交流阻抗技术测量聚合物电解质离子电导率

合集下载

第四章交流阻抗方法

第四章交流阻抗方法

w :角频率=2πf
j=(-1)1/2
(a)、作用于R(纯电阻)时: = 阻抗ZR= / /R=(msinwt)/R=IR.msinwt =R 电流相位与电压信号同相,幅值为IR.m 纯电阻元件的阻抗为一实数,为R
cos(A-90°)=sinA,cos(A+90°)=-sinA,sin(A+90°)=cosA,sin(A-90°)=-cosA
2
2
当Cdl>>Cg时, Z’=Rb …….(4)
此时图1简化成纯电阻Rb,在复平面图上是一条垂 直于实轴并与实轴交于Rb的直线。
在高频区ω→∞,当Cdl>>Cg时式(2)简化为
Z '
C dl Rb ( C g C dl )
2 2 2 2 2 C dl C g Rb 2
Rw=σw-1/2 |Zw| c=1/(wCw) =σw-1/2
Z’=Rf=Rr+Rw=RT/nFi0+σw-1/2
Rw=σw-1/2
|Zw| c=1/(wCw) =σw-1/2 σ= RT/[n2F2Co0(2Do)1/2] Rr=RT/nFi0
(a) 由直线斜率σ可得D (b) Rf-w-1/2的截距为Rr,可求i0 (c) 不用外推至w-1/2=0 也可据两线之间的距离求Rr
Zc=1/jwC
• 由图1等效电路计算得相应的阻抗值:
Z=1/[(1/ZCg)+1/(ZRb+ZCdl)]=1/[(jwCg)+1/(Rb+1/jwCdl)]
Z
C dl Rb ( C g C dl ) C dl C g Rb
2 2 2 2 2
2
j
C g C dl C dl C g Rb

甲氧基聚乙二醇丙烯酸酯在全固态电池中的应用

甲氧基聚乙二醇丙烯酸酯在全固态电池中的应用

摘要固态聚合物电解质作为全固态聚合物锂离子电池的核心材料,目前面临的主要难点是电导率低、电化学稳定性差等题。

基于聚合物电解质的锂离子传输机理,采用甲氧基聚乙二醇丙烯酸酯和聚氧化乙烯制备出多支链固态聚合物电解质(PMEA@SSE),并以聚氧化乙烯固态电解质(PEO@SSE)作为对比样,对PMEA@SSE进行了傅里叶变换红外光谱仪(FT-IR)、电化学阻抗谱(EIS)、线性扫描伏安法(LSV)、扫描电子显微镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)以及全固态电池循环等测试和分析。

结果表明,与PEO@SSE相比,PMEA@SSE具有更高的离子电导率(0.13 mS/cm vs.0.018 mS/cm,测试温度30 ℃),更宽的电化学窗口(4.2 V vs. 3.8 V),以及更好的全固态电池循环稳定性(77次vs.31次循环,80%容量保持率,60 ℃下测试,0.1 C倍率,3.0~4.2 V 电压范围)。

本工作表明,甲氧基聚乙二醇丙烯酸酯部分替代聚氧化乙烯是一种改进聚氧化乙烯这一经典固态聚合物电解质材料的可行策略,将为后续固态聚合物电解质新材料的开发提供有益参考。

关键词固态聚合物电解质;甲氧基聚乙二醇丙烯酸酯;固态电池固态锂离子电池作为最有希望量产的下一代锂离子电池,受到国内外广泛关注。

固态锂离子电池的核心材料是固态电解质(solid state electrolyte,SSE),其按照结构可分为氧化物固态电解质、硫化物固态电解质和聚合物固态电解质。

氧化物固态电解质存在电导率低、界面阻抗大等问题;硫化物固态电解质虽然电导率高,但存在成本高、对环境敏感等缺点;固态聚合物电解质具有易加工、界面接触好、与现有锂离子电池生产体系兼容性高等优点,然而,固态聚合物电解质也存在离子电导率低和电化学稳定性差等问题。

