反比例函数解析式的几种常用求法及详细答案

合集下载

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题-反比例函数综合(八大题型+解题方法)—冲刺2024年中考数学考点(全国通用)(解析版)

中考压轴题反比例函数综合(八大题型+解题方法)1.求交点坐标联立反比例函数与一次函数图象的解析式进行求解,特别地,反比例函数与正比例函数图象的两个交点关于原点对称.2.结合图象比较函数值的大小如图,一次函数y=k1x+b与反比例函数图象交于A,B 两点,过点A,B分别作y 轴的平行线,连同y 轴,将平面分为I,Ⅱ,Ⅲ,IV 四部分,在I,Ⅲ区域内,y₁<y₂,自变量的取值范围为x<x B或0<x<x A;在Ⅱ,IV区域内,y1>y₂,自变量的取值范围为x B<x<0或x>x A.3.反比例函数系数k的几何意义及常用面积模型目录:题型1:反比例函数与几何的解答证明 题型2:存在性问题题型3:反比例函数的代数综合 题型4:动态问题、新定义综合 题型5:定值问题 题型6:取值范围问题 题型7:最值问题题型8:情景探究题(含以实际生活为背景题)题型1:反比例函数与几何的解答证明1.(2024·湖南株洲·一模)如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在x 轴上,OC 在y 轴上,4OA =,2OC =(不与B ,C 重合),反比例函数()0,0k y k x x=>>的图像经过点D ,且与AB 交于点E ,连接OD ,OE ,DE .(1)若点D 的横坐标为1. ①求k 的值;②点P 在x 轴上,当ODE 的面积等于ODP 的面积时,试求点P 的坐标; (2)延长ED 交y 轴于点F ,连接AC ,判断四边形AEFC 的形状 【答案】(1)①2;②15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭(2)四边形AEFC 是平行四边形,理由见解析【分析】(1)①根据矩形的性质得到90BCO B AOC ∠=∠=∠=︒,得()1,2D ,把()1,2D 代入()0,0ky k x x=>>即可得到结论;②由D ,E 都在反比例函数ky x =的图像上,得到1COD AOE S S ==△△,根据三角形的面积公式得到1111315241243222224ODE S =⨯−⨯⨯−⨯⨯−⨯⨯=△,设(),0P x ,根据三角形的面积公式列方程即可得到结论;(2)连接AC ,根据题意得到,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫ ⎪⎝⎭,设EF 的函数解析式为y ax b =+,解方程得到84k OF +=,求得24kCF OF AE =−==,根据平行四边形的判定定理即可得到结论.【解析】(1)解:①∵四边形ABCO 是矩形,4OA =, ∴90BCO B AOC ∠=∠=∠=︒,4BC OA ==, ∵2OC =,点D 的横坐标为1, ∴()1,2D ,2AB OC ==,∵反比例函数()0,0ky k x x =>>的图像经过点D ,∴122k =⨯=, ∴k 的值为2; ②∵()1,2D ,∴1CD =,∵D ,E 都在反比例函数2y x =的图像上,∴1COD AOE S S ==△△,∴111422AOE S OA AE AE==⋅=⨯△,∴12AE =,∴13222BE AB AE =−=−=, ∴1111315241243222224ODES =⨯−⨯⨯−⨯⨯−⨯⨯=△,∵点P 在x 轴上,ODE 的面积等于ODP 的面积, 设(),0P x ,∴115224ODP S x =⨯⨯=△, 解得:154x =或154x =−,∴点P 的坐标为15,04⎛⎫ ⎪⎝⎭或15,04⎛⎫− ⎪⎝⎭;(2)四边形AEFC AEFC 是平行四边形. 理由:连接AC ,∵4OA =,2OC =,D ,E 都在反比例函数()0,0ky k x x =>>的图像上,∴,22k D ⎛⎫ ⎪⎝⎭,4,4k E ⎛⎫⎪⎝⎭,设EF 的函数解析式为:y ax b =+,∴2244k a b k a b ⎧⨯+=⎪⎪⎨⎪+=⎪⎩,解得:1284a kb ⎧=−⎪⎪⎨+⎪=⎪⎩, ∴EF 的函数解析式为:1824k y x +=−+, 当0x =时,得:84ky +=,∴84k OF +=, ∴24kCF OF AE =−==,又∵CF AE ∥,∴四边形AEFC 是平行四边形.【点睛】本题是反比例函数与几何的综合,考查待定系数法确定解析式,反比例函数图像上的点的坐标的特征,矩形的性质,平行四边形的判定,三角形的面积等知识点.掌握反比例函数图像上的点的坐标的特征,矩形的性质是解题的关键.题型2:存在性问题2.(2024·四川成都·二模)如图①,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,4sin 5AOB ∠=,反比例函数(0)ky k x =>在第一象限内的图象经过点A ,与BC 交于点F .(1)若10OA =,求反比例函数解析式;(2)若点F 为BC 的中点,且AOF 的面积12S =,求OA 的长和点C 的坐标;(3)在(2)中的条件下,过点F 作EF OB ∥,交OA 于点E (如图②),点P 为直线EF 上的一个动点,连接PA ,PO .是否存在这样的点P ,使以P 、O 、A 为顶点的三角形是直角三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由. 【答案】(1)48(0)y x x =>C(3)存在,满足条件的点P 或(或或(【分析】(1)先过点A 作AH OB ⊥,根据4sin 5AOB ∠=,10OA =,求出AH 和OH 的值,从而得出A 点坐标,再把它代入反比例函数中,求出k 的值,即可求出反比例函数的解析式; (2)先设(0)OA a a =>,过点F 作FM x ⊥轴于M ,根据4sin 5AOB ∠=,得出45AH a =,35OH a=,求出AOHS △的值,根据12AOF S =△,求出平行四边形AOBC 的面积,根据F 为BC 的中点,求出6OBF S =△,根据12BF a =,FBM AOB ∠=∠,得出12BMFS BM FM =⋅,23650FOM S a =+△,再根据点A ,F 都在k y x =的图象上,12AOHSk=,求出a ,最后根据AOBC S OB AH =⋅平行四边形,得出OB AC ==C 的坐标;(3)分别根据当90APO ∠=︒时,在OA 的两侧各有一点P ,得出1P ,2P ;当90PAO ∠=︒时,求出3P ;当90POA ∠=︒时,求出4P 即可.【解析】(1)解:过点A 作AH OB ⊥于H ,4sin 5AOB ∠=,10OA =,8AH ∴=,6OH =,A ∴点坐标为(6,8),根据题意得:86k=,可得:48k =,∴反比例函数解析式:48(0)y x x =>;(2)设(0)OA a a =>,过点F 作FM x ⊥轴于M ,过点C 作CN x ⊥轴于点N , 由平行四边形性质可证得OH BN =,4sin 5AOB ∠=,45AH a ∴=,35OH a=, 2143625525AOHS a a a ∴=⋅⋅=△,12AOF S =△,24AOBC S ∴=平行四边形,F 为BC 的中点,6OBFS∴=,12BF a=,FBM AOB ∠=∠,25FM a ∴=,310BM a =,2112332251050BMF S BM FM a a a ∴=⋅=⋅⋅=△,23650FOMOBFBMFSSSa ∴=+=+,点A ,F 都在ky x =的图象上,12AOH FOM S S k ∴==△△,∴226362550a a =+,a ∴OA ∴=AH ∴=OH =24AOBC S OB AH =⋅=平行四边形,OB AC ∴==ON OB OH ∴=+=C ∴;(3)由(2)可知A ,B 0),F .存在三种情况:当90APO ∠=︒时,在OA 的两侧各有一点P ,如图,设PF 交OA 于点J ,则J此时,AJ PJ OJ ==,P ∴,(P ',当90PAO ∠=︒时,如图,过点A 作AK OB ⊥于点K ,交PF 于点L .由AKO PLA △∽△,可得PLP ,当90POA ∠=︒时,同理可得(P .综上所述,满足条件的点P 的坐标为或(或或(.【点睛】此题考查了反比例函数的综合,用到的知识点是三角函数、平行四边形、反比例函数、三角形的面积等,解题的关键是数形结合思想的运用.3.(2024·广东湛江·一模)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC BC ⊥,AB BE ⊥,ED BD ⊥,垂足分别为C ,B ,D ,AB BE =.求证:ACB BDE ≌;【类比迁移】(2)如图2,点()3,A a −在反比例函数3y x=图象上,连接OA ,将OA 绕点O 逆时针旋转90︒到OB ,若反比例函数k y x =经过点B .求反比例函数ky x=的解析式; 【拓展延伸】(3)如图3抛物线223y x x +−与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C 点,已知点()0,1Q −,连接AQ ,抛物线上是否存在点M ,便得45MAQ ∠=︒,若存在,求出点M 的横坐标.【答案】(1)见解析;(2)3y x =−;(3)M 的坐标为39,24⎛⎫ ⎪⎝⎭或()1,4−−.【分析】(1)根据题意得出90C D ABE ︒∠=∠=∠=,A EBD ∠=∠,证明()AAS ACB BDE ≌,即可得证;(2)如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .求解()3,1A −−,1AC =,3OC =.利用ACO ODB ≌△△,可得()1,3B −;由反比例函数ky x =经过点()1,3B −,可得3k =−,可得答案;(3)如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y⊥轴于点E .证明AQO QDE ≌,可得AO QE =,OQ DE =,可得()1,2D ,求解1322AM y x =+:,令2132322x x x +=+−, 可得M 的坐标为39,24⎛⎫ ⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,可得M 的坐标是()1,4−−.【解析】证明:(1)如图,∵AC BC ⊥,AB BE ⊥,ED BD ⊥, ∴90C D ABE ︒∠=∠=∠=,∴90,90ABC A ABC EBD ∠+∠=︒∠+∠=︒, ∴A EBD ∠=∠, 又∵AB BE =, ∴()AAS ACB BDE ≌.(2)①如图2,分别过点A ,B 作AC x ⊥轴,BD x ⊥轴,垂足分别为C ,D .将()3,A a −代入3y x =得:1a =−,∴()3,1A −−,1AC =,3OC =.同(1)可得ACO ODB ≌△△, ∴1OD AC ==,3BD OC ==, ∴()1,3B −,∵反比例函数ky x =经过点()1,3B −,∴3k =−, ∴3y x =−;(3)存在;如图3,当M 点位于x 轴上方,且45MAQ ∠=︒,过点Q 作QD AQ ⊥,交MA 于点D ,过点D 作DE y ⊥轴于点E .∵45MAQ ∠=︒,QD AQ ⊥, ∴45MAQ ADQ ∠=∠=︒, ∴AQ QD =,∵DE y ⊥轴,QD AQ ⊥,∴90AQO EQD EQD QDE ∠+∠=∠+∠=︒,90AOQ QED ∠=∠=︒, ∴AQO QDE ∠=∠, ∵AQ QD =, ∴AQO QDE ≌, ∴AO QE =,OQ DE =,令2230y x x =+−=,得13x =−,21x =,∴3AO QE ==,又()0,1Q −,∴1OQ DE ==, ∴()1,2D ,设AM 为y kx b =+,则230k b k b +=⎧⎨−+=⎩,,解得:1232k b ⎧=⎪⎪⎨⎪=⎪⎩,∴1322AM y x =+: 令2132322x x x +=+−,得132x =,23x =−(舍去), 当32x =时,233923224y ⎛⎫=+⨯−= ⎪⎝⎭, ∴39,24M ⎛⎫⎪⎝⎭;如图,当M 点位于x 轴下方,且45MAQ ∠=︒,同理可得()1,4D −−,AM 为26y x =−−.由22623x x x −−=+−,得11x =−,23x =−(舍去)∴当=1x −时,()()212134y =−+⨯−−=−,∴()1,4M −−.综上:M 的坐标为39,24⎛⎫⎪⎝⎭或()1,4−−.【点睛】本题考查的是全等三角形的判定与性质,反比例函数的应用,二次函数的性质,一元二次方程的解法,熟练的利用类比的方法解题是关键.题型3:反比例函数的代数综合4.(2024·湖南长沙·一模)若一次函数y mx n =+与反比例函数ky x=同时经过点(),P x y 则称二次函数2y mx nx k +=-为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请说明理由;(2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数()122=+++y n x m 与反比例函数2024y x=存在“共享函数”()()2102024y m t x m t x ++−=-,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−,见解析 (2)2(3)2429y x x =+−或(29155y x x −−−=【分析】(1)判断21y x =−与3y x =是否有交点,计算即可;(2)根据定义,12210n m tm m t +=+⎧⎨+=−⎩,得到39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,结合8t n m <<,构造不等式组解答即可. (3)根据定义,得“共享函数”为()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=结合6m x m ≤≤+,“共享函数”的最小值为3,分类计算即可.本题考查了新定义,解方程组,解不等式组,抛物线的增减性,熟练掌握定义,抛物线的增减性是解题的关键.【解析】(1)21y x =−与3y x =存在“共享函数”,理由如下:根据题意,得213y x y x =−⎧⎪⎨=⎪⎩,解得322x y ⎧=⎪⎨⎪=⎩,13x y =−⎧⎨=−⎩,故函数同时经过3,22P ⎛⎫ ⎪⎝⎭或()1,3P −−, 故21y x =−与3y x =存在“共享函数”.(2)∵一次函数()122=+++y n x m 与反比例函数2024y x =存在“共享函数”()()2102024y m t x m t x ++−=-,∴12210n m tm m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, ∵8t n m <<, ∴82489869n n m n n +⎧=⎪⎪⎨+⎪⎪⎩<>,解得24n 6<<, ∴327n +9<<, ∴339n +1<<,∴13m <<, ∵m 是整数, ∴2m =.(3)根据定义,得一次函数y x m =+和反比例函数213m y x +=的“共享函数”为 ()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=,∵()22225131324m m y x mx m x ⎛⎫+−+=+−− ⎪⎝⎭=.∴抛物线开口向上,对称轴为直线2mx =−,函数有最小值25134m −−,且点与对称轴的距离越大,函数值越大,∵6m x m ≤≤+,当62mx m =−+≥时,即4m ≤−时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭>, ∴6x m =+时,函数取得最小值,且为2225613182324m m y m m m ⎛⎫=++−−=++ ⎪⎝⎭,又函数有最小值3,∴218233m m ++=,解得99m m =−=−故9m =− ∴“共享函数”为(29155y x x −−−=当2m x m =−≤时,即0m ≥时,∵11622m m m m ⎛⎫⎛⎫−−+−− ⎪ ⎪⎝⎭⎝⎭<, ∴x m =时,函数取得最小值,且为2225131324m m y m m ⎛⎫=+−−=− ⎪⎝⎭,又函数有最小值3,∴2133m −=,解得4,4m m ==−(舍去); 故4m =,∴“共享函数”为2429y x x =+−; 当62mm m −+<<时,即40m −<<时,∴2mx =−时,函数取得最小值,且为25134m y =−−,又函数有最小值3,∴251334m −−=, 方程无解,综上所述,一次函数y x m =+和反比例函数213m y x += 的“共享函数”为2429y x x =+−或(29155y x x −−−=5.(2024·江苏南京·模拟预测)若一次函数y mx n =+与反比例函数ky x=同时经过点(,)P x y 则称二次函数2y mx nx k =+−为一次函数与反比例函数的“共享函数”,称点P 为共享点.(1)判断21y x =−与3y x=是否存在“共享函数”,如果存在,请求出“共享点”.如果不存在,请说明理由; (2)已知:整数m ,n ,t 满足条件8t n m <<,并且一次函数(1)22y n x m =+++与反比例函数2024y x=存在“共享函数” 2()(10)2024y m t x m t x =++−−,求m 的值.(3)若一次函数y x m =+和反比例函数213m y x+=在自变量x 的值满足的6m x m ≤≤+的情况下.其“共享函数”的最小值为3,求其“共享函数”的解析式.【答案】(1)点P 的坐标为:3(2,2)或(1,3)−−;(2)2m =(3)222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【分析】(1)联立21y x =−与3y x =并整理得:2230x x −−=,即可求解;(2)由题意得12210n m t m m t +=+⎧⎨+=−⎩,解得39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩,而8t n m <<,故624n <<,则9327n <+<,故13m <<,m 是整数,故2m =;(3)①当162m m +≤−时,即4m ≤−,6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,即可求解;②当162m m m <−<+,即40m −<<,函数在12x m=−处取得最小值,即22211()13322m m m −−−−=,即可求解;③当0m ≥时,函数在x m =处,取得最小值,即可求解. 【解析】(1)解:(1)21y x =−与3y x =存在“共享函数”,理由如下:联立21y x =−与3y x =并整理得:2230x x −−=,解得:32x =或1−, 故点P 的坐标为:3(2,2)或(1,3)−−;(2)解:一次函数(1)22y n x m =+++与反比例函数2024y x =存在“共享函数”2()(10)2024y m t x m t x =++−−,依据“共享函数”的定义得: 12210n m tm m t +=+⎧⎨+=−⎩,解得:39869n m n t +⎧=⎪⎪⎨+⎪=⎪⎩, 8t n m <<,∴8698249n n n n +⎧<⎪⎪⎨+⎪<⎪⎩, 解得:624n <<;9327n ∴<+<, 13m ∴<<,m 是整数,2m ∴=;(3)解:由y x m =+和反比例函数213m y x +=得:“共享函数”的解析式为22(13)y x mx m =+−+, 函数的对称轴为:12x m=−; ①当162m m+≤−时,即4m ≤−, 6x m =+,函数取得最小值,即22(6)(6)133m m m m +++−−=,解得9m =−9−②当162m m m <−<+,即40m −<<, 函数在12x m =−处取得最小值,即22211()13322m m m −−−−=,无解;③当0m ≥时,函数在x m =处,取得最小值,即222133m m m +−−=,解得:4m =±(舍去4)−,综上,9m =−4,故“共享函数”的解析式为222(13)(9(155y x mx m x x =+−+=+−−+或2429y x x =+−.【点睛】本题是一道二次函数的综合题,主要考查了一次函数与反比例函数的性质,一次函数与反比例函数图象上点的坐标的特征,二次函数的性质,一元一次不等式组的解法,一元二次方程的解法.本题是阅读型题目,理解题干中的定义并熟练应用是解题的关键.6.(2024·湖南长沙·模拟预测)我们规定:若二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)与x 轴的两个交点的横坐标1x ,2x 满足122x x =−,则称该二次函数为“强基函数”,其中点()1,0x ,()2,0x 称为该“强基函数”的一对“基点”.(1)判断:下列函数中,为“强基函数”的是______(仅填序号).①228y x x =−−;②21y x x =++.(2)已知二次函数()2221y x t x t t =−+++为“强基函数”,求:当12x −≤≤时,函数22391y x tx t =+++的最大值.(3)已知直线1y x =−+与x 轴交于点C ,与双曲线()20y x x=−<交于点A ,点B 的坐标为()3,0−.若点()1,0x ,()2,0x 是某“强基函数”的一对“基点”,()12,P x x 位于ACB △内部.①求1x 的取值范围;②若1x 为整数,是否存在满足条件的“强基函数”2y x bx c =++?若存在,请求出该“强基函数”的解析式;若不存在,请说明理由. 【答案】(1)① (2)当23t =−时函数最大值为8或当13t =−时函数最大值为4;(3)①1x 的取值范围是:120x −<<或110x −<<;②21122y x x =+−【分析】(1)根据抛物线与x 轴的交点情况的判定方法分别判定①与②与x 轴的交点情况,再求解交点坐标,结合新定义,从而可得答案; (2)由()22210y x t x t t =−+++=时,可得1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,根据新定义可得23t =−或13t =−,再分情况求解函数的最大值即可;(3))①先得到点A 、B 、C 的坐标,然后分122x x =−或212x x =−两种情况,列出关于1x 的不等式组,然后解不等式组即可;②根据1x 为整数,先求出1x 的值,然后根据二次函数的交点式直接得到二次函数的解析式即可.【解析】(1)解:①∵228y x x =−−; ∴()()2Δ2418432360=−−⨯⨯−=+=>,∴抛物线与x 轴有两个交点,∵228=0x x −−,∴14x =,22x =−,∴122x x =−,∴228y x x =−−是“强基函数” ②∵21y x x =++, ∴214111430∆=−⨯⨯=−=−<,∴抛物线与x 轴没有交点,∴21y x x =++不是“强基函数” 故答案为:①; (2)∵二次函数()2221y x t x t t=−+++为“强基函数”,∴()()22Δ21410t t t ⎡⎤=−+−+=>⎣⎦,∵()22210y x t x t t =−+++=时, ∴1x t=,21x t =+,或11x t =+,2x t=,当122x x =−时,∴()21t t =−+或12t t +=−,解得:23t =−或13t =−,当23t =−时,函数为225y x x =−+,如图,∵12x −≤≤,此时当=1x −时,函数最大值为1258y =++=; 当13t =−时,函数为22y x x =−+,如图,∵12x −≤≤,此时当=1x −或2x =时,函数最大值为1124y =++=;(3)①联立()201y x x y x ⎧=−<⎪⎨⎪=−+⎩,解得:12x y =−⎧⎨=⎩, ∴点A 的坐标为:()1,2−,把0y =代入 1y x =−+得:10x −+=, 解得:1x =,∴点C 的坐标为()1,0, 设直线AB 为1y kx b =+,∴11302k b k b −+=⎧⎨−+=⎩,解得:113k b =⎧⎨=⎩,∴直线AB 的解析式为:3y x =+, ∵点()1,0x ,()2,0x 是某“强基函数”的一对“基点”, ()12,P x x 位于ACB △内部.