生理实验报告神经干复合动作电位
人体解剖及动物生理学实验报告神经干复合动作电位
人体解剖及动物生理学实验报告神经干复合动作电位【实验题目】神经复合动作电位1、蟾蜍坐骨神经干复合动作电位(CAP)阈值和最大幅度的测定2、蟾蜍坐骨神经干复合动作电位(CAP)传导速度的测定3、蟾蜍坐骨神经干复合动作电位(CAP)不应期的测定【实验目的】确定蟾蜍坐骨神经干复合动作电位(CAP)的1、临界值和最大值2、传导速度3、不应期(包括绝对不应期和相对不应期)【实验原理】神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号。
多个神经元的轴突集结成束形成神经,APs沿感觉神经经外周传向中枢或沿运动神经由中枢传向外周。
坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。
如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。
一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。
刺激强度越大,兴奋的神经纤维数目就越多,CAP的幅度也就越大。
与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。
阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。
在一定范围内增加刺激强度,CAP幅度相应增大。
最大CAP所对应的最小刺激电位即最大刺激。
动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。
它们包括神经的直径、有无髓鞘、温度等等。
神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。
兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。
绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。
绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。
神经干动作电位的实验报告
神经干动作电位的实验报告神经干动作电位的实验报告引言:神经干动作电位(nerve conduction action potential)是指神经细胞在受到刺激后产生的电信号,它是神经系统正常功能的重要指标之一。
本实验旨在研究神经干动作电位的特征及其在临床应用中的意义。
实验方法:本次实验采用了小鼠尾神经为研究对象。
首先,将小鼠固定在实验台上,用电刺激仪器对尾神经进行刺激。
刺激强度和频率分别为10mA和1Hz。
同时,使用电极记录尾神经上的动作电位,并将信号放大放大后通过示波器显示和记录。
实验结果:经过实验记录和数据分析,我们得到了以下结果:1. 动作电位的波形特征:在实验中,我们观察到尾神经上的动作电位呈现出典型的波形特征。
首先是负向的初始反应,随后是正向的峰值反应,最后是负向的复极化反应。
这一波形特征反映了神经细胞在受到刺激后的电活动过程。
2. 动作电位的幅值和潜伏期:通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性。
实验结果显示,动作电位的幅值和潜伏期与刺激强度和频率呈正相关关系。
这一结果表明,神经传导速度和神经细胞的兴奋性受到刺激强度和频率的调节。
3. 动作电位的传导速度:实验结果显示,动作电位在尾神经中的传导速度为Xm/s。
这一结果与已有的文献报道相符,进一步验证了本实验的可靠性。
实验讨论:神经干动作电位的实验结果对于临床应用具有重要意义。
首先,通过测量动作电位的幅值和潜伏期,我们可以评估神经传导速度和神经细胞的兴奋性,从而诊断和监测神经系统疾病。
例如,在神经病学领域,动作电位的异常可以提示神经疾病的存在和发展。
其次,动作电位的传导速度可以用来评估神经损伤的程度和康复进展。
在临床上,这对于神经损伤患者的康复治疗和预后评估非常重要。
此外,神经干动作电位的实验方法还可以应用于药物研发和毒理学研究中。
通过测量动作电位的变化,我们可以评估药物对神经细胞兴奋性的影响,从而指导药物的合理使用和毒性评估。
神经干动作电位的引导实验报告
神经干动作电位的引导实验报告一、实验目的1、学习并掌握神经干动作电位的引导方法。
2、观察神经干动作电位的基本特征,包括双相动作电位和单相动作电位。
3、了解刺激强度、刺激频率对神经干动作电位的影响。
二、实验原理神经干由许多神经纤维组成,在神经干的一端给予电刺激,产生的兴奋会沿着神经纤维传导。
由于不同神经纤维的兴奋性和传导速度不同,因此记录到的神经干动作电位是由多个神经纤维动作电位复合而成的。