因此,提高聚合物电解质的离子电导率并拓宽其电化学窗口,是目前固态聚合物电解质的重点发展方向。

电导率的测定方法

电导率的测定方法

电导率的测定方法电导率是指物质通过电流的能力,是表征物质导电性的重要指标之一、测定物质的电导率可以帮助我们了解物质的电导性质和化学性质。

下面将介绍几种常用的测定电导率的方法。

一、直接测定法直接测定法是通过使用电导率计来测定物质的电导率的方法。

电导率仪是一种专门测量物质电导率的仪器,它通过将两个电极放入待测物质中,然后通过测量通过电流的大小来计算电导率。

这种方法简单、快捷,适用于测量大量的液体样品,如水和溶液。

二、比色法比色法是通过观察物质溶液的颜色变化来间接测定物质的电导率的方法。

在电导性溶液中,电导离子的浓度越高,颜色越浓。

因此,可以通过比较物质的溶液颜色的深浅来估计物质的电导率大小。

这种方法操作简单,无需专门的设备,适用于电导率较高的样品。

三、阻抗法阻抗法是通过测量物质在交流电场中的电阻来测定物质的电导率的方法。

在交流电场中,物质会产生阻抗,阻抗的大小可以反映物质的电导率。

通过测量交流电场中物质的电阻大小,可以计算得到物质的电导率。

阻抗法可以测量电导率范围较大的样品,但对设备要求较高。

四、电导滴定法电导滴定法是通过在待测物质中滴加不同浓度的电解质溶液,观察电导率的变化来测定物质的电导率的方法。

当滴加电解质溶液时,如果物质的电导率较低,则电导率会随着电解质溶液的浓度增加而增加;如果物质的电导率较高,则电导率会随着电解质溶液的浓度增加而减小。

通过测量电导率的变化,可以确定物质的电导率。

这种方法操作简单、快捷,适用于测量不同电导率的样品。

五、四电极法四电极法是通过使用四个电极来测定物质的电导率的方法。

四电极法采用两对电极,一对电极用于传递电流,另一对电极用于测量电位差。

通过测量电流和电位差的关系,可以计算得到物质的电导率。

这种方法对于测量高阻抗样品非常有用,具有高精度和高灵敏度。

总之,电导率的测定方法有很多种,可以根据不同的实际情况选择合适的方法进行测量。

每种方法都有其独特的优点和适用范围,我们可以根据需要进行选择。

阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用

阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用

收稿日期:2023-03-24;修改日期:2023-04-16基金项目:中央高校基本科研业务费(W K 2320000057)作者简介:李星军,中国科学技术大学硕士研究生,研究方向为锂离子电池安全㊂通讯作者:阚永春,E -m a i l :y c k a n @u s t c .e d u .c n ;宋磊,E -m a i l :l e i s o n g@u s t c .e d u .c n第32卷第3期2023年9月火 灾 科 学F I R ES A F E T YS C I E N C EV o l .32,N o .3S e p.2023文章编号:1004-5309(2023)-0167-10D O I :10.3969/j.i s s n .1004-5309.2023.03.05阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用李星军,牧小卫,阚永春*,宋 磊*,胡 源(中国科学技术大学火灾科学国家重点实验室,合肥,230026)摘要:随着锂离子电池能量密度的不断提高,火灾事故愈发频繁,提高锂离子电池安全性能越来越受到重视㊂基于乙烯基膦酸二乙酯㊁季戊四醇四丙烯酸酯和商业电解液合成了阻燃凝胶聚合物电解质(D E V P -G P E ),并对其组装的锂离子电池开展了电化学性能和火安全性能的研究㊂循环测试表明,石墨//D E V P -G P E //L i 半电池在第1000圈时的容量维持率高达88.7%,明显高于商业电解液(25.8%),磷酸铁锂//D E V P -G P E //石墨全电池在0.5C 倍率下循环100次的容量维持率高达80.2%,平均库仑效率为99.73%,具有良好的循环稳定性㊂火焰燃烧测试结果表明,含磷D E V P -G P E 的自熄时间仅为1.5s ㊂1A h 容量级别袋式全电池的过热测试结果表明,阻燃型D E V P -G P E 不起火只冒烟,而且不漏液㊂以上结果均证明制备的D E V P -G P E 具有良好的火安全性能㊂通过对电解质热解过程的分析,含磷D E V P -G P E 能够很好地限制内部电解液的挥发和热解,并且在燃烧时释放出磷自由基以中断燃烧链式反应㊂关键词:凝胶聚合物电解质;阻燃性能;锂离子电池;循环性能中图分类号:X 