当122x x =−时, ∴111,2P x x ⎛⎫− ⎪⎝⎭, ∴点P 在直线2xy =−上,∵点111,2P x x ⎛⎫− ⎪⎝⎭位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111103212x x x x x ⎧⎪<⎪⎪−+⎨⎪⎪−−+⎪⎩<<, 解得:120x −<<;当212x x =−时,∵P 点坐标为()11,2x x −,∴点P 在直线2y x =−上,∵点P 位于以A 、B 、C 三点所构成的三角形内部,如图,∴1111102321x x x x x <⎧⎪−<+⎨⎪−<−+⎩,解得:110x −<<;综上分析可知,1x 的取值范围是:120x −<<或110x −<<;②存在;理由如下:∵1x 为整数,∴当120x −<<时,11x =−,∴此时212x =,此时,“强基函数”的一对“基点”为()1,0−,1,02⎛⎫ ⎪⎝⎭, ∴“强基函数”为()21111222y x x x x ⎛⎫=+−=+− ⎪⎝⎭; 当110x −<<时,则没有符合条件的整数1x 的值,不存在符合条件的“强基函数”; 综上,“强基函数”为21122y x x =+−. 【点睛】本题考查的是一次函数,反比例函数,二次函数的综合应用,新定义的含义,本题难度大,灵活应用各知识点,理解新定义的含义是解题的关键.题型4:动态问题、新定义综合7.(2024·山东济南·一模)如图1,直线14y ax =+经过点()2,0A ,交反比例函数2k y x=的图象于点()1,B m −,点P 为第二象限内反比例函数图象上的一个动点.(1)求反比例函数2y 的表达式;(2)过点P 作PC x ∥轴交直线AB 于点C ,连接AP ,BP ,若ACP △的面积是BPC △面积的2倍,请求出点P 坐标;(3)平面上任意一点(),Q x y ,沿射线BA Q ',点Q '怡好在反比例函数2k y x=的图象上;①请写出Q 点纵坐标y 关于Q 点横坐标x 的函数关系式3y =______;②定义}{()()min ,a a b a b b a b ⎧≤⎪=⎨>⎪⎩,则函数{}13min ,Y y y =的最大值为______. 【答案】(1)26y x =−(2)点P 坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭ (3)①3621y x =−++;②8【分析】本题考查了反比例函数与一次函数的交点问题,坐标与图形,解题的关键是运用分类讨论的思想.(1)先根据点()2,0A 求出1y 的解析式,然后求出点B 的坐标,最后将点B 的坐标代入2y 中,求出k ,即可求解;(2)分两种情况讨论:当点P 在AB 下方时,当点P 在AB 上方时,结合“若ACP △的面积是BPC △面积的2倍”,求出点C 的坐标,将点C 的纵坐标代入反比例函数解析式,即可求解;(3)①根据题意可得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',则()1,2Q x y +'−,将其代入26y x =−中,即可求解;②分为:当{}131min ,Y y y y ==时,13y y ≤;当{}133min ,Y y y y ==时,13y y >;分别解不等式即可求解.【解析】(1)解:直线14y ax =+经过点()2,0A ,,∴240x +=, 解得:2a =−,∴124y x =−+,点()1,B m −在直线124y x =−+上,∴()2146m =−⨯−+=,∴()1,6B −,∴166k =−⨯=−, ∴26y x =−;(2)①当点P 在AB 下方时,2ACP BPC S S =,∴:2:1AC BC =,过点C 作CH x ⊥轴于点H ,过点B 作BR x ⊥轴于点R ,∴23AC CH AB BR ==, ∴23C B y y =,()1,6B −,∴4C y =,把4C y =代入26y x =−中, 得:32C x =−, ∴3,42P ⎛⎫− ⎪⎝⎭; ②当点P 在AB 上方时,2ACP BPC S S =,∴:1:1AB BC =,∴B 为AC 的中点,()2,0A ,()1,6B −,∴()4,12C −,把12y =代入26y x =−中,得:12x =−, ∴1,122P ⎛⎫− ⎪⎝⎭,综上所述,点P 的坐标为1,122⎛⎫− ⎪⎝⎭或3,42⎛⎫− ⎪⎝⎭;(3)① 由(),Q x y ,沿射线BA Q ', 得:(),Q x y 向右平移1个单位,再向下平移2个单位得到点Q ',∴()1,2Q x y +'−,点()1,2Q x y +'−恰好在反比例函数26y x =−的图象上, ∴621y x −=−+, ∴3621y x =−++;②a .当{}131min ,Y y y y ==时,13y y ≤, 即62421x x −+≤−++, 当1x >−时,()()()2141621x x x x −+++≤−++,解得:2x ≥或2x ≤−(舍去),∴2x =时,函数{}131min ,Y y y y ==有最大值,最大值为2240−⨯+=;当1x <−时,()()()2141621x x x x −+++≥−++,解得:21x −≤<−,∴2x =−时,函数{}131min ,Y y y y ==有最大值,最大值为()2248−⨯−+=;b .当{}133min ,Y y y y ==时,13y y >, 即62421x x −+>−++,当1x >−时,()()()2141621x x x x −+++>−++,解得:2x >或<2x −(舍去), ∴362021y >−+=+,即0Y >;当1x <−时,()()()2141621x x x x −+++<−++,解得:2<<1x −−,∴328y <<,即28Y <<;综上所述,函数{}13min ,Y y y =的最大值为8,故答案为:8.8.(2024·四川成都·一模)如图,矩形OABC 交反比例函数k y x=于点D ,已知点()0,4A ,点()2,0C −,2ACD S =△.(1)求k 的值;(2)若过点D 的直线分别交x 轴,y 轴于R ,Q 两点,2DRDQ =,求该直线的解析式; (3)若四边形有一个内角为60︒,且有一条对角线平分一个内角,则称这个四边形为“角分四边形”.已知点P在y 轴负半轴上运动,点Q 在x 轴正半轴上运动,若四边形ACPQ 为“角分四边形”,求点P 与点Q 的坐标.【答案】(1)4k =−;(2)26y x =+或22y x =−+;(3)(()020P ,,Q ,−或 ()()04320P ,,−或()()040P ,,Q −【分析】(1)利用面积及矩形的性质,用待定系数法即可求解;(2)分两种情况讨论求解:R 在x 轴正半轴上和在负半轴上两种情况分别求解即可;(3)分三种情况:当AO 平分CAQ ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60CPQ ∠=︒时,当CO 平分ACP ∠,60AQP ∠=︒时,分别结合图形求解. 【解析】(1)解:2ACD S =△, 即122AD OA ⨯⨯=, ()0,4A ,1422AD ∴⨯=,1AD ∴=,()1,4D ∴−, 41k∴=−,4k ∴=−;(2)①如图,当2DR DQ =时,13DQ RQ =,AD OR ,13DQ AD RQ OR ∴==,1AD =,3OR ∴=,()3,0R ∴−,设直线RQ 为11y k x b =+, 把()3,0R −,()1,4D −代入11y k x b =+,得1111304k b k b −+=⎧⎨−+=⎩,解得1126k b =⎧⎨=⎩,直线RQ 为26y x =+,②如图,当2DR DQ =时,1DQ RQ =,AD OR ,1DQ AD RQ OR ∴==,1AD =,1OR ∴=,()1,0R ∴,设直线RQ 为22y k x b =+,把()1,0R ,()1,4D −代入22y k x b =+,得222204k b k b +=⎧⎨−+=⎩,解得2222k b =−⎧⎨=⎩,直线RQ 为22y x =−+,综上所述,直线RQ 的表达式为26y x =+或22y x =−+;(3)解:①当AO 平分CAQ ∠,60CPQ ∠=︒时,CAO QAO AO AOAOC AOQ ∠=∠⎧⎪=⎨⎪∠=⎩,()ASA AOC AOQ ∴≌, CO QO ∴=即AP 垂直平分CQ ,()2,0Q ∴,60CPQ ∠=︒,30CPO ∴∠=︒,tan30OC OP ∴===︒,(0,P ∴−,②当CO 平分ACP ∠,60CPQ ∠=︒时,同理ACO PCO ≌,得4OA OP ==,()0,4P ∴−,PC == 作CM PQ ⊥于M ,60CPQ ∠=︒,1cos602PM PC ∴=⨯︒==sin60CM PC =⨯︒== 90POQ CMQ ,PQO PQO ∠=∠=︒∠=∠,CMQ POQ ∴∽,MQ CM OQ OP ∴=,即MQ OQ =,)2222OQ OP PQ MQ +==② ,联立①,②,解得32OQ =或32OQ =(舍),()32,0Q ∴,③当CO 平分ACP ∠,60AQP ∠=︒时,同理 ACO PCO ≌,得4OA OP ==,AC CP = 同理ACQ PCQ ≌,得AQ PQ =∴APQ 是等边三角形()0,4P ∴−,8AP AQ PQ ,===OQ =, ()Q ∴,综上所述,P 、Q 的坐标为(()0,,2,0P Q −或 ()()0,4,32,0P Q −或()()0,4,P Q −.【点睛】此题是反比例函数综合题,主要考查了待定系数法,解直角三角形,求一次函数解析式,相似三角形的性质和判定,正确作出辅助线,解方程组,灵活运用待定系数法求函数解析式是解本题的关键. 题型5:定值问题9.(2024·山东济南·模拟预测)如图①,已知点()1,0A −,()0,2B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT 的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)()0,6或()0,2或()0,6− (3)12MN HT =,其值不发生改变,证明见解析【分析】(1)根据中点坐标公式可得,1D x =,设()1,D t ,由平行四边形对角线中点坐标相同可知()2,2C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:∵()1,0A −,E 为AD 中点且点E 在y 轴上,1D x ∴=, 设()1,D t ,()C m n ,,∵四边形ABCD 是平行四边形,∴AC BD 、的中点坐标相同, ∴101222022m t n +−⎧=⎪⎪⎨−+⎪=⎪⎩, ∴22m n t ==−,()22C t ∴−,,∵C 、D 都在反比例函数4y x =的图象上,()22k t t ∴==−,4t ∴=, 4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设()0,Q q ,4P p p ⎛⎫ ⎪⎝⎭,,①当AB 为边时:如图1,若ABPQ 为平行四边形,则1002240422p q p −++⎧=⎪⎪⎨−⎪−=⎪⎩,解得16p q =⎧⎨=⎩,此时()11,4P ,()10,6Q ;如图2,若ABQP 为平行四边形,则1002242022p q p −++⎧=⎪⎪⎨−+⎪+=⎪⎩,解得16p q =−⎧⎨=−⎩,此时()21,4P −−,()20,6Q −;②如图3,当AB 为对角线时,则010*******p q p +−+⎧=⎪⎪⎨+⎪−=⎪⎩解得12p q =−⎧⎨=⎩,()31,4P ∴−−,()30,2Q ;综上所述,满足题意的Q 的坐标为()0,6或()0,2或()0,6−;(3)解:12MN HT =,其值不发生改变,证明如下: 如图4,连NH 、NT 、NF ,∵M 是HT 的中点,MN HT ⊥,∴MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,45ABF ABH ∴∠=∠=︒,在BFN 与BHN △中,BF BH NBF NBH BN BN =⎧⎪∠=∠⎨⎪=⎩,()SAS BFN BHN ∴≌,NF NH NT ∴==,BFN BHN ∠=∠,∵90BFA BHA ==︒∠∠,NTF NFT AHN ∴∠=∠=∠,∵180ATN NTF ∠+∠=︒,∴180ATN AHN ∠+∠=︒,∴3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.10.(2024·山东济南·二模)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线k y x=经过C 、D 两点.(1)求k 的值;(2)点P 在双曲线k y x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MN HT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明.【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MN HT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可;(2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论.【解析】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点, 1D x ∴=,设(1,)D t ,又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x −+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=, 解得=1x −,此时2(1,4)P −−,2(0,6)Q −;②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥; ∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ;(3) 解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT 的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==, NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠,所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒,所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=, ∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.题型6:取值范围问题11.(2024·江苏宿迁·二模)中国象棋棋盘上双方的分界处称为“楚河汉界”,以“楚河汉界”比喻双方对垒的分界线.在平面直角坐标系中,为了对两个图形进行分界,对“楚河汉界线”给出如下定义:点()11,P x y 是图形1G 上的任意一点,点()22,Q x y 是图形2G 上的任意一点,若存在直线()0l y kx b k =+≠∶满足11y kx b ≤+且22y kx b ≥+,则直线(0)y k b k =+≠就是图形1G 与2G 的“楚河汉界线”.例如:如图1,直线4l y x =−−∶是函数6(0)y x x=<的图像与正方形OABC 的一条“楚河汉界线”.(1)在直线①2y x =−,②41y x =−,③23y x =−+,④31y x =−−中,是图1函数6(0)y x x=<的图像与正方形OABC 的“楚河汉界线”的有______;(填序号) (2)如图2,第一象限的等腰直角EDF 的两腰分别与坐标轴平行,直角顶点D 的坐标是()2,1,EDF 与O 的“楚河汉界线”有且只有一条,求出此“楚河汉界线”的表达式;(3)正方形1111D C B A 的一边在y 轴上,其他三边都在y 轴的右侧,点(2,)M t 是此正方形的中心,若存在直线2y x b =−+是函数2)304(2y x x x =−++≤≤的图像与正方形1111D C B A 的“楚河汉界线”,求t 的取值范围.【答案】(1)①④;(2)25y x =−+;(3)7t ≤−或9t ≥.【分析】(1)根据定义,结合图象,可判断出直线为3y x =−或31y x =−−与双曲线6(0)y x x =<及正方形ABCD最多有一个公共点,即可求解;(2)先作出以原点O 为圆心且经过EDF 的顶点D 的圆,再过点D 作O 的切线,求出该直线的解析式即可;(3)先由抛物线与直线组成方程组,则该方程组有唯一一组解,再考虑直线与正方形有唯一公共点的情形,数形结合,分类讨论,求出t【解析】(1)解:如图,从图可知,2y x =−与双曲线6(0)y x x =<和正方形OABC 只有一个公共点,31y x =−−与双曲线6(0)y x x =<和正方形OABC 没有公共点,41y x =−、23y x =−+不在双曲线6(0)y x x =<及正方形ABCD 之间, 根据“楚河汉界线”定义可知,直线2y x =−,31y x =−−是双曲线6(0)y x x =<与正方形OABC 的“楚河汉界线”, 故答案为:①④;(2)解:如图,连接OD ,以O 为圆心,OD 长为半径作O ,作DG x ⊥轴于点G ,过点D 作O 的切线DM ,则MD OD ⊥,∵MD OD ⊥,DG x ⊥轴, ∴90ODM OGD ∠=∠=︒, ∴90MOD OMD ∠+∠=︒, ∵90MOD DOG ∠+∠=︒, ∴OMD DOG ∠=∠, ∴tan tan OMD DOG ∠=∠, ∵()2,1D ,∴1DG =,2OG =,∴1tan tan 2DG OMD DOG OG ∠=∠==,OG ==∵tan ODOMD DM ∠=,∴12=,∴1122MN DM ∴==⨯=∴5OM =,∴()0,5M ,设直线MD 的解析式为y mx n =+,把()0,5M 、()2,1D 代入得,521n m n =⎧⎨+=⎩,解得25m n =−⎧⎨=⎩,∴25y x =−+,∴EDF 与O 的“楚河汉界线”为25y x =−+; (3)解:由2223y x b y x x =−+⎧⎨=−++⎩得,2430x x b −+−=, ∵直线与抛物线有唯一公共点, ∴0=,∴164120b −+=,解得7b =, ∴此时的“楚河汉界线”为27y x =−+,当正方形1111D C B A 在直线27y x =−+上方时,如图,∵点()2,M t 是此正方形的中心,∴顶点()10,2A t −,∵顶点()10,2A t −不能在直线27y x =−+下方,得27t −≥,解得9t ≥;当正方形1111D C B A 在直线27y x =−下方时,如图,对于抛物线223y x x =−++,当0x =时,3y =;当4x =时,5y =−; ∴直线23y x =−+恰好经过点()0,3和点()4,5−;对于直线23y x =−+,当4x =时,5y =−,由()12,2C t +不能在直线23y x =−+上方,得25t ≤−+, 解得7t ≤−;综上所述,7t ≤−或9t ≥.【点睛】此题考查了一次函数、正方形的性质、三角函数、一次函数的应用、二元二次方程组,一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.题型7:最值问题12.(2024·辽宁·一模)【发现问题】随着时代的发展,在现代城市设计中,有许多街道是设计的相互垂直或平行的,因此往往不能沿直线行走到目的地,只能按直角拐弯的方式行走.我们可以按照街道的垂直和平行方向建立平面直角坐标系xOy ,对两点()11,A x y 和()22,B x y ,用以下方式定义两点间的“折线距离”:()1212,d A B x x y y =−+−.【提出问题】(1)①已知点()4,1A ,则(),d O A =______;②函数()2630y x x =+−≤≤的图象如图1,B 是图象上一点,若(),5d O B =,则点B 的坐标为______; (2)函数()30y x x=>的图象如图2,该函数图象上是否存在点C ,使(),2d O C =?若存在,求出其坐标;若不存在,请说明理由; 【拓展运用】(3)已知函数()21460y x x x =−+≥和函数()2231y x x =+≥−的图象如图3,D 是函数1y 图象上的一点,E是函数2y 图象上的一点,当(),d O D 和(),d O E 分别取到最小值的时候,请求出(),d D E 的值.【答案】(1)①5;②()14,(2)不存在,理由见解析(3)()15,4d D E =【分析】本题在新定义下考查了一次方程和分式方程的解法,二次函数的最值,关键是紧靠定义来构造方程和函数.(1)①代入定义中的公式求; ②设出函数()2630y x x =+−≤≤的图象上点B 的坐标,通过(),5d O B =建立方程,解方程;(2)设出函数()30y x x =>的图象上点C 的坐标,通过(),2d O C =建立方程,看方程解的情况;(3)设出函数()21460y x x x =−+≥的图象上点D 的坐标,将()d O D ,表示成函数,利用二次函数的性质求函数最值,可求得点D 的坐标;设出函数()2231y x x =+≥−的图象上点E 的坐标,利用一次函数的性质,可求得点E 的坐标;再按定义求得(),d D E 的值即可.【解析】 解:(1)①∵点()4,1A ,点()00O ,,∴()40105d O A =−+−=,;故答案为:5; ②设点()26B x x +,,∵(),5d O B =, ∴265x x ++=,∵30x −≤≤, ∴265x x −++=, ∴=1x −, ∴点()14B ,.故答案为:()14,; (2)不存在,理由如下:设点3C m m ⎛⎫ ⎪⎝⎭,, ∵(),2d O C =,∴32m m +=,∵0m >, ∴32m m +=,∴2230m m −+=,∵80∆=−<,∴此方程没有实数根, ∴不存在符合条件的点C ;(3)设点D 为()246n nn −+,,∴()246d O D n n n =+−+,,∵0n ≥,()2246220n n n −+=−+>,∴()222315463624d O D n n n n n n ⎛⎫=+−+=−+=−+⎪⎝⎭,, ∴当32n =时,()d O D ,最小,最小值为154,此时点D 坐标为3924⎛⎫ ⎪⎝⎭,. 设点E 为()23e e +,,∴()23d O Ee e =++,,当10e −≤<时,()233d O Ee e e =−++=+,,∴当1e =−时,()d O E ,最小,最小值为2;当0e ≥时,()2333d O Ee e e =++=+,,∴当0e =时,()d O E ,最小,最小值为3;∴此时点E 坐标为()11−,.∴()395515,1124244d D E =−−+−=+=.13.(2024·四川成都·模拟预测)如图,在平面直角坐标系中,已知直线132y x =−与反比例函数ky x=的图象交于点()8,Q t ,与y 轴交于点R ,动直线()08x m m =<<与反比例函数的图象交于点K ,与直线QR 交于点T .(1)求t 的值及反比例函数的表达式;(2)当m 为何值时,RKT △的面积最大,且最大值为多少? (3)如图2,ABCO 的顶点C 在反比例函数()0ky x x=>的图象上,点P 为反比例函数图象上一动点,过点P 作MN x ∥轴交OC 于点N ,交AB 于点M .当点P 的纵坐标为2,点C 的横坐标为1且8OA =时,求PNPM的值.【答案】(1)1t =,反比例函数的表达式为8y x =; (2)当3m =时,RKT △的面积最大,且最大值为254;(3)1517PN PM =【分析】(1)将()8,Q t 代入直线132y x =−,求出t 的值,再将点Q 的坐标代入反比例函数,求出k 的值,即可得到反比例函数解析式;(2)设8,K m m ⎛⎫ ⎪⎝⎭,1,32T m m ⎛⎫− ⎪⎝⎭,则81813322KT m m m m ⎛⎫=−−=−+ ⎪⎝⎭,进而表示出 RKT RTKQTKS SS=+△()2125344m =−−+,结合二次函数的性质,即可求出最值;(3)先求出P 、C 两点的坐标,再利用待定系数法求出直线OC 的解析式,进而得到点N 的坐标,得出PN的长,然后利用平行四边形的性质,得出PM 的长,即可求出PNPM 的值.【解析】(1)解:()8,Q t 在直线132y x =−上,18312t ∴=⨯−=,()8,1Q ∴,()8,1Q 在反比例函数ky x =上,818k ∴=⨯=,。

