电弧炉炼钢讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1电弧炉炼钢概述
1.1电弧炉炼钢的发展概况:大致可分为三个阶段
(1)研究阶段(从1800年至1900年)
1800年,英国人戴维(Humphrey Davy)发明了碳电极;1849年,法国人德布莱兹(Deprez)研究用电极熔化金属;1866年,德国人冯·西门子(Werner Von Siemens)发明了电能发生器;1879年,德国人威廉姆斯·西门子(C Williams Siemens)采用水冷金属电极进行了实验室规模的炼钢试验,但电耗太高,无法投入大生产;1885年,瑞典ASEA(即瑞典通用电气)公司设计了一台直流电弧炉;1888年,法国人海劳尔特(Paul Heroult)用间接电阻加热炉进行熔炼金属实验;1889~1891年,同步发电机和变压器推广应用;1899年,海劳尔特研制成功交流电弧炉;1900年,海劳尔特开始用交流电弧炉冶炼铁合金;
(2)初级阶段(从1900年至1960年)
1905年,德国人林登堡(R.Lindenberg)建成第一台炼钢用二相交流电弧炉(海劳尔特式),该炉特点是采用方形电极,电极手动升降,炉盖固定不可移动,加料从炉门口人工加入;1906年,林登堡成功地炼出了第一炉钢水,浇注成钢锭,从此开创了电弧炉炼钢的新纪元;1909~1910年,德国和美国分别制成了6t和5t的三相交流电弧炉投产;1920年,采用了电极自动升降调节器,提高了电极升降速度;1926年,德国德马克公司将炉盖改为移出式,首次实现了顶装料;1930年,出现了炉体开出式电弧炉;1936年,德国人制造了18t炉盖旋转式电弧炉;1939年,瑞典人特勒福斯提出了电弧炉电磁搅拌的思想;1960年,为使三相电抗平衡,美国出现了短网等边三角形布置;此阶段由于电力、电极、用氧水平、炉容量等的限制,故炼钢成本大大高于平炉,因而只适合于冶炼合金钢、特殊钢。随着第二次世界大战的爆发,电炉钢的产量迅速增长。
(3)大发展阶段(从1960年至今)
由于钢铁工业内部结构在50年代中期发生了重大变化,及LD转炉取代了OH平炉的炼钢龙头地位,但是LD炉不能象平炉那样100%地采用废钢为原料,故伴随着平炉的逐步退出炼钢舞台,废钢过剩的问题就日益突出,因此就要求EAF电炉在冶炼合金钢的同时,还要担负起一部分冶炼普通钢种的任务。这样就对EAF提出了如何大幅度提高生产率和降低生产成本的发展方向。1964年,美国碳化物公司的施瓦伯(W.E.Schwabe)和西北钢线材公司的罗宾逊(C.G.Robinson)共同提出了电弧炉超高功率的概念,并在两台135t的电弧炉上采用不同功率水平进行试验;不久就在世界各国推广UHP操作,使冶炼时间大大缩短,从3~4小时减少到2小时(功率水平500kVA/t)。从七十年代开始,为了最大限度地利用变压器的工作效率,围绕着如何进一步提高功率利用率和时间利用率,各国相继发展了一系列的相关技术,例如:炉壁、炉盖水冷化、长弧泡沫渣操作、氧燃烧嘴、偏心炉底出钢、废钢预热、炉底吹气、双炉壳电弧炉等等。因此,变压器的功率水平达到800~1100kVA/t,冶炼时间进一步降低至1小时以下,电耗降至400kWh/t以下。并逐步在特殊钢厂推广运行“废钢预热—电弧炉—炉外精炼—连铸—热送轧制或连轧”的工艺模式,把电弧炉演变成了单纯的废钢快速熔化设备。为了根本上克服交流超高功率电弧炉的电弧不稳定、三相功率不平衡带来的炉壁热点问题,对前级电网造成的剧烈冲击(闪烁问题),70年代开始了直流电弧炉的研究,并于80年代中期投入工业生产,从此电弧炉又在交流和直流两方面同时发展。