93;X 932 文献标识码:A0 引言锂离子电池(L I B s)作为一种综合性能良好的储能设备,被广泛用于电动汽车和储能电站领域[1-4]㊂为了进一步发展L I B s ,其能量密度也在不断提高㊂然而,L I B s 安全性能较低是限制其发展的主要障碍之一,这是因为其内部大量的碳酸酯类电解液是易燃的[5],一旦发生电解液泄漏,会引起严重的火灾甚至爆炸[6]㊂而即使是不燃电解液,也依然会发生热失控[7],安全系数太低㊂凝胶聚合物电解质(G P E )将易燃的增塑剂包裹在聚合物网络结构中,不会漏液,并且G P E 的电池循环性能与液态电解质相当[8]㊂但G P E 并不能完全阻止内部增塑剂的挥发,G P E 受热时内部的增塑剂依然会有部分挥发和热解为易燃的蒸气,存在一定的安全隐患㊂因此,需要提高G P E 的阻燃性能㊂对于阻燃型G P E 的制备,常见方法是将阻燃剂直接添加至商业电解液中[9],含阻燃剂的电解液以增塑剂形式被包裹在聚合物基体中㊂在已有报道的阻燃剂中,常用的是磷系阻燃剂,例如磷酸三甲酯[10]㊁磷酸三乙酯[11]㊁磷酸三苯酯[12]等㊂但是,这些含磷阻燃剂的电化学稳定性较差,电池充放电时其容易在负极表面分解[13]㊂同时,只有在阻燃剂含量非常高时,G P E 的阻燃效果才较为明显㊂但在如此高的添加量之下,电池的电化学性能会有所下降[14]㊂为了解决以上问题,部分学者将阻燃剂固定在聚合物基体中,直接使用商业电解液作为增塑剂㊂阻燃剂通过化学键被固定在高分子链上,不仅能够赋予G P E良好的阻燃性能[15],还能够避免磷系阻燃剂接触电极材料,抑制含磷阻燃剂的分解[16]㊂在本工作中,以乙烯基膦酸二乙酯(D E V P)和季戊四醇四丙烯酸酯(P E T E A)为共聚合单体,商业电解液为溶剂,以溶液聚合为技术路线,使用原位热引发聚合D E V P和P E T E A混合单体溶液来制备含磷阻燃凝胶聚合物电解质(D E V P-G P E)㊂其中, D E V P作为一种商业化阻燃剂,磷含量(18.9w t%)非常高,能够与电化学稳定的P E T E A单体共聚形成交联聚合物网络[17],电解液被包裹在含磷交联网络中,得到火安全性能良好的阻燃D E V P-G P E㊂石墨//D E V P-G P E//L i半电池在第1000圈时的容量维持率高达88.7%,明显高于商业电解液(25.8%);袋式磷酸铁锂//D E V P-G P E//石墨全电池在0.5C 倍率下循环100次的容量维持率高达80.2%,平均库仑效率为99.73%,表现出优异的长循环稳定性能㊂该大容量软包电池在过热测试中,不起火只冒烟,展现出优异的安全性能㊂最后,对D E V P-G P E 的热降解过程进行了分析,揭示了其提高电池安全性能的原因㊂1实验部分1.1实验试剂乙烯基膦酸二乙酯(D E V P)㊁季戊四醇四丙烯酸酯(P E T E A)和偶氮二异丁腈(A I B N)㊁N-甲基吡咯烷酮(N M P)均购于上海阿拉丁生化科技股份有限公司㊂A I B N使用前需要重结晶㊂电解液(1m o l㊃L-1L i P F6i nE C/D E C+5%F E C)与隔膜购买自东莞市科路得新能源科技有限公司㊂磷酸铁锂(L F P)㊁石墨(G r a p h i t e)㊁导电炭黑S u p e r P以及P V D F粘结剂均购于东莞市科路得新能源科技有限公司㊂锂金属片(>99.9%)购于天津中能锂业有限公司㊂1.2材料合成㊁电池组装及其性能表征1.2.1材料合成D E V P-G P E及其聚合物基体制备:D E V P与P E T E A的质量比为2ʒ1,A I B N添加量为单体总量的2w t%,增塑剂含量为90w t%㊂D E V P㊁P E T-E A和A I B N溶解在电解液中,搅拌均匀配制成G P E的前驱体溶液㊂前驱体在80ħ下加热20m i n,得到D E V P-G P E㊂聚合物基体的制备过程不需要加入商业电解液,D E V P和P E T E A的质量比为2ʒ1,加入A I B N 后在样品瓶中混合均匀,于80ħ下加热20m i n完成热引发聚合,得到聚合物基体㊂购买的商业电解液无任何处理,作为空白对照组(L E)㊂1.2.2电池组装注入60μL上述G P E的前驱体溶液至P E隔膜中,装入C R2032型扣式电池中,扣压机密封电池,静置3h后将电池放入80ħ的烘箱中加热20 m i n,前驱体溶液在热引发条件下原位聚合形成D E V P-G P E,用于后续电化学性能测试㊂软包电池:通过卷绕法制备出L F P//D E V P-G P E//G r a p h i t e全电池,即正极为L F P,石墨为负极,正负极对应极耳分别为铝和镍㊂铝塑膜封装干电芯,长方形电池极耳处一边为开口㊂注入约5m