初中数学求反比例函数解析式的六种方法

初中数学求反比例函数解析式的六种方法

求反比例函数解析式的六种方法名师点金:求反比例函数的解析式,关键是确定比例系数k的值.求比例系数k的值,可以根据反比例函数的定义及性质列方程、不等式求解,可以根据图象中点的坐标求解,可以直接根据数量关系列解析式,也可以利用待定系数法求解,还可以利用比例系数k的几何意义求解.其中待定系数法是常用方法.利用反比例函数的定义求解析式1.若y=(m+3)xm2-10是反比例函数,试求其函数解析式.利用反比例函数的性质求解析式2.已知函数y=(n+3)xn2+2n-9是反比例函数,且其图象所在的每一个象限内,y随x的增大而减小,求此函数的解析式.利用反比例函数的图象求解析式3.【2017·广安】如图,一次函数y=kx+b的图象与反比例函数y=mx的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=mx和y=kx+b的解析式.(2)已知直线AB 与x 轴相交于点C ,在第一象限内,求反比例函数y =m x的图象上一点P ,使得S △POC =9. (第3题)利用待定系数法求解析式4.已知y 1与x 成正比例,y 2与x 成反比例,若函数y =y 1+y 2的图象经过点(1,2),⎝⎛⎭⎫2,12,求y 与x 的函数解析式.利用图形的面积求解析式5.如图,点A 在双曲线y =1x 上,点B 在双曲线y =k x上,且AB ∥x 轴,C ,D 两点在x 轴上,若矩形ABCD 的面积为6,求点B 所在双曲线对应的函数解析式.(第5题)利用实际问题中的数量关系求解析式6.某运输队要运300 t物资到江边防洪.(1)求运输时间t(单位:h)与运输速度v(单位:t/h)之间的函数关系式.(2)运了一半时,接到防洪指挥部命令,剩下的物资要在2 h之内运到江边,则运输速度至少为多少?答案1.解:由反比例函数的定义可知⎩⎪⎨⎪⎧m 2-10=-1,m +3≠0,∴m =3. ∴此反比例函数的解析式为y =6x. 易错点拨:该题容易忽略m +3≠0这一条件,得出m =±3的错误结论.2.解:由题意得⎩⎪⎨⎪⎧n 2+2n -9=-1,n +3>0. 解得n =2(n =-4舍去).∴此函数的解析式是y =5x.3.解:(1)把点A(4,2)的坐标代入反比例函数y =m x,可得m =8, ∴反比例函数解析式为y =8x. ∵OB =6,∴B(0,-6).把点A(4,2),B(0,-6)的坐标代入一次函数y =kx +b ,可得 ⎩⎪⎨⎪⎧2=4k +b ,-6=b ,解得⎩⎪⎨⎪⎧k =2,b =-6, ∴一次函数解析式为y =2x -6.(2)在y =2x -6中,令y =0,则x =3,即C(3,0),∴CO =3,设P ⎝⎛⎭⎫a ,8a ,则由S △POC =9,可得12×3×8a=9, 解得a =43,∴P ⎝⎛⎭⎫43,6. 4.解:∵y 1与x 成正比例,∴设y 1=k 1x(k 1≠0).∵y 2与x 成反比例,∴设y 2=k 2x(k 2≠0). 由y =y 1+y 2,得y =k 1x +k 2x. 又∵y =k 1x +k 2x的图象经过(1,2)和⎝⎛⎭⎫2,12两点, ∴⎩⎪⎨⎪⎧2=k 1+k 2,12=2k 1+k 22.解此方程组得⎩⎨⎧k 1=-13,k 2=73.∴y 与x 的函数解析式是y =-13x +73x. 5.解:如图,延长BA 交y 轴于点E ,由题意可知S 矩形ADOE =1, S 矩形OCBE =k.∵S 矩形ABCD =6,∴k -1=6.∴k =7.∴点B 所在双曲线对应的函数解析式是y =7x. (第5题)6.解:(1)由已知得vt =300.∴t 与v 之间的函数关系式为t =300v(v >0). (2)运了一半物资后还剩300×⎝⎛⎭⎫1-12=150(t ), 150÷2=75(t /h ).因此剩下的物资要在2 h 之内运到江边,运输速度至少为75 t /h .。

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。

知道反比例函数的图象是双曲线,。

会分象限利用增减性。

能用待定系数法确定函数解析式。

会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。

?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

中考反比例函数及其几种推论

中考反比例函数及其几种推论

反比例函数考点一:反比例函数的定义☞考点说明:反比例函数的定义考察非常简单,注意次数和系数的条件即可,注意反比例函数解析式的几种表达形式:11k y k k x x x-==⋅=⋅(0k ≠) 【例1】 已知()2212m m y m m x+-=+是关于x 的反比例函数,则m 的值为________【答案】1m =-考点二:反比例函数的图象性质☞考点说明:一般情况下会以选择和填空题的形式出现,同时在描述反比例函数的增减性时,注意一定要加上“在每一支图象上”【例2】 在下图中,反比例函数x k y 12+=的图像大致是( )ABC D【答案】D【例3】 若A (1a ,1b ),B (2a ,2b )是反比例函数y x=-图像上的两个点,且12a a <,则1b 与2b 的大小关系是( )A .12b b <B .12b b =C .12b b >D .大小不确定【答案】D.【例4】 若点A (1-,1y )、B (2,2y )、B (π,3y )都是反比例函数21k y x+=的图像上,试比较1y 、2y 、3y 的大小关系 .【答案】231y y y >>考点三:待定系数法求反比例函数的解析式☞考点说明:待定系数法,比较简单 【例5】 点(13)P ,在反比例函数ky x=(0k ≠)的图象上,则k 的值是( )A.13B.3C.13-D.3-【答案】B【例6】 已知点(23)M -,在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A.(32)-, B.(23)--,C.(23),D.(32),【答案】A考点四:反比例函数k 的几何意义☞考点说明:反比例函数k 的几何意义,考察的范围还是比较广,无论是选择和填空都有可能涉及【例7】 在反比例函数12y x=(0x >)的图象上任意一点M ,过点M 分别作x 轴和y 轴的垂线,垂足分别为P 、Q ,那么四边形OQMP 的面积为_____________【答案】12【例8】 如图,在1y x=(0x >)的图象上有三点A 、B 、C ,经过三点分别向x 轴引垂线,交x 轴于1A ,1B ,1C 三点,连接OA 、OB 、OC ,记1OAA ∆,1OBB ∆,1OCC ∆的面积分别为1S 、2S 、3S ,则有()A.123S S S ==B.123S S S <<C.312S S S <<D.123S S S >>【答案】A考点五:反比例函数与一次函数☞考点说明:反比例函数与一次函数综合通常会出两类题,一是考图象的性质,二是考求函数的解析式【例9】 函数y x m =+与(0)my m x=≠在同一坐标系内的图像可以是( )【答案】B【例10】 函数y ax a =-与ay x=(0a ≠)在同一直角坐标系中的图象可能是( )ABD【答案】D【例11】如图,直线y kx b=+与反比例函数()10ky xx=<′的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为()24-,,点B的横坐标为4-.⑴试确定反比例函数的关系式;⑵求AOC∆的面积.【答案】⑴反比例函数的关系式为8yx=-;⑵6AOCS∆=【例12】如图,Rt AOB∆顶点A是一次函数3y x m=-++的图象与反比例函数myx=的图象在第二象限内的交点,且1AOBS∆=,求点A的坐标A B C D【答案】(12)A -,考点六:反比例函数与方程、不等式的联系☞考点说明:反比例函数与方程、不等式也是常考的一种类型题,主要体现数形结合的基本思想。

人教版数学九年级下册反比例函数

人教版数学九年级下册反比例函数

()
岂(能1)尽写如出人y关意于,但x求的无函愧数我解心析.式;
远所大以的 有希望造,就解伟得大k的=1人6,物因。此
莫(为1)一写身出之y关谋于,x而的有函天数下解之析志式。;
(4k为)常在数水,龙k头≠0前)的放形满式一.桶水,出水的速度为x,放满一桶水的时间y
(4)在水龙头前放满一桶水,出水的速度为x,放满一桶水的时间y
2
x
(2)当x=4时时, y 12 = 3. 4
总结 (1)求反比例函数的解析式常用待定系数法,先设其解
析式为y= k(k≠0),然后求出k值; (2)当反比x 例函数的解析式确定以后,已知x(或y)的值,将
其代入解析式中即可求得相应的y(或x)的值.
• 【跟踪训练】 已知y是x 的反比例函数,下列给出了x与y的一些值:
31
x 1
(2)当x=7,y 16 = 2. 7 1
课堂小结
反比例 函数
反比例函数: y k(k≠0) x
用待定系数法求反比例函数解析式
建立反比例函数模型
与其当一辈子乌鸦,莫如当一次鹰。
m 2 是反比例函数.
(1)求反比例函数的解析式常用待定系数法,先设其解析式为y= (k≠0),然后求出k值;
人生不得行胸怀,虽寿百岁犹为无也。
(k为常数,k≠0)的形式.
所以反比例函数的解析式为y= .
.
(4)在水龙头前放满一桶水,出水的速度为x,放满一桶水的时间y
x2
2
(4) y 1 x
2.下列函数中,y是x的反比例函数的是( A )
A.y 1 2x
B.y
1 x2
C.y 1 D.y 1 1
2 x
x
3.(1)若

反比例函数解析式的几种常用求法13

反比例函数解析式的几种常用求法13

反比例函数解析式的几种常用求法一、利用反比例函数图象上的点的坐标来确定 例1 已知反比例函数的图象经过点(-3,1),则此函数的解析式为________.二、借助定义来确定 例2. 已知函数43m y mx +=是反比例函数,试求出m 的值,并写出函数关系式.三、利用反比例函数的性质确定例3 如下图,已知一次函数y =kx+b (k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数xmy =(m ≠0)的图象在第一象限交于点C ,CD ⊥x 轴,垂足为D ,若OA =OB=OD =1,求一次函数和反比例函数的解析式。