综上所述,在电弧炉炼钢诞生起至今的约100多年的时间里,从开始时的小型电弧炉专门冶炼合金钢种,到后来变化为大型电弧炉兼炼合金钢和普碳钢,直至近来的超高功率大型(交、直流)电弧炉仅仅作为废钢熔化设备。
1.2 电弧炉炼钢的特点
优点:靠电弧加热,热效率高,能调节炉内气氛,与平炉、转炉相比,基建投资少,占地面积小
缺点:电弧是点热源,电力、电极、耐材消耗高,生产率较低,成本比转炉高
1.3 传统碱性电弧炉炼钢方法及工艺流程介绍
1.3.1 常用冶炼方法:一般可分为氧化法、不氧化法和返回吹氧法三种。
氧化法:在炉料熔清后,通过向钢液中加矿或吹氧进行脱P、脱C操作,并造成熔池沸腾,去除钢中[H]、[N]气体及非金属夹杂物,再经过还原期脱O、脱S、调整钢液化学成分及温度后出钢。此法的特点在于可使钢中[P]、[S]、[H]、[N]、[O]等都可降低至规格范围内,达到纯洁钢液的目的,因此大多数钢种均采用此法冶炼。而此法不足之处在于钢中若含有大量合金元素时,则会造成其氧化损失,并对操作带来不良影响,故一般配料时多用碳素废钢,这又造成后期合金化的困难。
不氧化法:冶炼过程中没有氧化期,能充分回收原料中的合金元素。炉料熔清后,经还原调整成分及温度后即可出钢。优点是可在炉料中配入大量合金钢切头、切尾、废钢锭、注余、汤道、切屑等,减少铁合金的消耗量,降低钢的成本。缺点是冶炼过程中不能去P、去气去夹杂,因此要求配入清洁无锈、无油污的低P且C含量合适的钢铁料,并在冶炼中防止钢液吸气过多。
返回吹氧法:在炉料中配入大量的合金钢返回料,根据C和O的亲和力在一定温度下大于某些合金元素与O的亲和力的理论,当钢液温度升高至一定温度后,向钢液中吹氧,达到在脱C以便去气去夹杂的同时,又能够避免钢中合金元素氧化损失的目的。这样做,既降低了成本,又提高了质量。
1.3.2 碱性电弧炉氧化法冶炼工艺流程介绍
上炉出钢→补炉(fettling)→装料(charging)→熔化期(melting)→氧化期(oxidizing)→还原期(reducing)→出钢(tapping)
补炉:上炉出钢毕,迅速将炉体损坏部位进行修补,以保证下一炉钢的冶炼。新炉子在炉役期的前几炉可不补炉。装料:将配好的炉料(burden)按一定规律装入料罐(bucket)中,然后将料罐吊至炉前,打开炉盖,将炉料一次卸入炉内。一炉钢可视情况一次装料或多次装料。熔化期:从通电至炉料完全熔清称为熔化期。其主要任务是迅速熔化全部炉料,并及早形成一定的炉渣,起到稳定电弧、防止金属挥发与吸气,提早脱P等作用。氧化期:待炉料全部熔清后,取样分析,进入氧化期。其主要任务是最大限度地脱P (dephosphorization)、去除钢中气体([H]、[N])和非金属夹杂物(non-metallic inclusions),并升温至稍高于出钢温度。还原期:氧化期任务完成后,停电扒除氧化渣,重新造新渣,进入还原期。其主要任务是脱O(deoxidization)、脱S(desulphurization),调整钢液的成分和温度。出钢:当钢液成分和温度均符合出钢要求,则打开出钢口,摇炉出钢。出钢时要做到钢渣混冲,利用钢渣在钢包(ladle)中激烈运动,最大限度地脱S,并防止二次氧化、二次吸气。
2、电弧炉的电气设备
2.1 电弧的概念与交流电弧的特性
2.1.1 电弧:电弧是电流通过两极间气体时使之电离的一种放电现象。
阴极放电:热电子发射,强电场发射。电子自阴极发射后,以极高速度向阳极冲击,在运动中与极间气体碰撞,使其电离成正、负离子,形成电弧。电弧中的电子数目或者电弧电流大小与两极间电功率、阴极材质、气体种类等都有关系。
2.1.2 交流电弧的特性