L的D E V P-G P E前驱体溶液至电芯内部,由热压封口机(合肥科晶材料科技有限公司)对其完全密封㊂注液封装好的电池需静置4h,然后在80ħ的烘箱中加热20m i n,得到凝胶态软包锂离子电池㊂所有软包电池循环前,需要在75ħ和0.1C电流下进行化成㊂软包电池极片:L F P正极面密度为10.74m g㊃c m-2,G r a p h i t e负极面密度是4.85m g㊃c m-2㊂1.2.3实验表征及性能测试(1)结构表征扫描电子显微镜(S E M):通过F E S E M S U 8220扫描电子显微镜(日本H i t a c h i公司)观察P E 隔膜与G P E膜的表面形貌㊂傅里叶变换红外光谱(F T I R):由N i c o l e t M A G N A6700红外光谱分光光度仪所得,样品与干燥的K B r粉末于研钵中研磨混合均匀,所得细粉末通过压片机压制成片㊂(2)电化学性能离子电导率(σ):通过C H I670E电化学工作站(上海辰华仪器有限公司)测得电解质膜的交流阻抗谱图(E I S),频率范围为0.1H z~100k H z㊂离子电导率计算公式如下:σ=lSˑR b(1)其中,l为电解质膜厚度;R b为欧姆电阻,由E I S谱图所得;S为膜与不锈钢片的有效接触面积㊂循环性能:磷酸铁锂-石墨全电池和石墨半电池的测试电压范围分别为2V~3.8V和0.05V~861火灾科学F I R ES A F E T YS C I E N C E第32卷第3期2V ㊂首圈以0.1C 电流化成后,测试电流维持为0.5C ㊂线性扫描伏安测试(L S V ):电解质置于不锈钢片和锂金属之间,组装S S //L i 扣式电池,扫描速率为0.001V ㊃s-1㊂(3)热性能热重分析(T G A ):通过Q 5000热分析仪(美国T A 公司)研究样品的热稳定性能,以5ħ/m i n 从室温加热至700ħ,热分析过程气氛为N 2㊂(4)火安全性能图1 (a )原位聚合型D E V P -G P E 制备示意图;(b )液态前驱体与聚合后D E V P -G P E 的数码照片;(c )D E V P ㊁P E T E A 和D E V P -G P E 的F T I R 光谱;(d )P E 膜和(e )D E V P -G P E 膜的S E M 图像F i g .1 (a )S y n t h e t i c p r o c e s s o f D E V P -G P E ,(b )D i g i t a l p h o t o g r a p h o f pr e c u r s o r a n dD E V P -G P E ,(c )F T I Rc u r v e s o f s a m p l e s ,(d )S E Mi m a g e s o f P Em e m b r a n e ,(e )S E Mi m a ge s of D E V P -G P E 电池过热测试:在尺寸规格为0.6mˑ0.6mˑ0.8m 的防爆箱中,锂离子软包电池紧贴于加热功率为200W 的圆柱形加热棒上㊂升温测试前,所有电池均被充电至3.8V (100%S O C )㊂加热时,电池正负极连接C T 2001A 型电池测试系统(武汉蓝电有限公司)以检测实时电压;电池表面温度由K 型热电偶所测得并由J K7000-80多路温度测试仪(常州金科有限公司)记录㊂整个测试过程由S o n y 相机录制㊂2 结果与讨论2.1 电解质制备与表征在G P E 的组成上,主要是聚合物基体和增塑剂两部分㊂本文使用商业电解液作为增塑剂,因此G P E 中主要部分为电解液,其含量决定了G P E 的关键性能,比如阻燃性能㊁电化学性能和机械性能等[7]㊂当G P E 的增塑剂含量较低时,G P E 可燃性较低,且机械强度较高,但电化学性能有所下降㊂这是因为G P E 主要依靠电解液来传导锂离子,较低的电解液含量则不利于锂离子的运输[18]㊂并且还会因电解液没有充分浸润电极等活性材料,导致较低的充放电容量㊂综合考虑以上因素,本文设计的增塑剂含量为90w t %㊂如图1(a )所示,利用D E V P 和P E T E A 中C =C 双键之间的聚合来制备聚合物基体㊂D E V P 与P E T E A 的质量为2ʒ1,加入A I B N 和相应质量的增塑剂,溶解均匀,得到图1(b)中透明无色的前驱体溶液㊂从图1(b )中可以看到,前驱体溶液在80ħ下聚合20m i n 后,转变为白色固体型凝胶㊂图1(c )为两种单体和D E V P -G P E 的F T I R 光谱图㊂在P E T E A 的F T I R 谱图中,1726c m -1处存在一个强烈吸收峰,对应P E T