(6分)四、根据图形的面积确定例4 如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________.五、根据反比例函数和一次函数图象的交点坐标确定例5 直线y =k 1x +b 与双曲线2k y x=只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式.跟踪练习:1.如图(1)所示的函数图象的关系式可能是 ( ).A . y =x B . y x 1= C . y =x 2D . y =||1x 2.写出一个图象位于第二、四象限的反比例函数的解析式是________. 3.如图3,Rt △ABD 的顶点A 在双曲线ky x=上,DB =OB ,S △ABO =1,则此双曲线的解析式为________.4 .一个反比例函数在第三象限的图象如图(2),若A 是图象上任意一点,AM ⊥x 轴于M ,O 是原点,如果△AOM 的面积是5,求这个反比例函数的解析式.5. 正比例函数y =x 的图象与反比例函数xky =的图象有一个交点的纵坐标是2, 求反比例函数的解析式.课堂反馈1.若关于x 、y 的函数y =5x 25k -是反比例函数,则k =________. 2.若反比例函数的图象过点(-2,1),则此函数的解析式为________. 3、反比例函数ky x=在第一象限的图象如图所示,则k 的值可能是( ) A .1 B .2 C .3 D .44.已知关于x 的一次函数y =mx +3n 和反比例函数y=25m nx+的图象都过点(1,-2),求一次函数和反比例函数的解析式。

反比例函数k的八种几何模型及解法(解析版)-2023年中考数学重难点解题大招复习讲义-函数

 反比例函数k的八种几何模型及解法(解析版)-2023年中考数学重难点解题大招复习讲义-函数

模型介绍考点1一点一垂线模型【模型讲解】反比例函数图象上一点关于坐标轴的垂线、另一坐标轴上一点(含原点)围成的三角形面积等于12|k|.【示例】拓展:【例1】.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数y=(x >0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会()A.越来越小B.越来越大C.不变D.先变大后变小解:如图,过点B作BC⊥PA于点C,则BC=OA,设点P(x,),=PA•BC=••x=3,则S△P AB当点A的横坐标逐渐增大时,△PAB的面积将会不变,始终等于3,故选:C.变式训练【变1-1】.如图,点A、B在反比例函数的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是4,则k的值为﹣.解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,=S△AOM+S四边形AMNB+S△BNC,∵S△AOC∴﹣×3a×=﹣k+4﹣×a×,解得k=﹣,故答案为:﹣.【变1-2】.如图,在第一象限内,点P(2,3),M(a,2)是双曲线y=(k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为()A.B.C.2D.解:把P(2,3),M(a,2)代入y=得k=2×3=2a,解得k=6,a=3,设直线OM的解析式为y=mx,把M(3,2)代入得3m=2,解得m=,所以直线OM的解析式为y=x,当x=2时,y=×2=,所以C点坐标为(2,),所以△OAC的面积=×2×=.故选:B.考点2一点两垂线模型【模型讲解】反比例函数图象上一点与坐标轴的两条垂线所围成的矩形面积等于|k |.【示例】ABCD S k【例2】.双曲线与在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为()A .1B .2C .3D .4解:设直线AB 与x 轴交于点C .∵AB ∥y 轴,∴AC ⊥x 轴,BC ⊥x 轴.∵点A 在双曲线y =的图象上,∴△AOC 的面积=×10=5.∵点B 在双曲线y =的图象上,∴△COB的面积=×6=3.∴△AOB的面积=△AOC的面积﹣△COB的面积=5﹣3=2.故选:B.变式训练【变2-1】.如图,函数y=(x>0)和(x>0)的图象分别是l1和l2.设点P在l2上,PA∥y轴交l1于点A,PB∥x轴交l1于点B,△PAB的面积为.解:设点P(x,),则点B(,),A(x,),∴BP=x﹣=,AP=﹣=,==,∴S△ABP故答案为:.【变2-2】.如图,直线AB∥x轴,分别交反比例函数y=图象于A、B两点,若S△AOB=2,则k2﹣k1的值为4.解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,=2,∵S△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.【变2-3】.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线l∥x轴,l分别与反比例函数y=和y=的图象交于A、B两点,若S△AOB=3,则k的值为﹣2.解:∵直线l∥x轴,∴AM⊥y轴,BM⊥y轴,=|k|,S△BOM=×4=2,∴S△AOM=3,∵S△AOB=1,∴S△AOM∴|k|=2,∵k<0,∴k=﹣2,故答案为:﹣2.考点3两曲一平行模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例3】.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k ≠0)的图象上,正方形ADEF的面积为16,且BF=2AF,则k值为()A.﹣8B.﹣12C.﹣24D.﹣36解:设A(x,0).∵正方形ADEF的面积为16,∴ADEF的边长为4,∴E(x﹣4,4),∵BF=2AF,∴BF=2×4=8,∴B(x,12).∵点B、E在反比例函数y=(k为常数,k≠0)的图象上,∴4(x﹣4)=12x,解得x=﹣2,∴B(﹣2,12),∴k=﹣2×12=﹣24,故选:C.变式训练【变3-1】.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:(+,﹣).【变3-2】.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S=1.7,则S1+S2等于 4.6.阴影解:如图,∵A、B两点在双曲线y=上,=4,S四边形BDOC=4,∴S四边形AEOF∴S1+S2=S四边形AEOF+S四边形BDOC﹣2×S阴影,∴S1+S2=8﹣3.4=4.6故答案为:4.6.【变3-3】.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,…,它们的横坐标依次为1,2,3,4,….分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…,则S1+S2+S3+…+S n=.(用n的代数式表示,n为正整数)解:当x=1时,P1的纵坐标为2,当x=2时,P2的纵坐标1,当x=3时,P3的纵坐标,当x=4时,P4的纵坐标,当x=5时,P5的纵坐标,…则S1=1×(2﹣1)=2﹣1;S2=1×(1﹣)=1﹣;S3=1×(﹣)=﹣;S4=1×(﹣)=﹣;…S n=﹣;S1+S2+S3+…+S n=2﹣1+1﹣+﹣+﹣+…+﹣=2﹣=.故答案为:.考点4两点一垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作垂线围成的三角形面积等于|k|,反比例函数与一次函数图象的交点及坐标轴上任一点构成三角形的面积,等于坐标轴所分的两个三角形面积之和.【示例】【例4】.如图,正比例函数y=kx与反比例函数y=﹣相交于A,C两点,点A的横坐标为﹣4,过点A作x轴的垂线交x轴于B点,连接BC,下列结论:①k=﹣;②不等式kx<﹣的解集为﹣4<x<0或x>4;③△ABC的面积等于16.其中正确的结论个数为()A.0B.1C.2D.3解:将x=﹣4代入y=﹣得y=﹣=2,∴点A坐标为(﹣4,2),将(﹣4,2)代入y=kx得2=﹣4k,解得k=﹣,∴①正确.由反比例函数及正比例函数的对称性可得点C坐标为(4,﹣2),∴当﹣4<x<0或x>4时,kx<﹣,∴②正确.=S△AOB+S△BOC=OB•y A+OB•(﹣y C)=BO(y A﹣y C)=×(2+2)∵S△AOC=8,∴③错误.故选:C.变式训练【变4-1】.如图所示,一次函数y=kx(k<0)的图象与反比例函数y=﹣的图象交于A,B两点,过点B作BC⊥y轴于点C,连接AC,则△ABC的面积为4.解:∵BC⊥y轴于点C,=|﹣4|=2,∴S△COB∵正比例函数y=kx(k>0)与反比例函数y=﹣的图象均关于原点对称,∴OA=OB,=S△COB=2,∴S△AOC=S△AOB+S△BOC=2+2=4,∴S△ABC故答案为:4.【变4-2】.如图,过点O的直线与反比例函数y=的图象交于A、B两点,过点A作AC⊥x轴于点C,连接BC,则△ABC的面积为.解:∵点A反比例函数y=的图象上,过点A作AC⊥x轴于点C,=|k|=,∴S△AOC∵过点O的直线与反比例函数y=的图象交于A、B两点,∴OA=OB,=S△AOC=∴S△BOC=2S△ACO=,∴S△ABC故答案为:.【变4-3】.如图,函数y=x与y=的图象交于A、B两点,过点A作AC垂直于y轴,垂=3,则k=3.足为C,连接BC,若S△ABC解:设A(a,a)(a>0),∵函数y=x与y=的图象的中心对称性,∴B(﹣a,﹣a),=•a•2a=a2=3,∴S△ABC∴a=,∴A(,),把A(,)代入y=得k==3.故答案为:3.考点5两点两垂线模型【模型讲解】反比例函数与正比例函数图象的交点及由交点向坐标轴所作两条垂线围成的图形面积等于2|k|.【示例】【例5】.如图,正比例函数y=kx与反比例函数y=﹣的图象交于A,C两点,过点A作AB⊥x轴于点B,过点C作CD⊥x轴于点D,则△ABD的面积为4.解:∵点A在反比例函数y=﹣上,且AB⊥x轴,∴=2,∵A,C是反比例函数与正比例函数的交点,且CD⊥x轴,∴O是BD的中点,=2S△ABO=4.∴S△ABD故答案为:4.变式训练【变5-1】.如图,一次函数y=kx与反比例函数上的图象交于A,C两点,AB∥y轴,BC∥x轴,若△ABC的面积为4,则k=﹣2.解:设AB交x轴于点D,的面积为,由反比例函数系数的几何意义可得S△ADO由函数的对称性可得点O为AC中点,即DO为△ABC中位线,∴=,=4S△ADO=2|k|=4,∴S△ABC∵k<0,∴k=﹣2.故答案为:﹣2.【变5-2】.如图,正比例函数y=kx(k>0)与反比例函数y=的图象交于A,C两点,过点A作x轴的垂线,交x轴于点B,过点C作x轴的垂线,交x轴于点D,连接AD,BC,则四边形ABCD的面积为2.解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,=S△BOC=S△DOC=S△AOD,∴S△AOB又∵A点在反比例函数y=的图象上,=S△BOC=S△DOC=S△AOD×1=,∴S△AOB=4S△AOB=4×=2,∴S四边形ABCD故答案为:2.【变5-3】.如图,直线分别与反比例函数y=﹣和y=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是5.解:过点A作AF⊥y轴,垂足于点F;过点B作BE⊥y轴,垂足为点E.∵点P是AB中点.∴PA=PB.又∵∠APF=∠BPE,∠AFP=∠BEP=90°,∴△APF≌△BPE.=S△BPE.∴S△APF=S四边形ACOF+S四边形EODB=|﹣2|+|3|=5.∴S四边形ABCD故答案为:5.考点6反比例函数上两点和外一点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点在同一分支上,用减法.【示例】方法一:S △AOB =S △COD -S △AOC -S △BOD .方法二:作AE ⊥x 轴于点E ,交OB 于点M ,BF ⊥x 轴于点F ,则S △OAM =S 四边形MEFB (划归到模型一),则S △AOB =S 直角梯形AEFB .【拓展】方法一:当BE CE 或BFFA=m 时,则S 四边形OFBE =m |k |.方法二:作EM ⊥x 轴于M ,则S △OEF =S 直角梯形EMAF (划归到上一个模型示例).【例6】.如图,一次函数y =ax +b 的图象与反比例函数y =的图象交于A ,B 两点,则S△AOB=()A.B.C.D.6解:把A(﹣4,1)代入y=的得:k=﹣4,∴反比例函数的解析式是y=﹣,∵B(1,m)代入反比例函数y=﹣得:m=﹣4,∴B的坐标是(1,﹣4),把A、B的坐标代入一次函数y=ax+b得:,解得:a=﹣1,b=﹣3,∴一次函数的解析式是y=﹣x﹣3;把x=0代入一次函数的解析式是y=﹣x﹣3得:y=﹣3,∴D(0,﹣3),=S AOD+S△BOD=×3×(1+4)=.∴S△AOB故选:A.变式训练【变6-1】.如图,直线AB经过原点O,且交反比例函数的图象于点B,A,点C在x=12,则k的值为()轴上,且.若S△BCAA.12B.﹣12C.﹣6D.6解:作AD⊥x轴于D,BE⊥x轴于E,∵点A、B在反比例函数的图象上,直线AB经过原点,∴OA=OB=AB,=12,∵,S△BCA=S△BCA=6,∴OB=BC,S△BCO∵BE⊥OC,∴OE=CE,=S△BCO=3,∴S△OBE∵BE⊥x轴于E,=|k|,∴S△OBE∴|k|=6,∵k<0,∴k=﹣6.故选:C.【变6-2】.如图,在平面直角坐标系中,反比例函数y=与直线y=交于A,B,x轴的正半轴上有一点C 使得∠ACB =90°,若△OCD 的面积为25,则k 的值为48.解:设点A 坐标为(3a ,4a ),由反比例函数图象与正比例函数图象的对称性可得点B 坐标为(﹣3a ,﹣4a ),∴OA =OB ==5a ,∵∠ACB =90°,O 为AB 中点,∴OC =OA =OB =5a ,设直线BC 解析式为y =kx +b ,将(﹣3a ,﹣4a ),(5a ,0)代入y =kx +b 得,解得,∴y =x ﹣a ,∴点D 坐标为(0,﹣a ),∴S △OCD =OC •OD =5a ×a =25,解得a =2或a =﹣2(舍),∴点A 坐标为(6,8),∴k =6×8=48.故答案为:48.【变6-3】.如图,正比例函数y =﹣x 与反比例函数y =的图象交于A ,B 两点,点C 在x 轴上,连接AC ,BC .若∠ACB =90°,△ABC 的面积为10,则该反比例函数的解析式是y =﹣.解:设点A 为(a ,﹣a ),则OA ==﹣a ,∵点C 为x 轴上一点,∠ACB =90°,且△ACB 的面积为20,∴OA =OB =OC =﹣a ,∴S △ACB =×OC ×(y A +|y B |)=×(﹣a )×(﹣a )=10,解得,a =±(舍弃正值),∴点A 为(﹣,2),∴k =﹣×2=﹣6,∴反比例函数的解析式是y =﹣,故答案为:y =﹣.考点7反比例函数上两点和原点模型【模型讲解】反比例函数与一次函数图象的交点和原点所围成的三角形面积,若两交点分别在两个分支上,用加法.【示例】方法一:S △AOB =12OD ·|x B -x A |=12OC ·|y A -y B |.方法二:S △AOB =S △AOC +S △OCD +S △OBD .方法三:作AE ⊥y 轴于点E ,BF ⊥x 轴于点F ,延长AE 与BF 相交于点N ,则S △AOB =S △ABN -S △AOE -S △OBF -S 矩形OENF .【例7】.如图,直线AB 交双曲线于A 、B ,交x 轴于点C ,B 为线段AC 的中点,过=12.则k的值为8.点B作BM⊥x轴于M,连接OA.若OM=2MC,S△OAC解:过A作AN⊥OC于N,∵BM⊥OC∴AN∥BM,∵,B为AC中点,∴MN=MC,∵OM=2MC,∴ON=MN=CM,设A的坐标是(a,b),则B(2a,b),=12.∵S△OAC∴•3a•b=12,∴ab=8,∴k=ab=8,故答案为:8.变式训练【变7-1】.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且四边形ODBE的面积为21,则k=7.解:设D点的横坐标为x,则其纵坐标为,∵BD=3AD,∴点B点的坐标为(4x,),点C的坐标为(4x,0)=21,∵S四边形ODBE﹣S△OCE﹣S△OAD=21,∴S矩形ABCD即:4x•﹣﹣=21解得:k=7.故答案为:7.【变7-2】.如图,点是直线AB与反比例函数图象的两个交点,AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求反比例函数和直线AB的解析式;(2)△ABC和△ABD的面积分别为S1,S2,求S2﹣S1.解:(1)由点A(,4)在反比例函数y=(x>0)图象上,∴n=×4=6,∴反比例函数的解析式为y=(x>0),将点B(3,m)代入y=(x>0)并解得m=2,∴B(3,2),设直线AB的表达式为y=kx+b,∴,解得,∴直线AB的表达式为y=﹣x+6;(2)由点A坐标得AC=4,则点B到AC的距离为3﹣=,∴S1==3,设AB与y轴的交点为E,则点E(0,6),如图:∴DE=6﹣1=5,由点A(,4),B(3,2)知,点A,B到DE的距离分别为,3,∴S2=S△BDE﹣S△AED=﹣=,∴S2﹣S1=﹣3=.考点8两双曲线k值符号不同模型【模型讲解】两条双曲线上的两点的连线与一条(或两条)坐标轴平行,求这两点与原点或坐标轴上的点围成的图形面积,过这两点作坐标轴的垂线,结合k的几何意义求解.类型1两条双曲线的k值符号相同【示例】【例8】.如图,在平面直角坐标系中,函数y=kx与的图象交于A、B两点,过A作y轴的垂线,交函数的图象于点C,连接BC,则△ABC的面积为()A.2B.3C.5D.6解:∵正比例函数y=kx与反比例函数y=﹣的图象交点关于原点对称,∴设A点坐标为(x,﹣),则B点坐标为(﹣x,),C(﹣2x,﹣),=×(﹣2x﹣x)•(﹣﹣)=×(﹣3x)•(﹣)=6.∴S△ABC故选:D.变式训练【变8-1】.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y=(x>0)和y=﹣(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则△ABC的面积为()A.3B.6C.9D.解:设P(a,0),a>0,则A和B的横坐标都为a,将x=a代入反比例函数y=﹣中得:y=﹣,故A(a,﹣);将x=a代入反比例函数y=中得:y=,故B(a,),∴AB=AP+BP=+=,=AB•x P的横坐标=××a=,则S△ABC故选:D.【变8-2】.如图,点A和点B分别是反比例函数y=(x>0)和y=(x>0)的图象上=2,则m﹣n的值为4.的点,AB⊥x轴,点C为y轴上一点,若S△ABC解:连接AO.CO,∵AB⊥x轴,点C为y轴上一点,∴AB∥y轴,=S△ABO=2,∴S△ABC∴=2.∴=2,即m﹣n=4.故答案为:4.1.如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4B.﹣4C.2D.﹣2解:∵∠ACB=30°,∠AOB=60°,∴∠OAC=∠AOB﹣∠ACB=30°,∴∠OAC=∠ACO,∴OA=OC=4,在△AOB中,∠ABC=90°,∠AOB=60°,OA=4,∴∠OAB=30°,∴OB=OA=2,∴AB=OB=2,∴A点坐标为(﹣2,2),把A(﹣2,2)代入y=得k=﹣2×2=﹣4.故选:B.2.如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于()A.8sin2αB.8cos2αC.4tanαD.2tanα解:方法一:过点C作CE⊥OA于点E,过点D作DF⊥OA交OA的延长线于点F,设C点横坐标为:a,则:CE=a•tanα,∴C点坐标为:(a,a•tanα),∵平行四边形OABC中,点D为边AB的中点,∴D点纵坐标为:a•tanα,设D点横坐标为x,∵C,D都在反比例函数图象上,∴a×a•tanα=x×a•tanα,解得:x=2a,则FO=2a,∴FE=a,∵∠COE=∠DAF,∠CEO=∠DFA,∴△COE∽△DAF,∴==2,∴AF=,∴AO=OF﹣AF=a,∵点A的坐标为(3,0),∴AO=3,∴a=3,解得:a=2,∴k=a×a•tanα=2×2tanα=4tanα.方法二:∵C(a,a tanα),A(3,0),∴B(a+3,a tanα),∵D是线段AB中点,∴D(,a tanα),即D(,a tanα).∵反比例函数过C,D两点,∴k=a•a tanα=(a+6)•a tanα,解得a=2,∴k=4tanα.故选:C.3.如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,=.∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C.当以CD为边的正方形的面积为时,k的值是()A.2B.3C.5D.7解:设OA=3a,则OB=4a,∴A(3a,0),B(0,4a).设直线AB的解析式是y=kx+b,则根据题意得:,解得:,则直线AB的解析式是y=﹣x+4a,直线CD是∠AOB的平分线,则OD的解析式是y=x.根据题意得:,解得:则D的坐标是(,),OA的中垂线的解析式是x=,则C的坐标是(,),将C点坐标代入反比例函数y=,则k=.设OA的垂直平分线交x轴于点F,过点D作DE⊥x轴于点E,如图,则OF=CF=,OE=DE=a,∵∠DOA=45°,∴△COF和△DOE为等腰直角三角形,∴OC=OF=a,OD=OE=a,∴CD=OD﹣OC=()=(﹣)=a.∵以CD为边的正方形的面积为,∴=,则a2=,∴k=×=7.故选:D.4.如图,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,且OA⊥OB,cos A=,则k的值为()A.﹣3B.﹣4C.﹣D.﹣2解:过A作AE⊥x轴,过B作BF⊥x轴,∵OA⊥OB,∴∠AOB=90°,∴∠BOF+∠EOA=90°,∵∠BOF+∠FBO=90°,∴∠EOA=∠FBO,∵∠BFO=∠OEA=90°,∴△BFO∽△OEA,在Rt△AOB中,cos∠BAO==,设AB=,则OA=1,根据勾股定理得:BO=,∴OB:OA=:1,:S△OEA=2:1,∴S△BFO∵A在反比例函数y=上,=1,∴S△OEA=2,∴S△BFO则k=﹣4.故选:B.5.如图,反比例函数y=(x<0)的图象经过点A(﹣1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是()A.B.C.D.解:如图,∵点A坐标为(﹣1,1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵OB=AB=1,∴△OAB为等腰直角三角形,∴∠AOB=45°,∵PQ⊥OA,∴∠OPQ=45°,∵点B和点B′关于直线l对称,∴PB=PB′,BB′⊥PQ,∴∠B′PQ=∠OPQ=45°,∠B′PB=90°,∴B′P⊥y轴,∴点B′的坐标为(﹣,t),∵PB=PB′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故选:A.6.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为(﹣3,2),若反比例函数y=(x>0)的图象经过点A,则k的值为()A.﹣6B.﹣3C.3D.6解:∵A与C关于OB对称,∴A的坐标是(3,2).把(3,2)代入y=得:2=,解得:k=6.故选:D.7.如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选:D.8.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于﹣12.解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点B、A分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0),∴﹣a(2+b)=b(﹣1﹣a),整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以k=﹣12.9.如图,点E,F在函数y=(x>0)的图象上,直线EF分别与x轴、y轴交于点A,B,且BE:BF=1:m.过点E作EP⊥y轴于P,已知△OEP的面积为1,则k值是2,△OEF的面积是(用含m的式子表示)解:作EC⊥x轴于C,FD⊥x轴于D,FH⊥y轴于H,如图,∵△OEP的面积为1,∴|k|=1,而k>0,∴k=2,∴反比例函数解析式为y=,∵EP⊥y轴,FH⊥y轴,∴EP∥FH,∴△BPE∽△BHF,∴==,即HF=mPE,设E点坐标为(t,),则F点的坐标为(tm,),+S△OFD=S△OEC+S梯形ECDF,∵S△OEF=S△OEC=1,而S△OFD=S梯形ECDF=(+)(tm﹣t)∴S△OEF=(+1)(m﹣1)=.故答案为:2,.10.如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.则有PD⊥OA,PE⊥AB.设⊙P的半径为r,∵AB=5,AC=1,=AB•PE=r,S△APC=AC•PD=r.∴S△APB∵∠AOB=90°,OA=4,AB=5,∴OB=3.=AC•OB=×1×3=.∴S△ABC=S△APB+S△APC,∵S△ABC∴=r+r.∴r=.∴PD=.∵PD⊥OA,∠AOB=90°,∴∠PDC=∠BOC=90°.∴PD∥BO.∴△PDC∽△BOC.∴=.∴PD•OC=CD•BO.∴×(4﹣1)=3CD.∴CD=.∴OD=OC﹣CD=3﹣=.∴点P的坐标为(,).∵反比例函数y=(k≠0)的图象经过圆心P,∴k=×=.故答案为:.11.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,故①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),故②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=﹣k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确.故答案为:①④.12.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2=﹣,a2013=﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0、﹣1.解:当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.故答案为:﹣;﹣;0、﹣1.13.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.解:(1)把x=a,y=3代入y=x+1得,,∴a=4,把x=4,y=3代入y=得,3=,∴k=12;(2)∵点A(4,3),D点的纵坐标是0,AD=AC,∴点C的纵坐标是3×2﹣0=6,把y=6代入y=得x=2,∴C(2,6),①如图1,作CF⊥x轴于F,交AB于E,当x=2时,y==2,∴E(2,2),∵C(2,6),∴CE=6﹣2=4,∴x A==8;②如图2,当AB是对角线时,即:四边形APBQ是平行四边形,∵A(4,3),B(0,1),点Q的纵坐标为0,∴y P=1+3﹣0=4,当y=4时,4=,∴x=3,∴P(3,4),当AB为边时,即:四边形ABQP是平行四边形(图中的▱ABQ′P′),﹣y B=y P′﹣y A得,由y Q′0﹣1=y P′﹣3,=2,∴y P′当y=2时,x==6,∴P′(6,2),综上所述:P(3,4)或(6,2).14.在平面直角坐标系中,已知一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,且与反比例函数y2=的图象在第一象限内交于P,K两点,连接OP,△OAP的面积为.(1)求一次函数与反比例函数的解析式.(2)当y2>y1时,求x的取值范围.(3)若C为线段OA上的一个动点,当PC+KC最小时,求△PKC的面积.解:(1)∵一次函数y1=k1x+b与坐标轴分别交于A(5,0),B(0,)两点,∴,解得.∴一次函数的解析式为:y1=﹣x+.∵△OAP的面积为,∴•OA•y P=,∴y P=,∵点P在一次函数图象上,∴令﹣x+=.解得x=4,∴P(4,).∵点P在反比例函数y2=的图象上,∴k2=4×=2.∴一次函数的解析式为:y1=﹣x+.反比例函数的解析式为:y2=.(2)令﹣x+=,解得x=1或x=4,∴K(1,2),由图象可知,当y2>y1时,x的取值范围为:0<x<1或x>4.(3)如图,作点P关于x轴的对称点P′,连接KP′,线段KP′与x轴的交点即为点C,∵P(4,).∴P′(4,﹣).∴PP′=1,∴直线KP′的解析式为:y=﹣x+.令y=0,解得x=.∴C(,0).=•(x C﹣x K)•PP′∴S△PKC=×(﹣1)×1=.∴当PC+KC最小时,△PKC的面积为.15.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵一次函数y=x+1经过点A(m,2),∴m+1=2,∴m=1,∴A(1,2),∵反比例函数y=经过点(1,2),∴k=2,∴反比例函数的解析式为y=;(2)由题意,得,解得或,∴B(﹣2,﹣1),∵C(0,1),=S△AOC+S△BOC=×1×2+×1×1=1.5;∴S△AOB(3)有三种情形,如图所示,满足条件的点P的坐标为(﹣3,﹣3)或(﹣1,1)或(3,3).16.已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.解:(1)作PC⊥x轴于C,PD⊥y轴于D,则四边形OCPD是矩形,∵以点P为圆心的圆与两条坐标轴都相切,∴PC=PD,∴矩形OCPD是正方形,设PD=PC=x,∵A(3,0)、B(0,4),∴OA=3,OB=4,∴BD=4﹣x,∵PD∥OA,∴△PDB∽△AOB,∴,∴,解得x=,∴P(,),设过点P的函数表达式为y=,∴k=xy==,∴y=;(2)方法一:∵将△AON沿AN翻折,使得点O与线段AB上的点M重合,∴ON=NM,MN⊥AB,由勾股定理得,AB=5,=S△AON+S△ABN,∴S△AOB∴=+,解得,ON=,∴N(0,),设直线AN的函数解析式为y=mx+,则3m+=0,∴m=﹣,∴直线AN的函数解析式为y=﹣x+.方法二:利用△BMN∽△BOA,求出BN的长度,从而得出ON的长度,。