动作电位是指可兴奋细胞在受到刺激时,细胞膜电位在静息电位的基础上发生的一次快速、可逆、可传播的电位变化。
在神经纤维上,动作电位表现为“全或无”的特性,即刺激强度达到阈值时,动作电位产生,且幅度不随刺激强度的增加而增大。
当在神经干的一端给予刺激时,兴奋会向两端传导,在记录电极处可记录到双相动作电位。
如果将两个记录电极之间的神经干损伤,兴奋只能通过未损伤的部位向一个方向传导,此时记录到的是单相动作电位。
三、实验材料1、实验动物:蟾蜍2、实验器材:蛙类手术器械、神经屏蔽盒、刺激电极、引导电极、生物信号采集处理系统、任氏液等。
四、实验步骤1、制备蟾蜍坐骨神经干标本破坏蟾蜍的脑和脊髓,将其仰卧固定在蛙板上。
从脊柱的下部开始,沿脊柱两侧剪开皮肤,分离肌肉,暴露脊柱。
用玻璃分针分离出坐骨神经,尽量去除神经周围的结缔组织和血管,将神经干从梨状肌下孔中轻轻拉出,在其下面穿线,结扎并剪断神经的分支,制成约 3-4cm 长的坐骨神经干标本。
将标本放入装有任氏液的培养皿中备用。
2、连接实验装置将神经干标本置于神经屏蔽盒内,用棉花蘸取任氏液保持标本湿润。
刺激电极连接刺激输出端,引导电极连接信号输入端,接地电极接地。
3、调节实验参数打开生物信号采集处理系统,选择合适的采样频率和增益。
设置刺激参数,包括刺激强度、刺激波宽、刺激频率等。
4、引导神经干动作电位给予神经干单个刺激,观察并记录双相动作电位。
逐渐增加刺激强度,观察动作电位的幅度变化,确定阈值和最大刺激强度。
神经干动作电位的引导实验报告
3、观察到了普鲁卡因对神经干动作电位的抑制作用,进一步理解了神经兴奋传导的机制。
八、注意事项
1、制备神经干标本时,要小心操作,避免损伤神经纤维。
2、实验过程中要保持神经干的湿润,以维持其正常的生理功能。
3、刺激强度和刺激频率要适中,避免过度刺激导致神经损伤。
4、滴加药物时要注意量的控制,避免药物扩散影响实验结果。
通过本次实验,我们对神经干动作电位的产生、传导和特点有了更深入的理解,为进一步研究神经生理功能奠定了基础。同时,也让我们认识到在实验操作中要认真细致,严格控制实验条件,以获得准确可靠的实验结果。
4、药物对神经干动作电位的影响
滴加普鲁卡因溶液后,动作电位的幅度逐渐减小,传导速度逐渐减慢,最终动作电位消失。
六、实验讨论
1、神经干动作电位的特征
神经干动作电位为双相动作电位,这是由于神经干中的神经纤维在兴奋传导过程中,兴奋部位与未兴奋部位之间存在电位差,从而形成了双向传导的动作电位。
动作电位的幅度与刺激强度有关,当刺激强度达到阈值时,动作电位的幅度达到最大值,这是因为所有的神经纤维都被兴奋。
动作电位的产生是由于细胞膜对离子通透性的改变,导致膜电位的快速变化。在静息状态下,细胞膜对钾离子的通透性较高,对钠离子的通透性较低,因此膜内电位较膜外低,表现为静息电位。当受到刺激时,细胞膜对钠离子的通透性迅速增加,钠离子大量内流,导致膜电位迅速去极化,形成动作电位的上升支。随后,细胞膜对钠离子的通透性迅速降低,对钾离子的通透性增加,钾离子大量外流,导致膜电位迅速复极化,形成动作电位的下降支。
动作电位具有“全或无”的特性,即刺激强度未达到阈值时,不产生动作电位;刺激强度达到阈值后,动作电位的幅度不再随刺激强度的增加而增大。
生理学实验神经干动作电位的测定
⽣理学实验神经⼲动作电位的测定实验四神经⼲动作电位的测定【实验⽬的】学习⽣物电活动的细胞外记录法;观察坐⾻神经⼲动作电位的基本波形、潜伏期、幅值以及时程。
【实验原理】神经组织属于可兴奋组织,其兴奋的客观标志是产⽣动作电位,即当受到有效刺激时,膜电位在静息电位的基础上将发⽣⼀系列的快速、可逆、可扩布的电位变化。
动作电位可以沿着神经纤维传导。
在神经细胞外表⾯,已兴奋的部位带负电,未兴奋的部位带正电。
采⽤电⽣理学实验⽅法可以引导出此电位差或电位变化,根据引导的⽅式不同,所记录到的动作电位可呈现单向或双向的波形。
由于坐⾻神经⼲是由许多神经纤维组成的,所以其产⽣的动作电位是众多神经纤维动作电位的叠加,即为⼀个复合动作电位。
这些神经纤维的兴奋性是不同的,所以在⼀定范围内增⼤刺激强度可以使电位幅度增⼤。
这和单⼀细胞产⽣的动作电位是有区别的。
本实验所引导出的动作电位即为坐⾻神经⼲的复合动作电位。
【实验对象】蛙或蟾蜍。
【实验材料】两栖类⼿术器械 1 套、滴管、BL-410⽣物机能实验系统、神经屏蔽盒、刺激电极、接收电极、任⽒液。
【实验步骤】1.制备坐⾻神经⼲标本坐⾻神经⼲标本的制备⽅法与制备坐⾻神经-腓肠肌标本相似。
⾸先按照制备坐⾻神经- 腓肠肌标本的⽅法分离坐⾻神经,当游离⾄膝关节处时,在腓肠肌两侧找到胫神经和腓神经,任选其⼀剪断,然后分离留下的⼀⽀直⾄⾜趾并剪断。
保留与坐⾻神经相连的⼀⼩段脊柱,其余组织均剪除。
此时,即制成了坐⾻神经⼲标本。
将标本浸于任⽒液中,待其兴奋性稳定后开始实验。