E A 中C =O 双键的伸缩振动,1630c m -1处的吸收峰归属于C =C 双键的伸缩振动㊂在D E V P 的F T I R 谱图中,具有单个C =C 双键结构的D E V P 在1630c m -1位置处也存在明显的吸收峰㊂将D E V P 与P E T E A 进行交联形成D E V P -G P E 之后,可以看到C =C 双键对应的吸收峰的消失,而C =O 伸缩振动等特征峰仍然存在,表明D E V P 与P E T E A 单体之间进行了共聚合以形成交联网络,且单体的转化率较高㊂图961V o l .32N o .3李星军等:阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用1(d )和图1(e )分别为P E 支撑膜和D E V P -G P E 膜的S E M 图,可以看到,经过凝胶填充之后,支撑膜中原有的大量小孔基本被凝胶所填充㊂致密的D E V P -G P E 膜表面平整,聚合物凝胶与支撑膜共存,形成一个整体,这表明D E V P -G P E 与支撑膜有很好的相容性㊂阻燃型G P E 的可燃性较低,这是其受到广泛关注的重要原因之一㊂通过丙烷火焰点燃电解质,初步测试D E V P -G P E 的可燃性㊂利用数码相机录制燃烧过程,截取录像中关键帧,如图2所示㊂从图2中可以明显看到,D E V P -G P E 一旦离开火焰,不到1.5s 就会熄灭,期间只有微弱的小火苗㊂表明D E V P -G P E 具有优异的阻燃性能㊂相比之下,商业电解液/隔膜体系一旦接触火焰后立刻被点燃,一直保持剧烈燃烧的状态,不会自熄㊂隔膜接触火焰后也会很快收缩,被点燃后出现熔滴㊂D E V P -G P E 优异的阻燃性能得益于内部阻燃剂热解产生的P ㊃与P O ㊃自由基,中断了燃烧链式反应[19],同时D E V P -G P E 内部可燃电解液的挥发和热解受到限制,D E V P -G P E 可以赋予电池更高的安全性能㊂这是因为液态电池在受热后,内部的电解液挥发和热解产生大量可燃蒸气,这些蒸气如果短时间从电池中喷出,会引起非常严重的火灾和爆炸[20]㊂而对于D E V P -G P E ,逸出的蒸气大幅度减少,即使部分蒸气被点燃,D E V P -G P E 内部的阻燃剂能够阻止火灾的进一步蔓延,从而提高锂离子电池的安全性能㊂图2 D E V P -G P E 和L E 的燃烧测试数码照片F i g .2 C o m b u s t i o n t e s t o f p r e pa r e dD E V P -G P Ea n dL E 2.2 电解质电化学性能研究图3为D E V P -G P E 的离子电导率测试结果,测试温度区间为25ħ~65ħ㊂如表1所示,D E V P -G P E 的电导率随着温度提高而升高㊂D E V P -G P E的室温离子电导率为0.54m S ㊃c m -1,接近L E(0.64m S ㊃c m -1)㊂凝胶电解质的工作温度一般是室温,测试更高温度下的离子电导率则可以确定电解质的活化能(E a )㊂图3为D E V P -G P E 离子电导率与温度的A r r h e n i u s 关系图(l o g σve r s u s 1000/T )㊂可以看到,D E V P -G P E 的l o g σ与温度均呈现线性相关,说明D E V P -G P E 的离子电导率与温度之间的关系可以通过A r r h e n i u s 方程(公式2)来描述㊂D E V P -G P E 的活化能为6.77k J ㊃m o l -1,表明离子在D E V P -G P E 中的迁移运动能垒较低㊂D E V P -G P E 与商业电解液相当的离子电导率,可以推测后续电池循环性能较好㊂表1 用电化学阻抗谱方法测得的不同温度下离子电导率T a b l e 1 I o n i c c o n d u c t i v i t y of D E V P -G P Eb a s e dE I Sm e t h o d 温度(ʎC )离子电导率(m S ㊃c m -1)250.54350.57450.63550.66650.70k =A e-E aR T(2)图3 D E V P -G P E 的A r r h e n i u s 拟合结果F i g .3 A r r h e n i u s f i t t i n gr e s u l t s o f D E V P -G P E 具有良好的电化学稳定性,电池在运行时电解质不会发生分解而产生副反应,避免恶化电池性能㊂线性扫描伏安测试(L S V )用于测试电解质的电化学稳定窗口,足够宽的电化学稳定窗口是电解质被应071火灾科学 F I R ES A