反比例函数专题二、求反比例函数解析式的六种方法

反比例函数专题二、求反比例函数解析式的六种方法
第二十六章 反比例函数 二、求反比例函数解析式的六种方法
方法点拨
求反比例函数的解析式,关键是确定比例系数 k的值.求比例系数k的值,可以根据反比例函数的 定义及性质列方程、不等式求解,可以根据图象中 点的坐标求解,可以直接根据数量关系列解析式, 也可以利用待定系数法求解,还可以利用比例系数 k的几何意义求解.其中待定系数法是常用方法.
解:由题意得 n2 2n 9 1, n 3>0,
解得n=2(n=-4舍去). ∴此函数的解析式是y=比例函数的图象求解析式
3. 【2017·广安】如图,一次函数y=kx+b的图象与反
比例函数y= m 的图象在第一象限交于点A(4,2),与 x
y轴的负半轴交于点B,且OB=6.
∵OB=6,∴B(0,-6).
把点A(4,2),B(0,-6)的坐标代入一次函数y=kx
2 4k b,
k
+b,可得
6 b,
解得 b
∴一次函数解析式为y=2x-6.
2, 6,
专题训练
(2)已知直线AB与x轴相交于点C,在第一象限内, 求
反比例函数y=
m x
的图象上一点P,使得S△POC=9.
解:在y=2x-6中,令y=0,则x=3,
∴y与x的函数解析式是y= 1 x 7 . 3 3x
专题训练
方法 5 利用图形的面积求解析式
5.
如图,点A在双曲线y=
1 x
上,点B在双曲线y=
k x
上,
且AB∥x轴,C,D两点在x轴上,若矩形ABCD的面积
为6,求点B所在双曲线对应的函数解析式.
专题训练
解:如图,延长BA交y轴于点E, 由题意可知S矩形ADOE=1,S矩形OCBE=k. ∵S矩形ABCD=6, ∴k-1=6.∴k=7. ∴点B所在双曲线对应的函数解析式是y= 7 . x

专题20反比例函数(3个知识点4种题型1种中考考法)(解析版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)(解析版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。

2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k =,或表示为ky x=,其中k 是不等于零的常数.一般地,形如ky x=(k 为常数,0k ≠)的函数称为反比例函数,其中x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.注意:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式kx无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ≠.故函数图象与x 轴、y 轴无交点.(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y 是x 的反比例函数的是()A .xy =1B .y =C .y =D .y =【答案】A【解答】解:A 、由原式得到y =,符合反比例函数的定义.故本选项正确;B 、该函数式表示y 与x 2成反比例关系,故本选项错误;C 、该函数式表示y 与x 成正比例关系,故本选项错误;D 、该函数不属于反比例函数,故本选项错误;故选:A .【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A .y =3x﹣1B .y =﹣C .xy =5D .y =【答案】B【解答】解:A 、y =3x ﹣1=是反比例函数,故本选项错误;B 、y =﹣是正比例函数,故本选项正确;C 、xy =5是反比例函数,故本选项错误;D 、y =是反比例函数,故本选项错误.故选:B .知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y =y 1-y 2,y 1与x 成反比例,y =5;当x =1时,y =-1;求当x =-1时,y 的值.【答案】3-【分析】设出解析式,利用待定系数法求得解析式,代入x 【详解】设1ay x=,()22y b x =-,(a 、b 不等于0)∵12y y y =-,a【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题解得62 km=⎧⎨=⎩,故选:B.【点睛】此题考查了反比例函数,熟练掌握反比例函数的性质是解题的关键.2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.0【答案】A【解答】解:由题意得,|m|﹣5=﹣1,且m+4≠0,解得:m=4.故选:A.3.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0【答案】D【解答】解:由题意得:k﹣1=﹣1,解得:k=0,故选:D.k6,104【答案】()【点睛】本题主要考查了坐标系的新定义问题,理解“雁点”的定义,是解题的关键.题型3.反比例函数关系的判断及应用48【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系【分析】列出V与t的关系式,根据反比例函数的定义可得答案.【解答】解:根据题意得:Vt=105,∴V=,V与t满足反比例函数关系;故选:A.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,掌握反比例函数的定义.2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:根据反比例函数解析式中k是常数,不能等于0,由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.【方法四】成果评定法一、单选题A.①②B.【答案】B【分析】分别求出三个问题中变量【详解】解:①∵正方形的周长为二、填空题【答案】2(答案不唯一)【分析】根据矩形写出B ,取值范围.【详解】解:∵矩形ABCD ∴()1,1B ,()3,4D ,三、解答题。

反比例函数解析含答案

反比例函数解析含答案

反比例函数解析含答案一、选择题1.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B【解析】【分析】 根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方, ∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.2.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m ++, Q 四边形ACDE 的面积是ABE ∆面积的3倍,11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.3.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数k y x=(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D【解析】【分析】【详解】如图,过点C 作CD ⊥x 轴于点D ,∵点C 的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC 是菱形,∴点B 的坐标为(8,4).∵点B 在反比例函数(x>0)的图象上, ∴. 故选D.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x =, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.在同一直角坐标系中,函数y=k(x -1)与y=(0)k k x<的大致图象是 A . B . C . D .【答案】B【解析】【分析】【详解】解:k<0时,y=(0)k k x<的图象位于二、四象限, y=k(x -1)的图象经过第一、二、四象限,观察可知B 选项符合题意,故选B.6.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.7.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质8.函数kyx=与y kx k=-(0k≠)在同一平面直角坐标系中的大致图象是()A.B.C.D.【答案】C【解析】【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23BF OA =, ∴OA=3OC ,BF=2OC∴若设F (m ,n )则OA=3m ,BF=2m∵S △BEF =4∴BE=4m则E (3m ,n-4m) ∵E 在双曲线y=k x 上 ∴mn=3m (n-4m) ∴mn=6即k=6.故选A .【点睛】 此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E 点坐标是解题关键.11.如图,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数k y x =在第一象限内的图象经过点D ,交BC 于点E .若4AB =,2CE BE =,34AD OA =,则线段BC 的长度为( )A .1B .32C .2D .23【答案】B【解析】【分析】 设OA 为4a ,则根据题干中的比例关系,可得AD=3a ,CE=2a ,BE=a ,从而得出点D 和点E 的坐标(用a 表示),代入反比例函数可求得a 的值,进而得出BC 长.【详解】设OA=4a根据2CE BE =,34AD OA =得:AD=3a ,CE=2a ,BE=a ∴D(4a ,3a),E(4a+4,a)将这两点代入解析得; 3444k a a k a a ⎧=⎪⎪⎨⎪=⎪+⎩解得:a=12∴BC=AD=32 故选:B【点睛】本题考查反比例函数和矩形的性质,解题关键是用含有字母的式子表示出点D 、E 的坐标,然后代入解析式求解.12.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.13.如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC 与x 轴平行,A ,B 两点的纵坐标分别为4,2,反比例函数y k x =(x >0)的图象经过A ,B 两点,若菱形ABCD 的面积为25,则k 的值为( )A .2B .3C .4D .6【答案】C【解析】【分析】 过点A 作x 轴的垂线,交CB 的延长线于点E ,根据A ,B 两点的纵坐标分别为4,2,可得出横坐标,即可求得AE ,BE 的长,根据菱形的面积为25,求得AE 的长,在Rt △AEB 中,即可得出k 的值.【详解】过点A 作x 轴的垂线,交CB 的延长线于点E ,∵A ,B 两点在反比例函数y k x =(x >0)的图象,且纵坐标分别为4,2, ∴A (4k ,4),B (2k ,2), ∴AE =2,BE 12=k 14-k 14=k , ∵菱形ABCD 的面积为5∴BC×AE =5BC 5=∴AB =BC 5=在Rt △AEB 中,BE 22AB AE =-=1 ∴14k =1,∴k=4.故选:C.【点睛】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.14.如图,在平面直角坐标系中,函数y =kx 与y =-2x的图象交于 A、B 两点,过 A 作 y轴的垂线,交函数4yx=的图象于点 C,连接 BC,则△ABC 的面积为()A.2 B.4 C.6 D.8【答案】C【解析】【分析】连接OC,根据图象先证明△AOC与△COB的面积相等,再根据题意分别计算出△AOD与△ODC的面积即可得△ABC的面积.【详解】连接OC,设AC⊥y轴交y轴为点D,如图,∵反比例函数y=-2x为对称图形,∴O为AB 的中点,∴S△AOC=S△COB,∵由题意得A点在y=-2x上,B点在y=4x上,∴S △AOD =12×OD×AD=12xy=1; S △COD =12×OC×OD=12xy=2; S △AOC = S △AOD + S △COD =3,∴S △ABC = S △AOC +S △COB =6.故答案选C.【点睛】本题考查了一次函数与反比例函数的交点问题与三角形面积公式,解题的关键是熟练的掌握一次函数与反比例函数的交点问题与三角形面积运算.15.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.16.如图,若直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x=-<交于点(),1A m ,则AOB V 的面积为( )A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.17.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线k y x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.18.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.19.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】 根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.20.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1 【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k值是解题的关键.。