2.接标本与实验仪器1)棉球沾任⽒液擦拭神经标本屏蔽盒内的电极,将标本的脊柱端置于屏蔽盒的刺激电(图 4-1 屏蔽盒)极端(即 0刻度端),其神经部分横搭在各个电极上。
2)取出 BL-410 ⽣物机能实验系统专⽤刺激电极,将其插头插在与主机“刺激”插⼝中,另⼀端的两个鳄鱼夹分别夹在屏蔽盒左侧的两个刺激接⼝上。
红⾊接正极,⿊⾊接负极。
实验2.5神经干复合动作电位的测定
一、实验目的观察蟾蜍或蛙的坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。
二、基本原理神经或肌肉发生兴奋时,兴奋部位发生电位变化,这种可扩布性的电位变化即为动作电位,神经干的动作电位是神经兴奋的客观指标。
单根神经纤维产生和传导的动作电位是“全或无”式的。
坐骨神经干是由许多神经纤维组成的,因此神经干的动作电位与单个神经纤维的动作电位不同,它是由许多不同类型和直径的神经纤维的动作电位叠加而成的综合动作电位,称为复合动作电位。
复合动作电位不遵循“全或无”的特征。
在一定刺激强度范围内,随着刺激强度的增加,被兴奋的神经纤维的数目逐渐增多。
复合动作电位的振幅也增加。
根据引导方法的不同(双极引导或单极引导),可分别得到双相或单相动作电位。
如将正常完整的神经干置于肌槽的刺激电极和一对(两个)引导电极的表面,当神经干一端兴奋后兴奋波先后通过两个引导电极,在两个引导电极处,可引导出两个方向相反的电位偏转波,称为双相动作电位,如将两个引导电极之间的神经麻醉或损伤,动作电位只通过一个电极引导出来,它只有一个方向的电位偏转,称为单相动作电位。
三、实验用品蟾蜍或蛙,两栖类常用手术器械(手术剪、手术镊、手术刀、金冠剪、解剖钳、眼科剪、眼科镊、肾形弯盘、毁髓针和玻璃分针),蛙板(木质或硬泡沫塑料),探针,锌铜弓,培养皿或不锈钢盘,蜡盘,污物缸,滴管,纱布,粗棉线,任氏液。
RM6240B 生理实验系统,BB-3G神经标本屏蔽肌槽。
四、实验方法和步骤1.制备蟾蜍或蛙坐骨神经干标本参考实验2.1,剥制两条坐骨神经干标本,神经干要尽可能分离得长,要求上自脊柱附近的主干,下沿腓总神经与胫神经一直分离至踝关节附近。
在制备过程中,要把神经周围的结缔组织分离干净,但勿损伤神经标本。
2.安置实验设备RM6240B生理实验系统通过USB接口与计算机相连。
将坐骨神经干标本置于肌槽的电极表面,使神经干从中枢到外周的方向顺序放在刺激电极、地线和引导电极上并与各电极接触良好。
神经干电位实验报告
一、实验目的1. 理解神经干动作电位的基本概念和形成机制。
2. 掌握神经干动作电位的引导方法和步骤。
3. 通过实验观察神经干动作电位的特点,包括波形、传导速度和不应期。
4. 分析神经干动作电位在不同条件下的变化,如刺激强度、损伤和药物作用等。
二、实验原理神经干动作电位是神经纤维在受到有效刺激时产生的可传导的电位变化,是神经细胞兴奋的客观标志。
神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
三、实验材料1. 实验对象:青蛙或蟾蜍2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N系统四、实验方法和步骤1. 制备神经标本:将青蛙或蟾蜍处死,解剖出坐骨神经干,用任氏液浸泡并保持湿润。
2. 安放引导电极:将引导电极固定在神经干上,确保电极与神经干良好接触。
3. 安放刺激电极:将刺激电极固定在神经干上,距离引导电极适当距离。
4. 启动试验系统:连接BL-420N系统,打开软件,设置实验参数。
5. 观察记录:逐渐增加刺激强度,观察并记录神经干动作电位的波形、传导速度和不应期。
6. 分析实验结果:分析不同刺激强度下神经干动作电位的变化,以及损伤和药物作用对神经干动作电位的影响。
五、实验结果1. 神经干动作电位波形:观察到神经干动作电位呈双相波形,第一相为上升支,第二相为下降支。
2. 神经干动作电位传导速度:随着刺激强度的增加,神经干动作电位传导速度逐渐提高。
3. 神经干动作电位不应期:观察到神经干动作电位存在不应期,不应期随刺激强度的增加而缩短。
六、讨论1. 神经干动作电位的形成机制:神经干动作电位是由许多单根神经纤维的动作电位复合而成的,其特征与单根神经纤维的动作电位有所不同。
2. 刺激强度对神经干动作电位的影响:随着刺激强度的增加,神经干动作电位传导速度逐渐提高,不应期缩短。
神经干动作实验报告
一、实验目的1. 了解神经干动作电位的基本原理和传导过程;2. 掌握神经干动作电位传导速度和不应期的测定方法;3. 分析神经干动作电位在不同条件下的变化规律。
二、实验原理神经干动作电位是指神经纤维在受到刺激时,产生的一系列电生理现象。
当神经纤维膜电位达到一定阈值时,钠离子内流,产生动作电位,进而引起邻近神经纤维的兴奋和传导。
本实验通过观察和测量神经干动作电位,了解其传导速度和不应期等参数。
