔽安装。舱内所有需要航天员操作的设备,实际上是真实设备的复制品,有些为了训练需要进行了特殊的改装和调整。另外,还有一些不需操作的设施,一般用工艺模拟件来代替,这些设备只是在外观、尺寸和安装位置上与实际航天器相同,不具备电特性和操作特性。

(2)仪表操纵模拟

仪表是航天员最主要的观察和操作界面。航天员可以通过舱内仪表板上的各种显示器、信号灯和语音通报,获取航天器飞行状态及各系统工作状态的信息,并且可以通过操纵仪表板上的各种开关、按键来控制航天器。通常在飞行训练模拟器上,舱内仪表板都采用实物,以保证与真实航天器一致。当然,有些地方根据训练的要求进行了一定的改造,主要是增加了仪表板上所有开关、按键操作的信息采集设备,以便教员能够监测到航天员的各种操作,为训练评价提供依据。

对于载人飞船飞行训练模拟器,其仪表仿真系统一般包括舱内仪表板、数据管理仿真系统、接口控制和教员台上的虚拟仿真仪表(也称为软仪表)。

舱内仪表板通常包括多功能显示器、数码显示器、各种信号灯板、指针式仪表部件、控制开关板、语音报警单元等显示和操作部件,这些部件由单片机、嵌入式计算机等进行驱动、控制及数据处理,可显示和通报飞行程序、重要事件以及飞船各系统的重要参数和工作状态,可操作控制开关板对飞船各系统进行控制。在飞行训练模拟器上,主要通过数据管理仿真系

统接收指令和数据。

接口控制和数据管理仿真系统仿真飞船的数管系统,对模拟器实时仿真计算系统给出的仿真数据进行格式转换,对各种指令和数据进行分类处理和界限判别,然后按照飞船数据总线格式重新组织数据报文发送给舱载仪表板。接口控制和数据管理仿真系统还要采集航天员仪表操作信息、舱内其他设备操作信息、航天员生理监测数据,与舱载仪表板下传的数据一起,转换为模拟器的网络报文格式,传送给模拟器其他系统。

虚拟仿真仪表是舱载仪表板的镜像,主要是采用计算机图形技术来生成舱载仪表板的仿真图像,通过接收仿真数据和舱载仪表板下传的仪表操作信息,完全同步地反映舱载仪表板的所有状态,包括所有显示界面、显示内容、各种信号灯状态,控制开关板上所有开关、按键、旋钮的状态,以及同步播发语音报警单元的事件通报。通过虚拟仿真仪表,教员可以随时了解和掌握仪表的工作状态,以及航天员对舱载仪表及控制器的操作。

(3)动感模拟

对于运动基训练模拟器,比如航天飞机的运动基训练模拟器来说,需要配置运动系统。运动系统是提供动感的仿真设备,可根据航天器产生动感的原理,建立相应的数学模型和软件,在计算机中实时接收模拟器运动参数,生成特定的激励信号,驱动能产生动感的设备,从而实现模拟器运动,使航天员获得逼真的动感。

一般能产生动感的仿真设备有以下几类。

1)平台式运动系统。该系统可分为3自由度、4自由度、5自由度和6自由度等平台式运动系统。6个自由度是指升降、纵向、侧向3个线运动及俯仰、偏航、倾斜3个姿态角运动。平台式运动系统一般允许的角度变化范围在±30°以内,线位移在1~1.5米以内,因而只能在有限行程内提供航天器瞬时过载动感、重力分量持续感及部分抖动、冲击信号。

2)抖振座椅。抖振座椅是在模拟器受训人员座椅上安装能产生与机体垂直轴平行的抖振信号的抖振器。抖振信号的频率和幅值可由计算机软件控制,信号源是模拟航天器失速、刹车、着陆接地时产生的抖振信号,抖振幅值可达到±2.5厘米,频率可在20赫以内变化。

3)抗荷服。抗荷服是给受训人员提供一个持续过载感觉的仿真装置。抗荷服采用能施加压力的头盔、背包装置,可以让受训者的触觉感知与真实情况基本一致。

在飞行训练模拟器中,最常见的是协同式运动系统。协同式运动系统一般由液压、机械、控制、计算机及电源等组件组成。机械组件包括底座、平台及传动装置等。计算机支持软件接受来自飞行系统的参数,经过适当的运算和变化,得到有感作动筒的行程参数,经过控制组件,形成各种监视和控制信息,监控机械组件的运动。

反映运动系统性能特点的主要指标是工作范围、负载、频率响应、固有频率、阻尼、平滑度、稳定度、静态精度、轴间交叉耦合影响、漂移、同步和系统传递延迟等。通常最关心的是工作范围、负载及频率响应等。

从飞行系统的飞行参数到运动系统中的驱动信号,都需要经过坐标变换等多种复杂运算。由于运动平台作动筒行程极其有限,与飞船在空中的飞行完全不同,所以平台在完成一次突发运动以后,必须缓慢地(航天员感觉不到)返回到中立位置,以准备执行下一次突发运动。洗出滤波就是计算出驱动运动平台的基本参数,包括3个线位移值和3个角位移值。超前补偿是根据运动系统的滞后特性,对从洗出滤波中得到的驱动运动平台的基本参数进行修整,得到动感更真实的运动平台参数。运动平台的瞬时姿态取决于6个作动筒中各个作动筒活塞杆伸长度的不同组合。所以,必须把前面计算得到的6个平台驱动参数转换成为每一个作动活塞杆的伸长度,并进一步转换成相应的驱动信号,控制液压系统驱动相应的作动筒运动。

(4)视景模拟

视景仿真是训练模拟器极为重要的组成部分。视景仿真系统提供载人航天器各种观察

相关文档
最新文档