自学初中数学资料-反比例函数-(资料附答案)

自学初中数学资料-反比例函数-(资料附答案)

自学资料年份题量分值考点题型201514反比例函数与几填空何综合201613反比例函数图象选择2017110反比例函数的简解答单应用2018210反比例函数的基解答本运算及反比例函数图象2019110反比例函数的应解答用一、正比例函数、反比例函数、一次函数、二次函数的概念【知识探索】1.解析式形如(为常数,)的函数叫做反比例函数.其中也叫做比例系数.反比例函数的定义域是不等于零的一切实数.【错题精练】例1.已知函数y=(m+2)x m2−10是反比例函数,且图象在第二、四象限内,则m的值是()A. 3B. -3C. ±3D. -13【解答】解:由函数y=(m+2)x m2−10为反比例函数可知m2-10=-1,解得m=-3,m=3,又∵图象在第二、四象限内,第1页共36页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第3页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第4页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴函数图象的两个分支分别位于第二四象限,且在每个象限内,y随x的增大而增大;(3)∵反比例函数的关系式为:y=-2x,∴当x=-3时,y=23;当x=-12时,y=4,∴-3≤y≤4.二、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】例1.已知变量y与x成反比例,且当x=2时,y=-6.求:(1)y与x之间的函数表达式;(2)当y=2时,x的值.【答案】解:(1)∵变量y与x成反比例,∴可设y=kx,∵x=2时,y=-6,∴k=2×(-6)=-12,∴y与x之间的函数关系式是y=−12x;(2)当y=2时,y=−12x=2,解得:x=-6.例2.如图,点A,B在反比例函数y=mx的图象上,点A的坐标为(√3,3),点C在x轴上,且使△AOC是等边三角形,BC∥OA.第5页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第6页 共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训(1)求反比例函数的解析式和OC 的长; (2)求点B 的坐标;(3)求直线BC 的函数解析式.【答案】解:(1)点A (√3,3)在反比例函数y =mx 的图象上,∴3=m√3,m =3√3,∴y =3√3x,OC =OA =√(√3)2+32=2√3.(2)过点B 作BE ⊥x 轴于点E ,设CE=a ,则OE =2√3+a ,BE =√3a , ∵点B 在y =3√3x上, ∴√3a =3√32√3+a,即a 2+2√3a −3=0,解得a =−√3±√6, ∵a >0,∴a =√6−√3,OE =2√3+√6−√3=√6+√3,BE =√3(√6−√3)=3√2−3, ∴B 的坐标为(√6+√3,3√2−3);(3)设直线BC 为y=kx+b ,则{2√3k +b =0(√6+√3)k +b =3√2−3,两式相减得,(√6−√3)k =3√2−3,k =3√2−3√6−√3=√3,∴b =−2√3k =−6,∴所求的直线解析式是y =√3x −6.例3.如图,函数y={2x,(0≤x ≤3)−x +9,(x >3)的图象与双曲线y=kx (k≠0,x >0)相交于点A (3,m )和点B .第7页 共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训(1)求双曲线的解析式及点B 的坐标;(2)若点P 在y 轴上,连接PA ,PB ,求当PA+PB 的值最小时点P 的坐标.【答案】解:(1)把A (3,m )代入y=2x ,可得 m=2×3=6, ∴A (3,6),把A (3,6)代入y=kx ,可得k=3×6=18, ∴双曲线的解析式为y=18x ;当x >3时,解方程组{y =−x +9y =18x,可得 {x =6y =3或{x =3y =6(舍去), ∴点B 的坐标为(6,3);(2)如图所示,作点A 关于y 轴的对称点A'(-3,6),连接A'P ,则A'P=AP , ∴PA+PB=A'P+BP≥A'B ,∴当A',P ,B 三点共线时,PA+PB 的最小值等于A'B 的长, 设A'B 的解析式为y=ax+b ,把A'(-3,6),B (6,3)代入,可得{6=−3a+b 3=6a+b,解得{a=−13b=5,∴A'B的解析式为y=-13x+5,令x=0,则y=5,∴点P的坐标为(0,5).【举一反三】1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8 ).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)求经过点P的反比例函数的解析式.【答案】解:(1)作图如右,点P即为所求作的点;---图形(2分),痕迹(2分)(2)设AB的中垂线交AB于E,交x轴于F,由作图可得,EF⊥AB,EF⊥x轴,且OF=3,∵OP是坐标轴的角平分线,∴P(3,3),经过点P的反比例函数的解析式设为:y=kx,得出:xy=k=3×3=9,即经过点P的反比例函数的解析式为:y=9x.第8页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训2.已知函数y=y1-y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.【答案】解:(1)设y1=k1x(k1≠0),y2=k2x(k2≠0),∴y=k1x-k2x.∵当x=1时,y=1.当x=3时,y=5,∴{k1−k2=13k1−k23=5,∴{k1=74k2=34,∴y关于x的函数解析式是:y=74x-34x;(2)由(1)知,y=74x-34x.则当x=2时,y=74×2-38=258.3.如图,在平面直角坐标系中,点A是反比例函数y=kx(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,-2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.第9页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵D(0,-2),△AOD的面积为4,∴12•2•OB=4,∴OB=4,∵C为OB的中点,∴OC=BC=2,C(2,0)又∵∠COD=90°∴△OCD为等腰直角三角形,∴∠OCD=∠ACB=45°,又∵AB⊥x轴于B点,∴△ACB为等腰直角三角形,∴AB=BC=2,∴A点坐标为(4,2),把A(4,2)代入y=kx,得k=4×2=8,即反比例函数解析式为y=8x,将C(2,0)和D(0,-2)代入一次函数y=ax+b,可得{0=2a+b −2=b ,解得{a=1b=−2,∴直线AE解析式为:y=x-2;(2)设Q的坐标为(t,8t),∵S△BAC=12×2×2=2,∴S△QAB=4S△BAC=8,即12•2•|t-4|=8,解得t=12或-4,在y=8x 中,当x=12时,y=23;当x=-4时,y=-2,∴Q点的坐标为(12,23)或(-4,-2).三、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的第10页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训交点【知识探索】1.反比例函数(是常数,)的图像的两支都无限接近于轴和轴,但不会与轴和轴相交.【错题精练】例1.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数y=2x的图象经过P,D两点,则AB的长是______.【解答】解:设D(m,2m ),则P(2m,1m),作PH⊥AB于H.∵四边形ABCD是正方形,∴PA=PB,∵PH⊥AB,∴AH=HB=m,∴AB=AD=2m,∴2m=2m,∴m=1或-1(舍弃),∴AB=2m=2,故答案为2.【答案】2例2.如图,已知点A在反比例函数y=2x在第一象限上运动,过点O作OB⊥OA,当tanA=√2时,点B恰好落在反比例函数y=kx在第二象限的图象上,则k的值为______.【解答】解:过A作AN⊥x轴于N,过B作BM⊥x轴于M.∵第一象限内的点A在反比例函数y的图象上,∴设A(x,2x)(x>0),ON•AN=2.∵tan∠A=√2,∴OBOA=√2,∵OA⊥OB,∴∠BMO=∠ANO=∠AOB=90°,∴∠MBO+∠BOM=90°,∠MOB+∠AON=90°,∴∠MBO=∠AON,∴△MBO∽△NOA,∴BMON =OMAN=OBOA=√2,∴BM=√2ON,OM=√2AN.又∵第二象限的点B在反比例函数y=kx上,∴k=-OM•BM=-√2ON×√2AN=-4.故答案为-4.【答案】-4例3.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是______.【解答】解:AF与BC为对应边,设AE=3y,则AF=DE=2y,∵OD=2,OC=3,∴反比例函数的解析式为:y=6x,由题意得,2+2y=63y,整理得,y2+y-1=0,解得,y1=−1−√52(舍去),y2=−1+√52,∴点A的坐标是(√5+1,3√5−32),故答案为:(√5+1,3√5−32).【答案】(√5+1,3√5−32)例4.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为______.【解答】解:∵四边形ABCO是矩形,AB=2,∴设B(m,2),∴OA=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=√32m,∴A′(12m,√32m),∵反比例函数y=kx(k≠0)的图象恰好经过A′,B,∴12m•√32m=2m=k,∴m=8√33,∴k=16√33.故答案为:16√33.【答案】16√33例5.在反比例函数y=-2019x图象上有三个点A(x1,y1)B(x2,y2)C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y1<y2D. y3<y2<y1【解答】解:k=-2019,故图象在二、四象限,x>0,y随x增大而增大,y2<y3,且均为负值,x<0时,y>0,故选:B.【答案】B例6.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=k的图象上,OA=1,OC=6,x试求出正方形ADEF的边长.【答案】解:∵OA=1,OC=6,四边形OABC是矩形,∴点B的坐标为(1,6),∵反比例函数y=k的图象过点B,x∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=k的图象过点E,x∴a(1+a)=6,解得:a=2或a=-3(舍去),∴正方形ADEF的边长为2.例7.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=k(kx >0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求反比例函数的表达式及点E的坐标;(2)点F是OC边上一点,若△FBC∽△DEB,求点F的坐标.【答案】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=kx(x>0)得:k=1×3=3;∴反比例函数的表达式y=3x,∵BA∥y轴,∴点E的横坐标与点B的横坐标相等为2,∵点E在双曲线上,∴y=32,∴点E的坐标为(2,32);(2)∵点E的坐标为(2,32),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=32,BC=2,∵△FBC∽△DEB,∴CFDB =BC EB,即:CF1=232,∴FC=43,∴点F的坐标为(0,53).例8.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、A n-1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、……、A n-1A n都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点P n(x n,y n)在反比例函数y=kx(x>0)的图象上,已知B1(-1,1).(1)反比例函数解析式为______;(2)求点P3和点P2的坐标;(3)点P n的坐标为(______)(用含n的式子表示),△P n B n O的面积为______.【解答】解:(1)在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(-1,1),∴P1(1,1),则k=1×1=1,即反比例函数解析式为y=1;x;故答案为:y=1x,(2)设P2(a,a+2),代入y=1x∴a(a+2)=1,∴a=-1±√2,∵a>0,∴a=√2-1,∴P2(√2-1,√2+1),设P3(b,b+2√2),代入y=1,x∴b(b+2√2)=1,∴b=-√2±√3,∵b>0,∴b=√3-√2∴P3(√3-√2,√3+√2),(3)连接B1P1交y轴于C,B2P2交y轴于E,B3P3交y轴于F,连接OB2、OP2,由P1(1,1)、P2(√2-1,√2+1),P3(√3-√2,√3+√2),知点P n的坐标为(√n−√n−1,√n+√n−1),∵S△P1B1O =2S△P1CO=2×12=1,S△P2B2O=2S△P2EO=2×12=1,…∴△P n B n O的面积为1,故答案为:(√n-√n−1,√n+√n−1),1.【答案】y=1x√n−√n−1,√n+√n−11【举一反三】1.如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=kx(k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是()A. 239B. 1289C. 16D. 154【解答】解:作BH⊥y轴于B,连结EG交x轴于P,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,3.如图,矩形ABCD的顶点A在y轴上,反比例函数y=kx(x>0)的图象恰好过点B和点C,AD与x 轴交于点E,且AE:DE=1:3,若E点坐标为(2,0),且AD=2AB,则k的值是()A. 6B. 8C. 10D. 12【解答】解:如图,作DM⊥x轴于M,作BN⊥y轴于N,设OA=a,则△AOE∽△DME,∴OADM =OEEM=AEED,∵AE:DE=1:3,E点坐标为(2,0),∴EM=6,DM=3a,∴点D的坐标为(8,-3a),∵AD=2AB,∴AB=2AE,∵∠EAO=90°-∠NAB=∠ABN,∠AOE=∠BNA=90°,∴△EAO∽△ABN,∴OEAN =OABN=AEAB,∴AN=4,BN=2a,∴点B的坐标为(2a,a+4),由平移可得,点C的坐标为(2a+8,-3a+4),∵反比例函数y=kx(x>0)的图象恰好过点B和点C,∴2a(a+4)=(2a+8)(-3a+4)=k,解得a=1或a=-4(舍去),∴k=10.故选:C.【答案】C4.如图,已知点A,C在反比例函数y=ax (a>0)的图象上,点B,D在反比例函数y=bx(b<0)的图象上,AB∥CD∥y轴,AB,CD在y轴的同侧,AB=3,CD=2,AB与CD的距离为1,则a-b的值是______.【解答】解:设点A、B的横坐标为m(m>0),则点C、D的横坐标为m+1,∴A(m,am ),B(m,bm),C(m+1,am+1),D(m+1,bm+1),∵AB=3,CD=2,∴{a−bm=3a−bm+1=2,解得:{a−b=6m=2.故答案为:6.【答案】65.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=kx.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为______.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO 中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA ,在△OAB 和△FDA 中,{∠DAF =∠OBA∠BOA =∠AFD AD =AD,∴△OAB ≌△FDA (AAS ),同理,△OAB ≌△FDA ≌△BEC ,∴AF=OB=EC=3,DF=OA=BE=1,故D 的坐标是(4,1),C 的坐标是(3,4).代入y=k x 得:k=4,则函数的解析式是:y=4x . ∴OE=4,则C 的纵坐标是4,把y=4代入y=4x 得:x=1.即G 的坐标是(1,4),∴CG=2,∴b=2.故答案为:2.【答案】26.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx 在第一象限的图象经过点B .①若OC=3,BD=2,则k=______;②若OA 2-AB 2=18.则k=______.【解答】解:①∵△OAC 和△BAD 都是等腰直角三角形,∴OC=AC=3,BD=AD=2,∴OC+BD=5,CD=3-2=1,即B (5,1),∵反比例函数y=k x 在第一象限的图象经过点B ,∴k=5×1=5.②设点B (a ,b ),∵△OAC和△BAD都是等腰直角三角形,∴OA=√2AC,AB=√2AD,OC=AC,AD=BD,∵OA2-AB2=18,∴2AC2-2AD2=18即AC2-AD2=9∴(AC+AD)(AC-AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,故答案为:5,9.【答案】597.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在(k>0,x>0)的图象上,点D的坐标为(√5,2).反比例函数y=kx(1)求k的值;(k>0,x>0)的图象上(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=kx时,求菱形ABCD平移的距离.【答案】解:(1)作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(√5,2),∴DO=AD=3,∴A点坐标为:(√5,5),∴k=5√5;(x>0)的图象上D′,(2)∵将菱形ABCD向右平移,使点D落在反比例函数y=kx∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2=5√5x ,解得x=5√52, ∴FF′=OF′-OF=5√52-√5=3√52, ∴菱形ABCD 平移的距离为3√52,同理,将菱形ABCD 向右平移,使点B 落在反比例函数y=k x (x >0)的图象上,菱形ABCD 平移的距离为53√5,综上,当菱形ABCD 平移的距离为3√52或5√53时,菱形的一个顶点恰好落在函数图象上.8.如图,菱形OABC 的边OC 在x 轴正半轴上,点B 的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数y=kx 经过菱形对角线的交点D ,且与边BC 交于点E ,请求出点E 的坐标.【答案】解:(1)如图,BM ⊥x 轴于点M ,∵点B 的坐标为(8,4),OC=BC ,∴CM=8-BC ,在Rt △BCM 中,BC 2=CM 2+BM 2,即BC 2=(8-BC )2+42,解得,BC=5,即菱形的边长为5;(2)∵D 是OB 的中点,∴点D 的坐标为:(4,2),∵点D 在反比例函数y=kx 上, ∴k=xy=4×2=8,y=8x ,又∵OC=5,∴C (5,0),(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?【答案】解:(1)设反比例函数解析式为y=k x (k≠0),将(25,6)代入解析式得k=25×6=150,则函数解析式为y=150x(x≥15), 将y=10代入解析式得,10=150x , x=15,故A (15,10),设正比例函数解析式为y=nx ,将A (15,10)代入上式即可求出n 的值,n=1015=23,则正比例函数解析式为y=23x (0<x <15).(2)当y=2时,150x=2, 2=23x 1(0<x <15).解得x=75.答:师生至少在75分钟内不能进入教室.例3.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x 、y(2)若△ABC为等边三角形,则有y=√32x,∵y=12√3x∴12√3x =√32x,∴x=√24=2√6∵2<2√6<8∴能【答案】(1)y=12√3x;(2)【举一反三】1.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为.【答案】3.2.为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg.(1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室?(2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】解:(1)①由题意xy=12,∴y=12x (x≥65).②y≥4时,65≤x≤3.(2)当2x+12x =9.5时,整理得:4x 2-19x+24=0,△<0,方程无解.当2x+12x =10.5时,整理得:4x 2-21x+24=0,△=57>0,符合题意;∴小凯的说法错误,洋洋的说法正确.1.下列函数中,反比例函数是( )A. y=-2xB. y =1x+1C. y=x-3D. y =13x【解答】解:根据反比例函数定义,y =13x 是反比例函数.故选:D .【答案】D2.如果函数y=kx k-2是反比例函数,那么k=______,此函数的解析式是______.【解答】解:根据题意,k-2=-1,解得k=1,且k≠0,∴函数的解析式为:y=1x .故答案为:1,y=1x .【答案】1y=1x3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A. y=400x B. y=14xC. y=100x D. y=1400x【解答】解:设y=kx,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=100x.故选:C.【答案】C4.如图,在平面直角坐标系中,反比例函数y=kx经过▱ABCD的顶点B,D,点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为______,k=______;(2)求AB所在直线的解析式.【解答】解:(1)∵点D 的坐标为(2,1),点A 在y 轴上,且AD ∥x 轴,∴点A 的坐标(0,1),∵y =kx 的图象经过点D (2,1),∴k=2×1=2,故答案为:(0,1),2;(2)∵D (2,1),AD ∥x 轴,∴AD=2,AO=1,∵S 平行四边形ABCD =6,∴AE=3,∴OE=2,∴B 点纵坐标为-2,把y=-2代入y =2x 得,-2=2x ,解得x=-1,∴B (-1,-2),设直线AB 的解析式为y=ax+b ,代入A (0,1),B (-1,-2)得: {b =1−a +b =−2, 解得:{a =3b =1, ∴AB 所在直线的解析式为y=3x+1.【答案】(0,1)25.如图,一次函数y=-x+4的图象与反比例函数y=kx (k 为常数,且k≠0)的图象交于A (1,a ),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.【答案】解:(1)把点A (1,a )代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A 的坐标为(1,3).把点A (1,3)代入反比例函数y=kx ,得:3=k ,∴反比例函数的表达式y=3x ,联立两个函数关系式成方程组得:{y =−x +4y =3x , 解得:{x =1y =3,或{x =3y =1, ∴点B 的坐标为(3,1).(2)作点B 作关于x 轴的对称点D ,交x 轴于点C ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小,连接PB ,如图所示.∵点B 、D 关于x 轴对称,点B 的坐标为(3,1),∴点D 的坐标为(3,-1).设直线AD 的解析式为y=mx+n ,把A ,D 两点代入得:{m +n =33m +n =−1, 解得:{m =−2n =5, ∴直线AD 的解析式为y=-2x+5.令y=-2x+5中y=0,则-2x+5=0,解得:x=52,∴点P 的坐标为(52,0). S △PAB =S △ABD -S △PBD =12BD•(x B -x A )-12BD•(x B -x P )=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.6.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,其直角顶点P 1(4,4),P 2,P 3……P n 均在反比例函数y=kx (k >0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).(k>0)的图象上,【答案】解:(1)∵点P1(4,4)在反比例函数y=kx∴k=4×4=16;(2)作P1A⊥OA1于A,P2B⊥A1A2于B,P3⊥A2A3于C,如图所示:∵P1(4,4),∴OA=P1A,△OAP1时等腰直角三角形,∴∠OP1A=45°,∴∠A1P1A=45°,∵P1A⊥OA1,∴△AA1P1是等腰直角三角形,∴AA1=OA=4,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,∴OA1=8,设P2(8+b,b),则b(8+b)=16,解得:b1=-4-4√2(舍去),b2=-4+4√2,∴OB=8-4+4√2=4+4√2,∴P2(4+4√2,-4+4√2),A2A1=2b=-8+8√2,∴OA2=8-8+8√2=8√2,设P3(8√2+c,c),则c(8√2+c)=16,解得:c1=-4√2-4√3(舍去),c2=-4√2+4√3,∴OC=8√2-4√2+4√3=4√2+4√3,∴P3(4√2+4√3,-4√2+4√3);(3)由(2)得:P n的坐标为(4√n+4√n−1,4√n-4√n−1).7.已知反比例函数y=6的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关x系是______.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.【答案】y1<y2的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一8.如图,已知反比例函数y=kx动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.得k=2×1=2,【答案】解:(1)把A(2,1)代入y=kx;所以反比例函数解析式为y=2x(2)∵∠OAM=90°,∴∠MAD+∠CAO=90°,而∠CAO+∠AOC=90°,∴∠AOC=∠MAD,∴Rt△AMD∽Rt△OAC,∴AD:OC=MD:AC,即(n-1):2=(2-m):1,∴n-1=4-2m,∵点M(m,n)在y=2的图象上,x,∴n=2m-1=4-2m,∴2m整理得2m2-5m+2=0,解得m1=1,m2=2(舍去),2∴n=4,∴点M的坐标为(1,4).2。