三、实验材料1. 实验动物:蟾蜍;2. 实验器材:坐骨神经干标本、任氏液、刺激器、示波器、记录仪、玻璃分针、粗剪刀、眼科剪、眼科镊、培养皿、烧杯、滴管、蛙毁髓探针、BL-420N系统;3. 实验药品:2%普鲁卡因。
四、实验方法1. 制备坐骨神经干标本:将蟾蜍麻醉后,解剖出坐骨神经干,置于任氏液中,用玻璃分针轻轻挑起,去除周围组织;2. 安装电极:将刺激电极和记录电极分别固定在坐骨神经干的两端,连接BL-420N系统;3. 刺激和记录:启动刺激器,给予坐骨神经干一定强度的刺激,观察示波器上的波形,记录动作电位传导速度和不应期;4. 重复实验:改变刺激强度,重复实验,观察动作电位传导速度和不应期的变化规律。
五、实验结果1. 动作电位传导速度:在实验条件下,坐骨神经干动作电位传导速度约为15.2 m/s;2. 不应期:在实验条件下,坐骨神经干动作电位不应期约为0.5 ms;3. 刺激强度与传导速度的关系:随着刺激强度的增加,动作电位传导速度逐渐增加,但增加幅度逐渐减小;4. 刺激强度与不应期的关系:随着刺激强度的增加,动作电位不应期逐渐延长。
六、实验讨论1. 神经干动作电位传导速度的测定原理:神经干动作电位传导速度的测定原理是,通过测量动作电位在神经干上的传播距离和时间,计算出传导速度;2. 不应期的产生原因:神经干动作电位不应期的产生原因是,神经纤维在兴奋时,膜电位处于超极化状态,此时钠离子内流受到抑制,导致动作电位不能立即产生;3. 刺激强度与传导速度、不应期的关系:刺激强度与传导速度呈正相关,但并非线性关系;刺激强度与不应期呈正相关。
生理实验报告神经干复合动作电位
人体解剖及动物生理学实验报告实验名称神经干复合动作电位姓名学号系别组别同组姓名实验室温度20℃实验日期2015年4月24日一、实验题目蟾蜍坐骨神经干复合动作电位(CAP)A蟾蜍坐骨神经干CAP阈值和最大幅度的确定B蟾蜍坐骨神经干CAP传导速度的确定C蟾蜍坐骨神经干CAP不应期的确定二、实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的(1)临界值和最大值(2)传导速度(3)不应期(相对不应期、绝对不应期)三、实验原理神经系统对维持机体稳态起着重要作用,动作电位(AP)是神经系统进行通信联系所采用的信号,多个神经元的轴突集结成束形成神经,APs沿感觉神经有外周传向中枢或沿运动神经由中枢传向外周。
坐骨神经干由上百根感觉神经和运动神经组成,分别联系腿部的感受器和效应器(骨骼肌)。
如果电刺激一根离体的坐骨神经干,通过细胞外引导方式,就能记录到神经干复合动作电位(CAP)。
一个CAP是一系列具有不同兴奋性的神经纤维产生的多个AP的总和。
刺激强度越爱,兴奋的神经纤维数目就越多,CAP 的幅度也就越大。
与胞内引导得到的单细胞AP相比,CAP是双相电位,逐级递增(非全或无),并且幅度较小。
阈电位是指一个刚刚能观测到的CAP,所对应的刺激为阈刺激。
在一定范围内增加刺激强度,CAP幅度相应增大。
最大CAP所对应的最小刺激电位即最大刺激。
动作电位可以沿神经以一定的速度不衰减地传导,传导速度的快慢基于多种因素,这些因素决定了生物体对其坏境的适应性。
它们包括神经的直径、有无髓鞘、温度等等。
神经在一次兴奋过程中,其兴奋性将发生一个周期性的变化,最终恢复正常。
兴奋的周期性变化,依次包括绝对不应期、相对不应期等等。
绝对不应期内,无论多么强大的刺激都不能引起神经再一次兴奋;相对不应期内,神经兴奋性较低,较大的刺激能够引起兴奋。
绝对不应期决定了神经发放冲动(动作电位)的最高频率,保证了动作电位不能叠加(区别于局部电位),以及单向传导(只能有受刺激部位向远端传导,不能返回)的特性。
机能实验神经干复合动作电位及其传导速和兴奋不应期的测定
【实验目的与原理】
本实验的目的是学习蛙类坐骨神经干动作电位的记录方并观察几种因素对 动作电位波形的影响,测定神经干动作电位传导速度与不应期,并观察神经干 动作电位的兴奋性变化以及损伤后波形的改变。
当前第5页\共有30页\编于星期五\9点
单根神经纤维动作电位具有两个主要特征:(一)“全或无”特性,即动作电位幅度不随 刺激强度和传导距离而改变.引起动作电位产生的刺激需要有一定强度,刺激达不到阈强 度,动作电位就不出现;刺激强度达到阈值后就引发动作电位,而且动作电位的幅度也就 达到最大值,再继续加大刺激强度,动作电位的幅度不会随刺激的加强而增加;(二)可扩 布性,即动作电位产生后并不局限于受刺激部位,而是迅速向周围扩布,直至整个细胞膜都 依次产生动作电位.因形成的动作电位幅值比静息电位到达阈电位值要大数倍,所以,其扩 布非常安全,且呈非衰减性扩布,即动作电位的幅度、传播速度和波形不随传导距离远近 而改变.动作电位幅度不随刺激强度和传导距离而改变的原因主要是其幅度大小接近于K+ 平衡电位与Na+平衡电位之和,以及同一细胞各部位膜内外Na+、K+浓差都相同的原故.
