高光谱遥感技术在农林植被调查方面的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高光谱遥感技术在农林植被调查方面的应用

高光谱分辨率遥感(简称高光谱遥感),是20世纪末迅速发展起来的一项集探测器技术、精密光学机械、微弱信号检测、计算机和信息处理技术于一体的全新遥感技术。它能够获得地物的连续光谱信息,实现地物图像信息与光谱信息的同步获取,因而在地质、林业、农业、生态环境、海洋、军事等领域具有巨大的应用价值和广阔的发展前景。

植被作为遥感观测和记录的第一表层,是遥感数据反映的最直接信息。目前,多光谱遥感已被广泛应用于植被的长势研究、沙漠化研究、气候演变规律分析等方面,但传统的多波段遥感数据对于植被的研究和应用仍仅限于一般性的红光吸收特征与近红外的反射特征及中红外的水吸收特征波段,由于受波段宽度和波段数以及波长位置的限制,往往对植被类型不敏感,对植被长势反映不理想,而高光谱遥感在对目标的空间特征成像的同时,对每个像元可在更宽范围上,形成几十个乃至几百个窄波段连续的光谱覆盖,使更深入地考察植被光谱的响应机制和物理机制成为可能,因此成为植被和林业方面监测的强有力工具。

1. 高光谱遥感在植被调查方面的优势

高光谱遥感在光谱分辨率方面的提高,使地物目标的属性信息探测能力有所增强,因此,较之全色和多光谱遥感,高光谱遥感有以下显著优势:

(1)成像光谱仪所获取的地物连续光谱比较真实,能全面反映自然界各种植被所固有的光谱特征以及其间的细节差异性,从而大大提高地物分类的精细程度和准确性,使得高光谱图像数据与光谱仪地面实测光谱曲线数据之间的直接匹配成为可能。

(2)高光谱图像数据提高了根据混合光谱模型进行混合像元分解的能力,减少了土壤等植被生长背景地物的影响,从而能够获取最终光谱端元的真实光谱特性曲线数据。

(3)高光谱分辨率的植被图像数据将对传统的植被指数运算予以改进,大大提高了植被指数所能反演的信息量,使人们可以直接收获诸如植被叶面积指数、生物量、光合有效吸收系数等植被生物物理参量。

(4)提高遥感高定量分析的精度和可靠性,基于高光谱分辨率的光谱吸收特征信息提取可以完成部分植被生物化学成分(如植被干物质和水分含量等)定量填图。

2. 高光谱植被参量的反演

植被生理、生化参量的精确估算对于生物多样性评价、陆地覆盖表征、生物量建模以及碳通量估算都具有非常重要的意义,应用遥感技术估测叶片和冠层水平上生化参量的时空变

化规律有助于了解植物生产率、凋落物分解速率以及营养成分有效性,提高资源管理的效率。高光谱遥感获取的连续的精细的光谱浓缩了植被冠层结构和生化参量,从而为植被的生理、生化参量的精确估测提供可能和条件。

2.1植被遥感有关的生化物理参量

生物物理参量主要指用于陆地生态系统研究的一些关键变量,包括叶面积指数(LAI)、光合有效辐射吸收率(FAPAR)、生物量、植被覆盖度等。植被生化参量的估算主要集中于色素(主要是叶绿素)、各种营养元素(特别是氮)以及纤维素、木质素、可溶性糖、淀粉和蛋白质等。

植物的营养元素状况能影响到叶面积、冠层形态、内在生理特征,从而与光谱特征密切相关。不仅使快速、简易地诊断植被的营养状况成为可能,而且高光谱遥感技术的发展还使得大面积监测植物的营养状况(营养胁迫)和长势也取得了极大的进展。

2.2植被参量的高光谱遥感反演

植被生物物理和生物化学参量反演的方法大致有三种类型:

(1)传统的多元统计分析方法

通常是利用逐步回归分析方法筛选出反射率光谱或其变换形式(导数光谱、对数光谱等)与某个生物物理或生物化学参量的关系密切相关的若干个波段,建立统计回归方程,然后利用该方程对未知样本的参量进行预测、估算精度。优点:简单易行,对可控条件下测得的光谱应用时,结果较好。缺点:应用野外测量数据或遥感图像时,由于受到大气、冠层几何条件、结构、土壤背景等因素影响,所建立的回归方程往往对所使用的数据依赖性很强,使用不同的数据集所选的波段差异性较大。因此,先对反射率光谱去包络,然后利用吸收深度(和吸收面积)进行归一化,在此基础上建立的逐步多元回归方法对植被的氮、木质素和纤维素含量进行估测,效果较好。

(2)基于光谱特征分析方法

该方法主要是基于单个特征参量或两个(或多个)特征波段组合的光谱指数,建立它们与某个生理或生化参量的经验方程,即特征参量法和光谱指数法。

特征参量法:将光谱上某个吸收特征(谷)或反射峰特征参量化,建立关联方程。应用最广的是植被特有的“红边”,定义为反射率光谱在680-750nm波长之间的一阶导数最大值对应的波长位置。并且由此派生出来的红边斜率等参量,对植被的叶绿素、生物量、氮、物候等变化敏感。

光谱指数法:将两个或多个特征经线性或非线性组合,构成对某个生理生化参量敏感的光谱指数。例如我们熟知的NDVI,可用于估算植被覆盖度、叶绿素含量、生物量等参数。优点:简单易用,且高光谱遥感数据的诸多窄波段为发展一个对植被参量敏感,且最大程度抑制大气、土壤等影响的光谱指数提供了更多选择空间。缺点:此种反演模型属于经验或者半经验的统计模型,对植被参量的反演缺乏普适性和可移植性,特别是针对不同的植被类型(或数据源)需要重新拟合模型参数或调整波段。

(3)物理模型方法

物理模型反演方法的基础是辐射传输理论,对于某一特定时间的植被冠层而言,一般辐射传输模型可简化为:

S=F(λ,θS,λS,ΨV,C)

其中,λ为波长,θS,λS为太阳的天顶角和方位角,观测天顶角和方位角,C关于植被的特性参数,包括叶倾角、叶面积指数、叶片层数、叶绿素含量、水和干物质含量等。

物理模型又分为叶片模型和冠层模型。叶片模型又分为N流模型、Ray tracing模型、随机模型、平板模型和针状模型,目前应用最多的为PROSPECT模型(基于Allen等开发的平板模型的辐射传输模型)。冠层模型可归纳为四种:辐射传输模型、几何光学模型、混合模型和计算机模拟模型。大量研究表明,直接利用物理模型对植被参数进行反演相当困难,且就生化参量反演目前仅限于叶绿素含量和水分含量。物理模型更多的被用于大范围的多种可能条件下的植被光谱,基于这些光谱检验现在光谱指数的精度,并发展相应的光谱指数。

3. 高光谱遥感在植被方面的具体应用

3.1高光谱遥感在农业中的应用

高光谱遥感在农业中的应用,主要表现在快速、精确地进行作物生长信息的提取、作物长势监测、作物胁迫监测、估算植被(作物)初级生产力与生物量、估算光能利用率和蒸散量以及作物品质遥感监测预报。从而相应调整投入物资的投入量,达到减少浪费,增加产量,改善品质,保护农业资源和环境质量的目的。高光谱遥感凭借其极高的光谱分辨率为精细农业的发展提供了技术保障和数据来源。

(1)作物的精细分类和识别

农业遥感应用中,作物精准分类与识别是进行农业灾害监测和产量评估的重要环节。多时相高光谱数据能区分作物更细微的光谱差异,探测作物在更窄波谱范围内的变化,从而能够准确地对作物进行详细分类与信息提取。目前最流行、应用最广的高光谱作物分类方法有

相关文档
最新文档