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数的概念和图像性质

第一讲:反比例函数概念 一、一般地,形如xky =(k 为常数,且0≠k )的函数称为反比例函数。

注意:①分母中含有自变量x ,且指数为1.②比例系数0≠k③自变量x 的取值为一切非零实数。

反比例函数表达式的三种形式① xky =②kx y =1-③ k xy =二、求函数解析式的方法:待定系数法 对于解析式xky =,中只有一个待定系数,因此只需要一对对应的x 、y 的值即可。

例1:下列函数中,是反比例函数的有①x y 5=; ②x y 4.0=; ③2x y =; ④2=xy ; ⑤πx y =; ⑥xy 5-=;⑦12-=x y ; ⑧31-=xy ; ⑨)0(2≠=a a xay 为常数且; ⑩x y 52-=;例2:如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是 ;如果自变量取值为—1时,函数值为2,次反比例函数的关系式是 ; 例3:计划修建铁路1200km ,那么铺轨天数y (天)是每日铺轨量x 的反比例函数吗? 解:因为 ,所以y 是x 的反比例函数;例4:一块长方形花圃,长为a 米,宽为b 米,面积为8平方米,那么,列出a 关于b 的函数关系式为例5:在某一电路中,保持电压V (伏特)不变,电流I (安培)与电阻R (欧姆)成反比例,当电阻R=5时,电流I=2安培。

(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值。

思考:你还能举出哪些生活中的反比例函数例子?提升训练:1.已知:,21y y y +=1y 与2x 成正比例,2y 与x 成反比例,且当3,1==y x ;当1,1=-=y x ,求21-=x 时,y 的值?2.已知y 与x-1成反比例,并且x =-2时y =7,求:(1)求y 和x 之间的函数关系式; (2)当x=8时,求y 的值(3)y =-2时,x 的值。

3.已知y =y 1-y 2,y 1与x 成正比例,y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3.求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值.第二讲:反比例函数的图像和性质 1.通过描点法画x y 2=和xy 3-=的函数图像 2.反比例函数的图像是双曲线。

反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法及详细答案

反比例函数解析式的几种常用求法确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法. 一、 定义型:例1、已知函数102)3(--=mx m y 是反比函数,求其解析式?分析:由反比例函数可知⎩⎨⎧-=-≠-110032m m∴⎩⎨⎧±=≠33m m∴3-=m 即可写出函数解析式利用定义求反比例xky =解析式时,要保证k ≠0。

如例1中应保证03≠-m 的条件。

二、 过点型:例2、(浙江金华)已知图象经过点(1,1),的反比例函数解析式是 。

分析:函数图象过某一点,则该点坐标满足函数解析式。

即可设函数解析式为xky =然后将该点坐标代入解析式求出K 值即可(变式问法:已知反比例函数xky =,当x=1时,y =1,求这个函数的解析式。

) 三、 图象型:例3、已知某个反比例函数的图像如图所示,则该函数的解析式为__________。

分析:如图将点P (1,2)代入反比例函数解析式xky =中求出K 的值的即可。

四、面积型:例4、(山东枣庄)反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则反比例函数解析式?分析:由反比例函数)0(≠=k xky 的图象上任一点P 与过这点作X 轴(或Y 轴)的垂线的垂足与坐标原点三点间的三角形的面积“S=K 21”可知∴K 21=2 故可求出K 值,即写出解析式。

12P例5、如图所示,设A 为反比例函数xky =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为分析:由上面知识可知S 矩形ABOC =K∴ K =3 即 K=±3又∵ 反比例函数图象在第二象限 ∴K=-3 即可写出解析式。

五、应用型:例6、某空调厂的装配车间原计划用2个月时间(每月以30天计算),组装1500台空调.(1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调? 分析:这一道工程问题,即“工作总量=工作时间×工作效率”要时确 ∴ 1500=mt 即 tm 1500=(0<t ≤60) 之后的问题就可以用第一小问来解决了。

新人教版初中数学——反比例函数-知识点归纳及典型题解析

新人教版初中数学——反比例函数-知识点归纳及典型题解析

新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。

反比例函数及解析式

反比例函数及解析式

x1
x2
0
x3

则 y1 , y2 , y3 的大小关系是( )
A. y1 y2 y3 B. y2 y1 y3
C. y3 y1 y2
D. y3 y2 y1
4.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图 4 所示,设小矩形的长和宽分别为 x、y,剪
去部分的面积为 20,若 2≤x≤10,则 y 与 x 的函数图像是( )
4
4.在同一坐标系中,函数 y k 和 y kx 3 的图象大致是( ) x
1.反比例函数的图象有 k 的符号确定其分布的象限,同时也决定了图象离原点距离的远近情况; 2.运用反比例函数的性质来比较反比例函数值大小比较时一定注意得函数自变量是否为同一象限里.
(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数
注意三点: ① xy 0
②y 是 x 的反比例函数中分母中不含有关于 x 的多项式,也就是说分母、商均为单项式
③ y k xy k y kx1 x
2. 反比例系数 k: 求法→ k xy
3. 待定系数法求反比例函数解析式: 一设→二代→三解→四结论
4.若 y b 与 1 成反比例,则 y 与 x 的函数关系式是( ) xa
A. 正比例 B. 反比例
C.一次函数 D.二次函数
1.已知函数 y m ,当 x 1 时, y 6 ,则函数的解析式是

x
2
2.已知变量 y 与 x -5 成反比例,且当 x =2 时 y =9,则 y 与 x 之间的函数解析式是
3. 已知□ABCD 中,AB = 4,AD = 2,E 是 AB 边上的一动点,设 AE= x ,DE 延长线交 CB 的延长线于 F,设 CF = y ,

反比例函数专题知识点归纳 常考(典型)题型 重难点题型(含详细答案)

反比例函数专题知识点归纳 常考(典型)题型  重难点题型(含详细答案)

反比例函数专题知识点归纳+常考(典型)题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.知识结构 (2)2.反比例函数的概念 (2)3.反比例函数的图象 (2)4.反比例函数及其图象的性质 (2)5.实际问题与反比例函数 (4)三、常考题型 (6)1.反比例函数的概念 (6)2.图象和性质 (6)3.函数的增减性 (8)4.解析式的确定 (10)5.面积计算 (12)6.综合应用 (17)三、重难点题型 (22)1.反比例函数的性质拓展 (22)2.性质的应用 (23)1.求解析式 (23)2.求图形的面积 (23)3. 比较大小 (24)4. 求代数式的值 (25)5. 求点的坐标 (25)6. 确定取值范围 (26)7. 确定函数的图象的位置 (26)二、基础知识点1.知识结构2.反比例函数的概念(k≠0)可以写成y=x−1(k≠0)的形式,注意自变量x 1.y=kx的指数为-1,在解决有关自变量指数问题时应特别注意系数k≠0这一限制条件;(k≠0)也可以写成xy=k的形式,用它可以迅速地求出反2.y=kx比例函数解析式中的k,从而得到反比例函数的解析式;的自变量x≠0,故函数图象与x轴、y轴无交点.3.反比例函数y=kx3.反比例函数的图象的图象时,应注意自变量x的取值在用描点法画反比例函数y=kx不能为0,且x应对称取点(关于原点对称).4.反比例函数及其图象的性质1.函数解析式:y=k(k≠0)x2.自变量的取值范围:x≠03.图象:(1)图象的形状:双曲线.|k|越大,图象的弯曲度越小,曲线越平直.|k|越小,图象的弯曲度越大.(2)图象的位置和性质:①与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.②当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;③当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:①图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.②图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(4)k的几何意义图1上任意一点,作PA⊥x①如图1,设点P(a,b)是双曲线y=kx轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO|k|).和三角形PBO的面积都是12图2②如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.(5)说明:①双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.的关系:②直线y=k1x与双曲线y=k2x当k1k2<0时,两图象没有交点;当k1k2>0时,两图象必有两个交点,且这两个交点关于原点成中心对称.5.实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.三、常考题型1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.y-3=2x C.3xy=1 D.y=x2答案:A为正比例函数B为一次函数C变型后为反比例函数D为二次函数(2)下列函数中,y是x的反比例函数的是().A.y=14x B.y=−1x2C.y=1x−1D.y=1+1x答案:A为反比例函数,k为14B、C、D都不是反比例函数2.图象和性质(1)已知函数y=(k+1)x k2+k−3是反比例函数。

四川省渠县崇德实验学校2020中考九年级数学专题复习:第12讲 反比例函数 教案设计(含答案)

四川省渠县崇德实验学校2020中考九年级数学专题复习:第12讲 反比例函数 教案设计(含答案)