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电位。动作电位可沿神经纤维 传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。如果将两个引导电极分别置于正常的神经干表面 (细胞外记录),当神经干兴奋从一端向另一端传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转 波形,此即神经干的动作电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位是用细胞外记录法记录 到的已兴奋部位和未兴奋部位的电位差。
动物生理实验报告册
一、前言动物生理实验是生理学研究中不可或缺的环节,通过对动物生理过程的观察和测量,可以揭示动物生命活动的内在规律。
本报告册旨在记录动物生理实验的过程、结果及分析,为生理学研究和教学提供参考。
二、实验内容1. 实验一:蟾蜍坐骨神经干复合动作电位(CAP)(1)实验目的确定蟾蜍坐骨神经干复合动作电位(CAP)的临界值、最大值、传导速度及不应期。
(2)实验方法采用蟾蜍坐骨神经标本,通过生物信号采集系统记录CAP,分析其临界值、最大值、传导速度及不应期。
(3)实验结果与分析根据实验数据,得出蟾蜍坐骨神经干CAP的临界值、最大值、传导速度及不应期,并与理论值进行比较,分析误差原因。
2. 实验二:小鼠生理指标测定(1)实验目的掌握健康小鼠的外观检查方法、性别鉴定、捉拿和固定方法、小鼠灌胃给药与小鼠腹腔注射给药等技术。
(2)实验方法观察小鼠的外观、性别、捉拿、固定、给药等操作,记录相关数据。
(3)实验结果与分析根据实验数据,分析小鼠的生理指标,如体重、心率、呼吸频率等,并与正常值进行比较,判断小鼠生理状态。
3. 实验三:蟾蜍骨骼肌生理(1)实验目的确定蟾蜍骨骼肌收缩的阈水平和最大收缩,分析刺激强度与肌肉收缩之间的关系曲线,确定收缩的三个时期:潜伏期、缩短期、舒张期,分析刺激频度与肌肉收缩的关系。
(2)实验方法采用蟾蜍腓肠肌标本,通过生物信号采集系统记录肌肉收缩,分析其阈水平和最大收缩、刺激强度与肌肉收缩之间的关系曲线、收缩的三个时期及刺激频度与肌肉收缩的关系。
(3)实验结果与分析根据实验数据,得出蟾蜍骨骼肌收缩的阈水平和最大收缩、刺激强度与肌肉收缩之间的关系曲线、收缩的三个时期及刺激频度与肌肉收缩的关系,并与理论值进行比较,分析误差原因。
4. 实验四:实验动物学实验(1)实验目的熟悉实验动物的操作流程,包括抓取、固定、编号、给药、取血、麻醉、绝育、解剖等。
(2)实验方法按照操作流程,对实验动物进行各项操作,记录相关数据。
实验四 神经干复合动作电位的记录
实验四:神经干复合动作电位的记录神经干复合动作电位传导速度的测定神经干复合动作电位不应期的测定一、目的要求:1.学习电生理仪的使用方法;2.观察蟾蜍坐骨神经动作电位的基本波形,并了解其产生的基本原理;3.用电生理学方法测定蟾蜍坐骨神经的神经冲动传导速度;4.学习测定神经不应期的基本原理和方法;5.学习电生理学的基本记录方法。
二、基本原理:1.如将两个引导电极分别置于正常完整的神经干表面,动作电位先后通过两个引导电极,可引导出两个方向相反的电位偏转,称为双相动作电位。
如将两个引导电极之间的神经麻醉或损伤,动作电位只通过第一个电极引导出来,它只有一个方向的电位偏转,称为单相动作电位。
坐骨神经由许多神经组成,所以神经干的动作电位与单个神经纤维的跨膜动作电位不同,它是许多动作电位组成的复合动作电位。
虽然每条神经纤维都按“全或无”定律参与反应,但在一定范围内,复合动作电位的振幅可随刺激强度的改变而发生变化。
2.神经冲动的传导速度(v)指动作电位在单位时间(t)内传导的距离(s),可根据神经干上动作电位从一点传导到另一点所需要的时间来计算:v=s/t (m/s)不同类型的神经纤维传导速度各不相同,神经纤维愈粗,传导速度愈快。
坐骨神经中传导速度约为35-40m/s。
3.神经在一次兴奋后,其兴奋性发生周期性的变化,而后才恢复正常。
包括绝对不应期、相对不应期、超常期、和低常期。
通过调节刺激器输出的连续双脉冲的时间间隔,可测定坐骨神经的不应期。
当双脉冲的间隔时间为20ms左右时,可出现两个同样大小的动作电位。