F E T YS C I E N C E 第32卷第3期用于多种电极材料的前提之一㊂在图4中,当电压超过4.0V 后,L E 的分解电流明显增大,表现出较弱的耐氧化性㊂相比之下,D E V P -G P E 直到4.3V 后才出现明显的分解氧化电流,具有更高的电化学氧化电压㊂因此,L S V 测试结果表明D E V P -G P E 比L E 具有更高的电化学稳定窗口,这赋予了其应用于大多数高压正极材料(4.3V 级别)的潜力㊂图4 D E V P -G P E 和L E 的线性扫描伏安测试结果F i g.4 L S Vc u r v e s o f D E V P -G P Ea n dL E 首先,本文通过组装G r a ph i t e //L i 扣式电池,研究D E V P -G P E 在石墨半电池中的室温循环性能㊂如图5和表2所示,在循环初期,D E V P -G P E 的充电比容量较低㊂D E V P -G P E 的前10圈平均比容量仅有205.7m A h ㊃g -1,低于L E (233.1m A h ㊃g -1),其首圈库仑效率也仅有62.85%㊂循环前期容量偏低是因为还未形成稳定的固态电解质界面(S E I)膜,界面电阻较大,但随着循环次数的增加,容量逐渐提高至石墨电极的正常水平,D E V P -G P E 与石墨电极的界面接触在循环过程中不断改善㊂循环次数为100圈时,D E V P -G P E 的比容量超过L E ,并且仍旧在升高,而L E 组装的电池容量下降非常明显㊂在750圈循环之前,D E V P -G P E 的容量几乎维持稳定,容量损失较小㊂并且L E 在循环后期(500圈循环)出现了循环容量值的陡降,无法正常运行㊂D E V P -G P E 的石墨半电池容量维持率明显高于L E ,并且循环后期也没有容量陡降现象,第1000圈时也依旧高达88.7%,明显高于L E (25.8%),库仑效率也接近100%,证明D E V P -G P E 与石墨阳极兼容性良好,无副反应的存在,展现出优异的长循环稳定性㊂图5 在25ħ下G r a ph i t e //D E V P -G P E //L i 和G r a ph i t e //L E //L i 电池的循环性能测试F i g .5 C y c l i n g p e r f o r m a n c e c u r v e s o f G r a ph i t e //D E V P -G P E //L i a n dG r a ph i t e //L E //L i b a t t e r i e s a t 25ħ表2 电解质在石墨半电池中的循环性能测试数据T a b l e 2 K e y d a t a o f c y c l e p e r f o r m a n c e f o rG r a ph i t e //L i b a t t e r i e s 样品首圈库仑效率前10圈比容量平均值(m A h㊃g -1)第100圈时充电比容量(m A h㊃g -1)第1000圈时充电比容量(m A h㊃g -1)L E84.83%233.1333.3303.4D E V P -G P E62.85%205.7333.285.3其次,本文组装了更加接近实际应用情况的L F P //D E V P -G P E //G r a p h i t e 软包全电池,测试结果为图6所示㊂图6(a )为电池循环容量-电压曲线图,观察曲线可以发现充电平台位于3.4V 附近㊂从图6(b )可知,首次放电容量为959.59m A h ,非常接近理论容量值(1A h ),表明L F P 正极和G r a ph i t e 负极的容量面密度设计比较合理㊂首圈循环库仑效率为88.89%,这是因为S E I 膜的形成会造成一部分容量损失㊂从第2圈开始,库仑效率均维持在99.7%以上,说明形成的S E I 膜非常稳定,且电池内部没有明显的副反应㊂容量维持率的高低能决定软包电池的使用寿命㊂软包电池在0.5C 倍率下第100次循环时的放电容量为813.96m A h,容量维持率高达80.2%㊂整个循环过程,平均库仑效率为171V o l .32N o .3李星军等:阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用99.73%㊂这得益于D E V P -G P E 较高的离子电导率和较低的活化能,较高离子电导率可保证电池在循环时欧姆极化较小㊂以上结果证明了电池的长循环稳定性较好,能够满足便携式柔性电子设备对于使用寿命的要求㊂图6 在25ħ下L F P //D E V P -G P E //G r a p h i t e 软包全电池的(a )循环充放电电压曲线和(b )循环性能测试F i g .6 (a )C h a r g e /d i s c h a r g e c u r v e s a n d (b )C y c l i n gp e r f o r m a n c e o f L F P //D E V P -G P E //G r a ph i t e p o u c h c e l l 2.3 大容量软包锂离子电池热失控研究目前,研究者对于电解质的火安全性能测试大多局限于扣式电池或者低容量软包电池[21,22],这些电池并不接近电池的实际应用情况,而且也无法准确揭示阻燃型电解质对电池安全性能提高的作用机理㊂因此,本文对满电荷(100%S O C )的L F P//D E V P -G P E //G r a ph i t e 软包电池进行过热测试,进一步探究D E V P -G P E 的安全性能,装置示意图如图8(a )㊂软包电池实际容量约为960m A h,能量密度为132.7W h ㊃k g -1,处于较高水平[23],危险系数较高,对D E V P -G P E 的热安全性能要求也更为苛刻㊂从图7(a )可以看到,D E V P -G P E 软包电池在过热测试中的前3分钟基本没有明显变化㊂在3:50时,电池开始膨胀,后续的10s 内电池鼓包非常明显㊂这归因于D E V P -G P E 只能减缓内部增塑剂的蒸发分解,蒸气的大量逸出使软包电池的外壳破裂,尤其是电池下方的两个极耳处㊂整个测试过程中,D E V P -G P E 电池没有出现明火,只是在4:10时冒出白烟㊂而对照组电池(图7(b ))在3:50时上面出现火焰,这是因为电解液受热蒸发分解,易燃的蒸气在电池突然破裂时发生燃烧㊂另外电池极耳处的破裂也导致电解液的不断泄漏,漏液问题很有可能导致非常严重的电池火灾甚至爆炸㊂图7 (a )D E V P -G P E 和(b )L E 的过热测试F i g .7 T h e o v e r h e a t i n gt e s t o f (a )D E V P -G P Ea n d (b )L E 通过对比测试过程中两组电池的电压与表面温度(T C 1),进一步分析电池的热失控过程㊂在图8(b)中,将整个过程分为四个阶段㊂第Ⅰ阶段,电池受到加热棒的加热,温度缓慢升高㊂在200s时,电池发生内短路㊂图8(d )显示L F P //L E//G r a ph i t e 电池的电压也突然下降至0V 左右㊂对应271火灾科学 F I R ES A F E T YS C I E N C E 第32卷第3期的L F P //L E //G r a ph i t e 电池表面温度约为80ħ,但电池内部温度是高于表面温度的㊂以上结果表明,L F P //L E //G r a ph i t e 电池内的隔膜受热融化,导致正负极直接接触,促使大量放热反应的发生[24]㊂相比之下,L F P //D E V P -G P E //G r a ph i t e 电池的第Ⅰ阶段延长了20s㊂这是因为在隔膜融化之后,D E V P -G P E 的聚合物基体还未到达其分解温度,基体能够起到隔开正负极的作用,从而推迟了电池内短路的发生㊂第Ⅱ阶段为电池热失控初期,大量的电解液与满电荷的正负极反应㊁正负极相互反应和隔膜的热解,导致了电池温度迅速升高,此时两组电池的温度差值也迅速升高(如图8(c )所示)㊂温度变化的差异是因为在该阶段液态电池内部的蒸气突然喷发造成的起火,而L F P //D E V P -G P E//G r a ph i t e 电池内的溶剂挥发受到D E V P -G P E 交联网络的限制,蒸气量更少,并没有被点燃㊂第Ⅲ阶段为电池的全面热失控,导致两组电池的温度差有所下降,但在300s 后依旧在上升,这说明L F P//L E //G r a p h i t e 电池热失控反应明显更加剧烈㊂在第Ⅳ阶段,加热棒停止加热,L F P //L E //G r a ph i t e 和L F P //D E V P -G P E //G r a ph i t e 电池的温度均开始下降㊂从图8(c )可以知道,L F P //D E V P -G P E//G r a ph i t e 电池在整个测试中的温度均低于L F P //L E //G r a ph i t e 电池,尤其是在320s 时,L E 温度比D E V P -G P E 高出144ħ㊂图8 (a )过热测试装置示意图;(b)电池表面温度随时间变化曲线;(c )电池表面温度差值随时间变化曲线;(d)电池电压的采集结果F i g .8 (a )S c h e m a t i c d i a g r a mo f t h e o v e r h e a t i n g t e s t d e v i c e .