四川省渠县崇德实验学校2020中考九年级数学专题复习:第12讲 反比例函数 教案反比例函数的概念及解析式的三种形式1.概念:一般地,形如y =kx (k 为常数,k≠①0)的函数叫做反比例函数,自变量x 的取值范围是②x≠0.2.反比例函数解析式的三种形式(k 为常数,k≠0):y =k x ;y =kx -1;xy =k.【方法指导】 确定点在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于纵坐标,则点在函数图象上;若所求值不等于纵坐标,则点不在函数图象上;(2)把点的横、纵坐标相乘,若乘积等于k ,则点在函数图象上;若乘积不等于k ,则点不在函数图象上.反比例函数的图象与性质注意:双曲线不是连续的曲线,而是两支不同的曲线,所以比较函数值的大小时,要注意所判断的点是否在同一象限,当k >0时,在两支上,第一象限函数值大于第三象限函数值;当k <0时,在两支上,第二象限函数值大于第四象限函数值.解决此类问题的一个有效方法是画出草图,标上各点,再比较大小.1.已知反比例函数y =m -1x.(1)当m =2时,反比例函数图象分布在第一、三象限,且在每一个象限内,y 随x 的增大而减小(填“增大”或“减小”);(2)当反比例函数的图象如图所示时,则m 的取值范围是m<1;(3)若点P(x ,y)在函数的图象上,则点P 1(-x ,-y)在函数的图象上(填“在”或“不在”); (4)若点C(-2,3)在该函数的图象上. ①反比例函数的解析式是y =-6x;②点A(x 1,y 1)和B(x 2,y 2)是反比例函数图象上的两点,且x 1<0<x 2,则y 1>y 2(填“>”“=”或“<”); ③当1≤x≤3时,y 的最小整数值是-6.反比例函数中k 的几何意义及解析式的确定1.反比例函数中k 的几何意义:如图,设P(x ,y)是反比例函数y =kx 图象上任一点,过点P 作PM⊥x 轴于点M ,PN⊥y 轴于点N ,则S 矩形PNOM =PM·PN=|y|·|x|=|xy|=⑨|k|.2.与反比例函数中k 的几何意义有关的面积计算:3.反比例函数解析式的确定: (1)待定系数法:①设出反比例函数的解析式为y =kx (k≠0);②找出满足反比例函数图象的已知点P(a ,b); ③将P(a ,b)代入解析式得k =⑭ab ; ④确定反比例函数解析式y =abx .(2)利用k 的几何意义确定:题中已知面积时考虑用k 的几何意义.由面积得|k|,再结合图象所在象限判断k 的正负,从而得出k 的值,代入解析式即可.2.如图,点A 为反比例函数y =-4x图象上的一点,过点A 作AB⊥x 轴于点B ,连接OA ,则△ABO 的面积为2.3.如图,点A 是反比例函数y =kx 的图象上的一点,过点A 作AB⊥x 轴,垂足为B.点C 为y 轴上的一点,连接AC ,BC.若△ABC 的面积为4,则k 的值是-8.反比例函数与一次函数的综合运用(1)根据点的坐标确定函数解析式; (2)根据函数图象比较两函数值的大小; (3)求三角形或四边形的面积;(4)由几何图形面积确定点的坐标或求函数解析式.反比例函数的实际应用1.实际问题中常见的反比例函数关系: (1)行程问题:速度=路程时间;(2)工程问题:工作效率=工作量工作时间;(3)压强问题:压强=压力受力面积;(4)电学问题:电阻=电压电流.2.解反比例函数的实际应用题的一般步骤:(1)审清题意,找出题目中的常量、变量,并确定常量与变量之间的关系; (2)根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示; (3)由题目中的已知条件列出方程,求出待定系数; (4)写出函数解析式,并注意解析式中自变量的取值范围; (5)用函数的图象与性质解决实际问题.4.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地.当他按照原路返回时,汽车的速度v(千米/小时)与时间t(小时)的函数关系是v =320t (t>0).命题点1 反比例函数的图象与性质1.(下列说法中不正确的是(D) A.函数y =2x 的图象经过原点 B.函数y =1x 的图象位于第一、三象限C.函数y =3x -1的图象不经过第二象限D.函数y =-3x的值随x 的值的增大而增大2.在同一平面直角坐标系中,函数y =kx(k>0)与y =kx(k>0)的图象可能是(C)3.已知反比例函数y =kx(k≠0)的图象过点(-1,2),则当x >0时,y 随x 的增大而增大.4.已知P 1(x 1,y 1),P 2(x 2,y 2)两点都在反比例函数y =2x 的图象上,且x 1<x 2<0,则y 1>y 2.(填“>”或“<”)方法指导在求解反比例函数的因变量y 随自变量x 的变化情况及确定反比例函数的图象时,一般利用k 的取值范围.易错提示在应用反比例函数的性质时,要注意“在每个象限内”这几个字的含义,切忌说k >0时,y 随x 的增大而减小.5.已知反比例函数y =2x,当x <-1时,y 的取值范围为-2<y <0.6.已知点P(m ,n)在直线y =-x +2上,也在双曲线y =-1x上,则m 2+n 2的值为6.7.在平面直角坐标系xOy 中,点A(3m ,2n)在直线y =-x +1上,点B(m ,n)在双曲线y =kx 上,则k 的取值范围为k≤124且k≠0. 8.已知A ,B ,C ,D 是反比例函数y =8x (x >0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是5π-10(用含π的代数式表示).命题点2 反比例函数与一次函数综合双曲线y =k x (k 为常数,且k≠0)与直线y =-2x +b 交于A(-12m ,m -2),B(1,n)两点.(1)求k 与b 的值;(2)如图,直线AB 交x 轴于点C ,交y 轴于点D ,若点E 为CD 的中点,求△BOE 的面积.【思路点拨】 (2)S △BOE =S △ODE +S △BOD .【自主解答】 解:(1)∵点A(-12m ,m -2)在直线y =-2x +b 上,∴-2×(-12m)+b =m -2.∴b=-2.∴y=-2x -2.∵点B(1,n)在直线y =-2x -2上, ∴n=-2×1-2=-4.∴B(1,-4). ∵点B(1,-4)在双曲线y =kx 上,∴k=1×(-4)=-4.(2)∵直线AB 的解析式为y =-2x -2, 令x =0,得y =-2;令y =0,得x =-1, ∴C(-1,0),D(0,-2).∵点E 为CD 的中点,∴E(-12,-1).∴S △BOE =S △ODE +S △ODB =12OD·(x B -x E )=12×2×(1+12)=32.方法指导一次函数与反比例函数的综合题,常涉及以下几个方面: 1.求交点坐标:联立方程组求解即可.2.确定函数解析式:将交点坐标代入y =kx可求k ,由两交点坐标利用待定系数法可求y =ax +b.3.利用函数图象确定不等式ax +b >k x 或ax +b <kx 的解集时,利用数形结合进行分析判断:(1)先找交点,以交点为界;(2)观察交点左、右两边区域的两个函数图象的上、下位置关系;(3)根据图象在上方,函数值较大,图象在下方,函数值较小,即可求出自变量的取值范围.4.涉及与面积有关的问题时,要善于把点的横、纵坐标转化为图形边长的长度,对于所求图形的边均不在x 轴、y 轴或不与坐标轴平行的时候,不便直接求解,可分割为规则图形进行相关转化.9.已知一次函数y 1=kx +b(k≠0)与反比例函数y 2=mx (m≠0,x>0)的图象如图所示,则当y 1>y 2时,自变量x 满足的条件是(A)A.1<x <3B.1≤x≤3C.x >1D.x <310.如图,一次函数y 1=ax +b 和反比例函数y 2=kx的图象相交于A ,B 两点,则使y 1>y 2成立的x 的取值范围是(B)A.-2<x <0或0<x <4B.x <-2或0<x <4C.x <-2或x >4D.-2<x <0或x >4 11.一次函数y =kx +b 的图象经过点A(1,4),B(-4,-6). (1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y =mx的图象相交于C(x 1,y 1),D(x 2,y 2)两点,且3x 1=-2x 2,求m 的值.解:(1)由题意,得⎩⎪⎨⎪⎧k +b =4,-4k +b =-6.解得⎩⎪⎨⎪⎧k =2,b =2.∴一次函数的解析式为y =2x +2.(2)联立⎩⎪⎨⎪⎧y =2x +2,y =m x,消去y ,得2x 2+2x -m =0,则x 1+x 2=-1.∵3x 1=-2x 2,解得⎩⎪⎨⎪⎧x 1=2,x 2=-3.∴C(2,6).∵反比例函数y =mx的图象经过点C ,∴m=2×6=12.12.如图,一次函数y =-12x +52的图象与反比例函数y =kx (k >0)的图象交于A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 的面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P ,使PA +PB 的值最小,并求出其最小值和P 点坐标.解:(1)∵反比例函数y =kx (k >0)的图象经过点A ,△AOM 的面积为1,∴12|k|=1. 又∵k>0,∴k=2.∴反比例函数的解析式为y =2x.(2)作点A 关于y 轴的对称点A′,连接A′B,交y 轴于点P ,则PA +PB 最小. 联立⎩⎪⎨⎪⎧y =-12x +52,y =2x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =12.∴A(1,2),B(4,12).∴A′(-1,2),PA +PB 的最小值A′B=(4+1)2+(12-2)2=1092.设直线A′B 的解析式为y =mx +n , 则⎩⎪⎨⎪⎧-m +n =2,4m +n =12,解得⎩⎪⎨⎪⎧m =-310,n =1710.∴直线A′B 的解析式为y =-310x +1710.当x =0时,y =1710,∴点P 的坐标为(0,1710).13.如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A(-2,0),与反比例函数y =kx (x >0)的图象交于点B(a ,4).(1)求一次函数和反比例函数的解析式;(2)设M 是直线AB 上一点,过点M 作MN∥x 轴,交反比例函数y =kx (x >0)的图象于点N ,若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.解:(1)∵一次函数y =x +b 的图象经过点A(-2,0), ∴0=-2+b ,解得b =2. ∴一次函数的解析式为y =x +2.∵一次函数y =x +2与反比例函数y =kx (x >0)的图象交于点B(a ,4),∴4=a +2,解得a =2.∴4=k2,解得k =8.∴反比例函数的解析式为y =8x(x >0).(2)∵A(-2,0),∴OA=2.∵以A ,O ,M ,N 为顶点的四边形是平行四边形,且MN∥AO, ∴MN=AO.设M(m -2,m),则N(8m ,m),∴|8m-(m -2)|=2, 解得m 1=22,m 2=-22(舍去),m 3=2+23,m 4=2-23(舍去). ∴点M 的坐标为(22-2,22)或(23,23+2).命题点3 反比例函数与几何图形综合14.如图,曲线C 2是双曲线C 1:y =6x (x >0)绕原点O 逆时针旋转45°得到的图形,P 是曲线C 2上任意一点,点A 在直线l :y =x 上,且PA =PO ,则△POA 的面积等于(B)A. 6B.6C.3D.1215.如图,反比例函数y =kx (x >0)经过A ,B 两点,过点A 作AC⊥y 轴于点C ,过点B 作BD⊥y 轴于点D ,过点B 作BE⊥x 轴于点E ,连接AD ,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =32.16.如图,反比例函数y =kx (x >0)的图象经过矩形OABC 对角线的交点M ,分别交AB ,BC 于点D ,E.若四边形ODBE的面积为12,则k 的值为4.17.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC⊥x 轴于点E ,BD⊥x轴于点F ,AC =2,BD =4,EF =3,则k 2-k 1=4.命题点4 反比例函数的实际应用18.已知圆锥的侧面积是8π cm 2,若圆锥底面半径为R(cm),母线长为l(cm),则R 关于l 的函数图象大致是(A)19.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB ,BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段. 请根据图中信息解答下列问题:(1)求这天的温度y 与时间x(0≤x≤24)的函数关系式; (2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10 ℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB 的函数关系式为y =k 1x +b(k 1≠0). ∵线段AB 过点(0,10),(2,14),∴⎩⎪⎨⎪⎧b =10,2k 1+b =14.解得⎩⎪⎨⎪⎧k 1=2,b =10. ∴线段AB 的函数关系式为y =2x +10(0≤x<5). ∵点B 在线段AB 上,且当x =5时,y =20, ∴点B 的坐标为(5,20).∴线段BC 的函数关系式为y =20(5≤x<10). 设双曲线CD 的函数关系式为y =k 2x(k 2≠0).∵C(10,20),∴k 2=200.∴双曲线CD 的函数关系式为y =200x (10≤x≤24).∴这天的温度y 与时间x(0≤x≤24)的函数关系式为 y =⎩⎪⎨⎪⎧2x +10(0≤x<5),20(5≤x<10),200x (10≤x≤24).(2)由(1)知,恒温系统设定的恒定温度为20 °C. (3)把y =10代入y =200x 中,得x =20.20-10=10(小时).答:恒温系统最多关闭10小时,才能使蔬菜避免受到伤害.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数解析式的几种常用求法确定反比例函数解析式是反比例函数部分考查的一个重要知识点,也是进一步求解反比例函数问题的需要,那么怎样确定反比例函数的解析式呢?下面介绍几种常用的求解方法.一、 定义型:例1、已知函数102)3(--=mx m y 是反比函数,求其解析式?分析:由反比例函数可知⎩⎨⎧-=-≠-110032m m∴⎩⎨⎧±=≠33m m ∴3-=m 即可写出函数解析式 利用定义求反比例xky =解析式时,要保证k ≠0。

如例1中应保证03≠-m 的条件。

二、 过点型:例2、(浙江金华)已知图象经过点(1,1),的反比例函数解析式是 。

分析:函数图象过某一点,则该点坐标满足函数解析式。

即可设函数解析式为xk y =然后将该点坐标代入解析式求出K 值即可(变式问法:已知反比例函数xky =,当x=1时,y =1,求这个函数的解析式。

) 三、 图象型:例3、已知某个反比例函数的图像如图所示,则该函数的解析式为__________。

分析:如图将点P (1,2)代入反比例函数解析式xky =中求出K 的值的即可。

四、面积型:12 P例4、(山东枣庄)反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则反比例函数解析式?分析:由反比例函数)0(≠=k xky 的图象上任一点P 与过这点作X 轴(或Y 轴)的垂线的垂足与坐标原点三点间的三角形的面积“S=K 21”可知∴K 21=2 故可求出K 值,即写出解析式。

例5、如图所示,设A 为反比例函数xky =图象上一点,且矩形ABOC 的面积为3,则这个反比例函数解析式为分析:由上面知识可知S 矩形ABOC =K∴ K =3 即 K=±3又∵ 反比例函数图象在第二象限 ∴K=-3 即可写出解析式。

五、应用型:例6、某空调厂的装配车间原计划用2个月时间(每月以30天计算),组装1500台空调.(1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?分析:这一道工程问题,即“工作总量=工作时间×工作效率”要时确 ∴ 1500=mt 即 tm 1500=(0<t ≤60) 之后的问题就可以用第一小问来解决了。

(注意:求实际应用型问题的函数关系式要写出自变量的取值范围)两例7、(福建福州)如图,已知直线x y 21=与双曲线)0(>=k xky 交于点,且点的横坐标为. (1)求k 的值; (2)若双曲线)0(>=k xky 上一点的纵坐标为8,求△AOC 的面积;分析:这是反比例函数与正比例函数的综合应用,只要明确交点A 的坐标既满足正比例函数也满足反比例函数,即可以把A 点的横坐标4代入x y 21=中求出点A 点坐标。

然后代入)0(>=k x ky 中求出K 值即可。

六、开放型:例8、写出一个反比例函数,使得这个反比例函数的图像在第一、三象限,且写出这个函数上一个点的坐标?分析:这是一开放性问题,答案不唯一。

只要满足“反比例函数的图像在第一、三象限”这个条件就可以,即是满足x ky =中K>0这个条件就行;点的坐标也是不唯一。

(变式问法:写出一个反比例函数,使得这个反比例函数满足当x>0时y 随x 的增大而减小?)一、利用反比例函数图象上的点的坐标来确定例1 已知反比例函数的图象经过点(-3,1),则此函数的解析式为________.析解:设此反比例函数的解析式为ky x=(k 为常数,k ≠0).因为点(-3,1)在反比例函数的图象上,所以直接将这个点的坐标代入反比例函数的解析式ky x=,得k =-3,由此可得这个反比例函数的解析式为3y x=-.二、借助定义来确定例2. 已知函数43m y mx +=是反比例函数,试求出m 的值,并写出函数关系式.解析:此类问题,一般采用反比例函数的另一种表达方式)0(1≠=-k kx y 来列式求解.由题意得:m+4=-1,解得m =-5.将m 值代入得函数关系式15y x=-. 三、利用反比例函数的性质确定例3 写出一个图象位于第一、三象限内的反比例函数解析式________.析解:这是一道关于求反比例函数解析式的开放型试题,因该函数的图象经过第一、三象限,由反比例函数的性质可知其解析式中的k >0,因此,k 的取值可以为所有正数.如,可随意取k =4,由此可得对应的函数解析式为4y x=. 四、根据图形的面积确定例4 如图1,过反比例函数图象上一点A 分别向两坐标轴作垂线,则垂线与坐标轴围成的矩形ABOC 的面积是8,则该反比例函数的解析式为________. 析解:设点A 的坐标为(x ,y ),又根据矩形ABOC 的面积和点A (x ,y )的关系可得: S矩形ABOC =|xy |=|k |=8,解得k =±8,又因该函数的图象在第一、三象限,故根据反比例函数的性质可得k =8,由此得这个反比例函数的解析式为8y x=. 五、根据反比例函数和一次函数图象的交点坐标确定 例5 直线y =k 1x +b 与双曲线2k y x=只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的解析式. 析解:因点A (1,2)在2k y x=上,将点A (1,2)代入该式可得k 2=2,则所求双曲线的解析式为2y x=,又由AD 垂直平分OB 可得OD =1,OB =2,则B 点坐标为(2,0),又因点A 、B 都在直线y =k 1x +b 上,故将其坐标代入直线y =k 1x +b 得11220.k b k b +=⎧⎨+=⎩,.解得124.k b =-⎧⎨=⎩, 故所求过A 、B 两点的直线的解析式为y =-2x +4.反比例函数单元测试题一. 选择题1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( )A. m=4或m=-2B. m=4C. m=-2D. m=-12. 下列函数中,是反比例函数的是( ) A. y x =-2B. y x =-12C. y x =-11D. y x =123. 函数y kx =-与y k x=(k ≠0)的图象的交点个数是( )A. 0B. 1C. 2D. 不确定4. 函数y kx b =+与y k xkb =≠()0的图象可能是( )A B C D5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( ) A. 正比例函数 B. 反比例函数 C. 二次函数D. z 随x 增大而增大6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( ) A. y x =-19B. 105=-x y :C. y x=412D. 152xy =-二. 填空题7. 一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支在__________象限内。

8. 已知反比例函数y x=2,当y =6时,x =_________。

9. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。

10. 反比例函数的图象过点(-3,5),则它的解析式为_________11. 若函数y x =4与y x=1的图象有一个交点是(12,2),则另一个交点坐标是_________。

三. 解答题12. 直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k x=相交于B 、C 两点,已知B点坐标为(-12,4),求直线和双曲线的解析式。

13.已知y=y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,并且当x=-1时,y=-1,•当x=2时,y=5,求y 关于x 的函数关系式.14. 已知函数y m m x m m =+-+-()21222是一次函数,它的图象与反比例函数y k x=的图象交于一点,交点的横坐标是13,求反比例函数的解析式。

15、已知直线x y 21=与双曲线x ky =交于A 点,且点A 的横坐标为4.(1)求k 的值. (2)若双曲线xky =上一点C 的纵坐标为8,求△AOC 的面积.答案: 一. 1. B2. B3. A4. A5. A6. C二. 7. y k x=,k ≠0;双曲线;二、四8. 13 9. -1 10. y x =-15 11. (-12,-2)三. 12. 由题意知点A (32,0),点B (-12,4)在直线y kx b =+上,由此得032412=+=-+⎧⎨⎪⎪⎩⎪⎪k b k b∴=-=⎧⎨⎩k b 23 点B (-12,4)在双曲线y k x =上∴=-412k,k =-2∴双曲线解析式为y x=-214.y=3x-2x14. 由已知条件m m m m 222010+≠+-=⎧⎨⎪⎩⎪ ∴≠≠-=-=⎧⎨⎩m m m m 0221,或 ∴=m 1使y x =-32 代入y k x=∴--=3202x x k因图象交于一点,∴=∆0 即4120+=k∴=-k 1 315、(1)8(2)15。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档