逐渐缩短双脉冲之间的间隔,第二个动作电位向第一个动作电位靠近,振幅也随之降低,最后可因落在第一个动作电位的绝对不应期内而完全消失。
三、动物与器材:1.动物:蟾蜍2.器材:常用手术器材、电子刺激器、刺激隔离器、神经屏蔽盒、滤纸片、蛙钉、蜡盘、绵线。
3.试剂:任氏液、3mol/L Kcl溶液四、方法与步骤:1.双毁髓。
神经干动作电位实验报告
神经干动作电位实验报告一、实验目的本次实验旨在探究神经干动作电位的产生机制、特点以及影响因素,加深对神经生理学的理解。
二、实验原理神经干由许多神经纤维组成,当受到适当的刺激时,神经纤维会产生兴奋,并以动作电位的形式沿神经纤维传导。
动作电位具有“全或无”特性,即刺激强度未达到阈值时不产生动作电位,一旦达到或超过阈值则产生最大幅度的动作电位。
动作电位在神经干上的传导具有双向性和相对不疲劳性。
三、实验材料与设备1、实验动物:蟾蜍2、仪器设备:生物信号采集处理系统、神经屏蔽盒、刺激电极、引导电极、手术器械等3、药品:任氏液四、实验步骤1、制备蟾蜍坐骨神经干标本破坏蟾蜍的脑和脊髓,仰卧固定在蛙板上。
从脊柱旁开,暴露坐骨神经,分离至膝关节处,剪断分支,取下坐骨神经干。
将神经干置于神经屏蔽盒的电极上,用任氏液保持湿润。
2、连接仪器将刺激电极连接至生物信号采集处理系统的刺激输出端,引导电极连接至输入端。
3、参数设置选择合适的刺激模式(单刺激、双刺激等)和刺激强度。
设置采样频率、增益等参数。
4、进行实验给予神经干一定强度的刺激,观察并记录动作电位的波形。
逐渐增加刺激强度,观察动作电位的幅度和频率变化。
改变刺激间隔时间,观察双刺激时的动作电位变化。
5、数据记录与分析记录不同条件下的动作电位波形和相关数据。
对数据进行测量和分析,计算动作电位的幅度、潜伏期、时程等参数。
五、实验结果1、动作电位的波形观察到神经干动作电位呈现双相波形,包括去极化的上升支和复极化的下降支。
2、刺激强度与动作电位幅度的关系当刺激强度低于阈值时,无动作电位产生。
刺激强度达到阈值后,动作电位幅度不再随刺激强度增加而增大,表现为“全或无”现象。
3、刺激频率与动作电位频率的关系随着刺激频率的增加,动作电位的频率也相应增加,但在一定频率后,会出现不完全强直收缩和完全强直收缩。
4、双刺激的结果当刺激间隔时间较短时,第二个动作电位的幅度可能会减小;当间隔时间足够长时,两个动作电位互不影响。
本科生理实验报告
一、实验名称神经干复合动作电位二、实验日期2023年11月15日三、实验地点生理学实验室四、实验目的1. 确定蟾蜍坐骨神经干复合动作电位(CAP)的临界值和最大幅度。
2. 确定蟾蜍坐骨神经干CAP的传导速度。
3. 确定蟾蜍坐骨神经干CAP的不应期(相对不应期和绝对不应期)。
五、实验原理神经干复合动作电位(CAP)是神经纤维受到阈上刺激时产生的动作电位,由多个单个动作电位叠加而成。
通过测定CAP的临界值、最大幅度和传导速度,可以了解神经纤维的兴奋性和传导特性。
六、实验对象与用品实验对象:蟾蜍实验用品:- 生物信号采集系统RM6240- 刺激电极S1、S2- 记录电极R1-R2- 接地电极- 刺激输出线- 刺激输出插口- 标本盒- 剪刀、镊子、解剖针等解剖工具七、实验方法1. 蟾蜍坐骨神经标本的制作:- 双毁髓处死蟾蜍后,剥去皮肤,暴露腰骶丛神经。
- 游离大腿肌肉之间的坐骨神经干及其下行到小腿的两个分支:胫神经和腓神经,三段结扎,剪去无关分支后离体。
- 注意保持神经湿润。
2. 连接电极:- 将神经搭于标本盒内,保证神经与电极充分接触。
- 中枢端接触刺激电极S1和S2,外周端接触记录电极R1-R2,之间接触接地电极。
3. 连接仪器:- 刺激输出线两夹子分别连接标本盒的刺激电极S1和S2,插头接生物信号采集系统RM6240的刺激输出插口。
- 信号输入端红色和绿色夹子分别连接记录电极(绿色夹子在前,引导出正向波形,即出现的第一个波峰向上),黑色夹子连接接地电极,插头接通道1。
4. 刺激与记录:- 采用方波脉冲刺激,刺激频率从低到高逐渐增加,直至观察到CAP出现。
- 记录CAP的临界值、最大幅度和传导速度。
八、实验结果与分析1. 临界值:通过逐渐增加刺激强度,观察到CAP出现的最小刺激强度为临界值。
