梁的强度与刚度计算.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章梁的强度与刚度
第二十四讲梁的正应力截面的二次矩
第二十五讲弯曲正应力强度计算(一)
第二十六讲弯曲正应力强度计算(二)
第二十七讲弯曲切应力简介
第二十八讲梁的变形概述提高梁的强度和刚度
第二十四讲纯弯曲时梁的正应力常用截面的二次矩目的要求:掌握弯曲梁正应力的计算和正应力分布规律。

教学重点:弯曲梁正应力的计算和正应力分布规律。

教学难点:平行移轴定理及其应用。

教学内容:
第八章平面弯曲梁的强度与刚度计算
§8-1 纯弯曲时梁的正应力
一、纯弯曲概念:
1、纯弯曲:平面弯曲中如果某梁段剪力为零,该梁段称为纯弯曲梁段。

2、剪切弯曲:平面弯曲中如果某梁段剪力不为零(存在剪力),该梁段称为剪切弯曲梁段。

二、纯弯曲时梁的正应力:
1、中性层和中性轴的概念:
中性层:纯弯曲时梁的纤维层有的变长,有的变短。

其中有一层既不伸长也不缩短,这一层称为中性层。

中性轴:中性层与横截面的交线称为中性轴。

2、纯弯曲时梁的正应力的分布规律:
以中性轴为分界线分为拉区和压区,正弯矩上压下拉,负弯矩下压上拉,正应力成线性规律分布,最大的正应力发生在上下边沿点。

3、纯弯曲时梁的正应力的计算公式:
(1)、任一点正应力的计算公式:
(2)、最大正应力的计算公式:
其中:M---截面上的弯矩;I Z---截面对中性轴(z轴)的惯性矩; y---所求应力的点到中性轴的距离。

说明:以上纯弯曲时梁的正应力的计算公式均适用于剪切弯曲。

§8-2 常用截面的二次矩平行移轴定理
一、常用截面的二次矩和弯曲截面系数:
1、矩形截面:
2、圆形截面和圆环形截面:
圆形截面
圆环形截面
其中:
3、型钢:
型钢的二次矩和弯曲截面系数可以查表。

二、组合截面的二次矩平行移轴定理
1、平行移轴定理:
截面对任一轴的二次矩等于它对平行于该轴的形心轴的二次矩,加上截面面积与两轴之间的距离平方的乘积。

I Z1=I Z+a2A
2、例题:
例1:试求图示T形截面对其形心轴的惯性矩。

解:1、求T形截面的形心座标yc
2、求截面对形心轴z轴的惯性矩
第二十五讲弯曲正应力强度计算(一)
目的要求:掌握塑性材料弯曲正应力强度计算。

教学重点:弯曲正应力强度条件的应用。

教学难点:弯曲正应力强度条件的理解。

教学内容:
§8-3 弯曲正应力强度计算
一、弯曲正应力强度条件:
1、对于塑性材料,一般截面对中性轴上下对称,最大拉、压应力相等,而塑性材料的抗拉、压强度又相等。

所以塑性材料的弯曲正应力强度条件为:
(1)、强度校核
(2)、截面设计
(3)、确定许可荷载
2、弯曲正应力强度计算的步为:
(1)、画梁的弯矩图,找出最大弯矩(危险截面)。

(2)、利用弯曲正应力强度条件求解。

二、例题:
例1:简支矩形截面木梁如图所示,L=5m,承受均布载荷q=3.6kN/m,木材顺纹许用应力[σ]=10MPa,梁截面的高宽比h/b=2,试选择梁的截面尺寸。

解:画出梁的弯矩图如图,最大弯矩在梁中点。



矩形截面弯曲截面系数:
h=2b=0.238m
最后取h=240mm,b=120mm
例2:悬臂梁AB如图,型号为No.18号式字钢。

已知[σ]=170MPa,L=1.2m 不计梁的自重,试求自由端集中力F的最大许可值[F]。

解:画出梁的恋矩图如图。

由M图知:M max=FL=1.2F
查No.18号工字钢型钢表得
Wz=185cm3


M max≤W z[σ]
1.2F≤185×10-6×170×106
[F]=26.2×103N=26.2kN
第二十六讲弯曲正应力强度计算(二)
目的要求:掌握脆性材料的弯曲正应力强度计算。