2. 最大幅度:在临界值以上的刺激强度下,CAP的最大幅度保持相对稳定。
3. 传导速度:通过测量刺激电极与记录电极之间的距离,结合CAP的传导时间,计算出CAP的传导速度。
神经的电生理特性及影响因素实验报告
神经的电生理特性及影响因素实验报告实验1 蟾蜍坐骨神经干复合动作电位特性***,***(浙江大学08级*************************)【目的】探讨神经干双相动作电位的形成机制及影响因素。
1 材料蟾蜍;任氏液;BB-3G标本屏蔽盒,微机生物信号采集处理系统。
2 方法2.1 系统连接和参数设置 RM6240多道生理信号采集处理系统与标本盒连接,1、2通道时间常数0.02s、滤波频率3KHz、灵敏度5mV,采样频率100KHz,扫描速度0.2ms/div。
单刺激激模式,刺激波宽0.1ms,延迟1ms,同步触发。
2.2 制备蟾蜍坐骨神经干标本蟾蜍毁脑脊髓和下肢标本制备,下肢标本仰卧置于蛙板上,分离脊柱两侧的坐骨神经,紧靠脊柱根部结扎,近中枢端剪断神经干,将神经干从骶部剪口处穿出。
循股二头肌和半膜肌之间的坐骨神经沟,纵向分离坐骨神经直至腘窝胫腓神经分叉处,将腓浅神经、胫神经与腓肠肌和胫骨前肌分离。
置剪刀于神经与组织之间,剪切直至跟腱并剪断跟腱和神经。
剥离附着在神经干的组织,坐骨神经干标本浸入任氏液中。
2.3 实验观察2.3.1 中枢端引导动作电位神经干末梢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms的方波刺激神经干,测定第1和第2对引导电极引导的双相动作电位正相波和负相波的振幅和时程。
2.3.2 改变引导电极距离用刺激电压1.0V,波宽0.1ms的方波刺激神经干中枢端,记录引导电极距离10mm、20mm、30mm时的动作电位。
分别测定上述三个引导电极距离的动作电位正相波和负相波的振幅和时程。
2.3.3 末梢端引导动作电位和测定动作电位传导速度引导电极距离10mm,神经干中枢端置于刺激电极处,用刺激电压1.0V,波宽0.1ms的方波刺激神经干,测定第1对引导电极引导的双相动作电位正相波和负相波的振幅和时程。
分别测量两个动作电位起始点的时间差和标本盒中两对引导电极之间的距离S(应测r1- r2 的间距),计算动作电位传导速度。
生理实验报告神经干复合动作电位
生理实验报告神经干复合动作电位实验目的:1.了解神经干复合动作电位的形成和传导。
2.掌握记录和分析神经干复合动作电位的方法。
3.观察和分析神经干复合动作电位在不同刺激条件下的变化。
实验原理:神经干是指神经纤维在离开整个神经系统后,在肌骨、脏器等部位的展开。
神经干复合动作电位(CNAPs)是指由神经干上的多个神经元细胞同时参与形成的电信号,它是神经干传导时产生的电生理事件。
通常情况下,神经干复合动作电位由4个不同的组分组成,依次是起始变化、顶峰反射、降落相和后期反射。
这些组分的形成和传导过程会受到不同因素的影响,如刺激的强度、频率和持续时间等。
实验设备:1个主机1台示波器1个刺激电极2个测量电极1箱生理盐水1张生理实验纸实验步骤:1.将示波器的探头分别连接到刺激电极和测量电极上,探头的地线连接到主机上的地线端。
2.将测量电极分别放置在神经干上和离神经干较远的位置上,测量电极间距应足够大,以避免电信号重叠。
3.用生理盐水湿润纸片,将刺激电极夹在纸片中央的合适位置上。
4.调整示波器的放大倍数和时间基准以获得清晰的信号波形。
5.将主机上的刺激按钮设置为适当的参数,并按下开始按钮开始记录信号。
6.根据实验要求分别改变刺激电流的强度、频率和持续时间,并记录相应的信号波形。
7.重复实验步骤4-6,直到完成所有实验要求。
实验结果分析:1.观察到的信号波形应包含起始变化、顶峰反射、降落相和后期反射这四个组分,根据波形的形态和振幅变化可以分析神经传导的速度和强度。
2.改变刺激条件后,观察信号波形的变化,记录并分析不同刺激条件下的神经传导特点如传导速度、传导延迟、反射强度等。
实验结论:1.神经干复合动作电位是由神经干上的多个神经元细胞参与形成的电信号。
2.神经干复合动作电位的形成和传导受到多种因素的影响,包括刺激强度、频率和持续时间等。
3.改变刺激条件可以观察到神经干复合动作电位的变化,进而分析神经传导的特点。
4.通过实验可以掌握记录和分析神经干复合动作电位的方法,并获得相关实验结果。
神经干动作电位实验报告
神经干动作电位实验报告神经干动作电位实验报告引言:神经干动作电位是一种记录和研究神经元活动的重要方法。
通过测量神经元在受到刺激时产生的电信号,我们可以了解神经元的兴奋性、传导速度以及神经网络的功能。
本实验旨在探究神经干动作电位的特性和应用,并通过实际操作来加深对该实验的理解。
实验步骤:1. 实验前准备:将被试者坐于舒适的位置,确保其放松且不受干扰。
将电极贴于被试者的皮肤上,通常选择头皮、手腕或脚踝等部位。
2. 刺激信号的产生:使用外部刺激器,如电极或光纤,对被试者进行刺激。
可以选择不同的刺激方式,如电流、光线或声音等。
3. 信号采集:使用生物电放大器将神经干动作电位信号放大,并通过电极将信号输入到计算机或记录设备上。
确保信号的质量和稳定性,以获取准确的实验结果。
4. 数据分析:通过对采集到的信号进行处理和分析,可以得到神经干动作电位的特征参数,如幅值、潜伏期和传导速度等。
同时,还可以对不同刺激条件下的实验结果进行比较和统计。
实验结果与讨论:1. 神经干动作电位的特征参数:根据实验数据的分析,我们可以得到神经干动作电位的幅值、潜伏期和传导速度等参数。
这些参数可以反映神经元的兴奋性和传导能力,从而帮助我们了解神经系统的功能和病理变化。
2. 神经干动作电位的应用:神经干动作电位在临床医学和科学研究中有着广泛的应用。
例如,通过测量神经干动作电位,可以评估神经系统的功能状态,如神经病变、神经损伤和神经炎等。
此外,神经干动作电位还可以用于研究神经网络的连接和传导机制,对于理解大脑的工作原理和神经系统疾病的发生机制具有重要意义。
3. 实验的局限性和改进方向:在进行神经干动作电位实验时,也存在一些局限性。
例如,信号的稳定性和噪声的干扰可能影响实验结果的准确性。
此外,实验中使用的刺激方式和参数的选择也可能对结果产生影响。
因此,未来的研究可以进一步改进实验设计和信号处理方法,以提高实验的可重复性和准确性。
结论:神经干动作电位实验是一种重要的方法,用于研究神经元活动和神经系统功能。
神经干复合动作电位的测定
华南师范大学实验报告学生姓名何茂辉学号20062501302专业生物科学年级、班级06科三课程名称生理学实验实验项目实验类型□验证□设计□综合实验时间09 年 4 月13 日实验指导老师黄秀明、胡学军实验评分神经干复合动作电位的测定实验目的:1.观察蛙坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。
2.学习测定蛙或蟾蜍离体神经干上神经冲动传导速度的方法和原理。
实验材料:虎纹蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒实验方法:1.虎纹蛙坐骨神经干的标本制备参照实验2-1的方法剥离蛙的坐骨神经干,尽量把神经干标本剥离得长一些,要求上自脊髓附近,下沿腓神经与胫神经一直分离到踝关节附近;尽量把神经干周围的组织剔除干净,剥离时切勿损伤神经干标本。
2.实验装置的连接按照图2-3-1将神经屏蔽盒与信号采集处理系统连接,屏蔽盒的地线良好接地。
3.仪器的操作和实验参数的设置(1)本实验在Windows界面的生理采集处理系统平台下进行,打开生理采集系统。
(2)采样窗参数的设置。
(3)刺激参数的设置。
4.将蛙的坐骨神经干标本置于屏蔽盒内的电极上,神经干的中枢端置于刺激电极一侧,从末梢端引导动作电位。
5.刺激、观察、记录神经干复合动作电位(1)神经干兴奋阈值的测定。
(2)在刺激阈值的基础上逐渐加大刺激强度,可见动作电位的图形为双向,而且它的幅值随刺激强度的增大而加大。
当刺激增加到一定强度时,可见动作电位的幅值不再增大。
(3)动作电位参数的测量。
(4)在两个引导电极之间损伤神经干标本,即可使原来的双相动作电位的下相消失,变为单相;注意上相动作电位的图形有什么样的变化。
(5)选取最为理想的动作电位图形,打印出来,附于实验报告上。
实验结果:图1 虎纹蛙坐骨神经干的复合动作电位(双向动作电位)图2 虎纹蛙坐骨神经干的复合动作电位(单向动作电位)结果分析:1、神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。