教学重点:脆性材料的弯曲正应力强度计算。

教学难点:脆性材料的正应力分布规律及弯曲正应力强度条件的建立。

教学内容:
一、脆性材料梁的弯曲正应力分析
1、脆性材料的弯曲梁其截面一般上下不对称,例如T字形截面梁(图)。

2、脆性材料的弯曲正应力强度计算中,脆性材料的抗拉强度和抗压强度不等,抗拉能力远小于抗压能力,弯曲正应力强度计算要分别早找出最大拉应力和最大压应力。

3、由于脆性材料的弯曲梁其截面一般上下不对称,上下边沿点到中性轴的距离不等,因此最大拉、压应力不一定发生在弯矩绝对值最大处,要全面竟进行分析。

三、例题:
例1:如图所示的矩形截面外伸梁,b=100mm,h=200mm,P1=10kN, P2=20kN,[σ]=10MPa,试校核此梁的强度。

解:1、作梁的弯矩图如图(b)
由梁的弯矩图可得:
2、强度校核
σmax>[σ]
即:此梁的强度不够。

例2:T型截面铸铁梁如图,Iz=136×104mm4,y1=30mm,y2=50mm,铁铸的抗拉许用应力[σt]=30MPa,抗压许用应力[σc]=160MPa,F=2.5kN,q=2kN/m,试校核梁的强度。

解:(1)求出梁的支座反力为
F A=0.75kN,F B=3.75kN
(2)作梁的弯矩图如图(b)
(3)分别校核B、C截面
B截面
可见最大拉应力发生在C截的下边缘。

以上校核知:梁的正应力强度满足。

C截面
可见最大拉应力发生在C截的下边缘。

以上校核知:梁的正应力强度满足。

第二十七讲弯曲切应力简介
目的要求:掌握弯曲切应力的强度计算。

教学重点:最大弯曲切应力的计算。

教学难点:弯曲切应力公式的理解。

教学内容:
§8-4 弯曲切应力简介
一、弯曲切应力:
1、梁横截面上的剪力由弯曲切应力
组成。

2、梁横截面上的弯曲切应力成二次
抛物线规律分布,中性
轴处最大,上下边沿点为零。

(如图)
三、最大弯曲切应力的计算:
1、矩形截面梁:最大弯曲切应力是平均应力的1、5倍
2、圆形截面梁:最大弯曲切应力是平均应力的三分之四
3、工字钢:最大弯曲切应力有两种算法
(1)、公式:
(2)、认为最大弯曲切应力近似等于腹板的平均切应力。

四、弯曲切应力的强度计算:
1、强度条件:
τmax≤[τ]
[τ]---梁所用材料的许用切应力
2、例题:
例1:如图所示简支梁,许用正应力[σ]=140MPa,许用切应力[τ]=80MPa,试选择工字钢型号。

解:
(1)由平衡方程求出支座反力
F A=6kN,F B=54kN
(2)画出剪力图弯矩图
(3)由正应力强度条件选择型号
查型钢表:选用No.12.6号工字钢。

W z=77.529cm3,h=126mm,δ=8.4mm, b=5mm
(4)切应力校核
故需重选。

重选No.14号工字钢,h=140mm,δ=9.1mm,b=5.5mm。

虽然大于许用应力,但不超过5%,设计规范允许。

故可选用No.14工字钢。

第二十八讲梁的变形概述提高梁的强度和刚度的措施
目的要求:掌握叠加法计算梁的变形。

教学重点:叠加法计算梁的变形。

教学难点:提高梁的强度和刚度的措施的理解。

教学内容:
§8-5 梁的变形概述
概念:
1、挠度和转角:梁变形后杆件的轴线由直线变为一条曲线。

梁横截面的形心在铅垂方向的位移称为挠度。

挠度向上为正,向下为负。

梁横截面转动的角度称为转角,转角逆时针转动为正,顺时针转动为负。

2、挠曲线方程:梁各点的挠度若能表达成坐标的函数,其函数表达式称为挠曲线方程。

挠曲线方程w=f(x)
挠曲线方程对坐标的一阶导数等于转角方程。

§8-6 用叠加法计算梁的变形
一、叠加原理:在弹性范围内,多个载荷引起的某量值(例如挠度),等于每单个载荷引起的某量值(挠度)的叠加。

二、用叠加法计算梁的变形:
1、步骤:将梁分为各个简单载荷作用下的几个梁,简单载荷作用下梁的变形(挠度和转角)可查表得到。

然后再叠加。

2、例题:
例1:用叠加法求(a)图所示梁的最大挠度yc和最大转角θc。

解:图(a)可分解为(b)、(c)两种情况的叠加,分别查表得
三、梁的刚度条件:梁的刚度计算以挠度为主
梁的刚度条件:
ωmax≤[ω]
θmax≤[θ]
1、刚度校核
2、截面设计
3、确定许可荷载
在设计梁时,一般是先按强度条件选择截面或许可荷载,再用刚度条件校核,若不满足,再按刚度条件设计。

§8-7 提高梁的强度和刚度的措施
一、合理安排梁的支承:
例如剪支梁受均布载荷,若将两端的支座均向内移动0.2L,则最大弯矩只有原来最大弯矩的五分之一。

(图)
二、合理布置载荷:
将集中力变为分布力将减小最大弯矩的值。

(图)
三、选择合理的截面:
1、截面的布置应该尽可能远离中性轴。

工字形、槽形和箱形截面都是很好的选择。

2、脆性材料的抗拉能力和抗压能力不等,应选择上下不对称的截面,例如T字形截面。

相关文档
最新文档