(b )T h e t e m pe r a t u r e -t i m e c u r v e s of L F P //L E //G r a p h i t e a n dL F P //D E V P -G P E //G r a ph i t e p o u c h c e l l .(c )T h e t e m p e r a t u r e d i f f e r e n c e b e t w e e nL F P //L E //G r a p h i t e a n dL F P //D E V P -G P E //G r a ph i t e p o u c h c e l l s .(d )T h e v o l t a g e c u r v e s o f L F P //L E //G r a p h i t e a n dL F P //D E V P -G P E //g r a ph i t e p o u c h c e l l s 2.4 D E V P -G P E 热降解过程研究由前文的过热测试可以知道,前期主要是电解液快速蒸发和分解,软包电池的外壳被胀破㊂抑制电解液的蒸发,可以延缓电池外包装的破裂,从而提高电池的安全性能㊂对比分析图9(a )中L E 与D E V P -G P E 的T G A 曲线,统计了对应温度下样品的重量损失率,这些数据列于表3中㊂根据空白组电池在过热测试中的关键时间点,液态电池发生破裂时的温度约为150ħ㊂相比较于L E ,150ħ时D E V P -G P E 的重量损失率更低㊂这说明D E V P -371V o l .32N o .3李星军等:阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用G P E 内部的增塑剂蒸发或热分解受到一定阻碍,所以剩余重量更高㊂根据图9(b )中D E V P -G P E 的D T G 曲线,认为DE V P -G P E 的热分解过程主要分为四个阶段㊂第Ⅰ阶段与L E 的D T G 结果接近,所以该阶段主要是电解液中碳酸酯溶剂的挥发和热降解,该阶段的失重率为29.3w t %,明显低于L E(34.96w t %)㊂可以看到,该阶段D E V P -G P E 的重量损失速率明显低于L E ,说明D E V P -G P E 可以有效抑制碳酸酯溶剂的挥发和热降解㊂第Ⅱ阶段的温度范围为68ħ~191ħ,电解液除了蒸发外,还存在溶剂和锂盐的热降解,因此L E 和D E V P -G P E 的重量损失速率升高㊂相较于L E ,第Ⅱ阶段D E V P -G P E 的D T G 峰位置向更高的温度移动㊂聚合物基体的热分解温度(T 5w t %)为265.9ħ,其第一个热降解阶段与D E V P -G P E 的第Ⅲ阶段有部分重合,因此第Ⅲ阶段是聚合物基体与电解液同步热分解㊂第Ⅲ阶段的重量损失率为14.72w t %,这是因为大部分电解液已经热降解完㊂第Ⅳ阶段与聚合物基体的第二个热降解阶段基本重合,D E V P -G P E 的失重率仅有3.91w t %,表明该阶段基本上是聚合物基体的炭化㊂整个热降解过程中,L E 在200ħ之前就基本热失重完全(约92.0w t %),而D E V P -G P E 在200ħ时的剩余重量为22.6w t %㊂这说明即使第Ⅰ㊁Ⅱ阶段仅有增塑剂的失重,也至少有14.6w t %的增塑剂被D E V P -G P E 交联网络所截留,再次证实D E V P -G P E 对增塑剂的挥发和热分解有很好的阻碍作用,从而提高电池的火安全性能㊂D E V P -G P E 蒸气的缓慢逸出和磷自由基的释放是其在过热测试中不起火的重要原因㊂表3 L E ,D E V P -G P E 和聚合物基体的T G A 测试数据T a b l e 3 T G Ad a t a o f L E ,D E V P -G P Ea n dP o l ym e rM a t r i x 样品T 5w t %(ħ)T m a x 1(ħ)T m a x 2(ħ)700ħ时残炭率200ħ时重量L E28.0104.8/2.1w t %8.0w t %D E V P -G P E 39.5153.4214.35.4w t %22.6w t %聚合物基体265.9302.1347.237.6w t %98.1w t%图9 样品的(a )T G A 和(b )D T G 曲线F i g .9 (a )TG Ac u r v e s a n d (b )D T Gc u r v e s o f s a m pl e s 3 结论本文通过乙烯基膦酸二乙酯和季戊四醇四丙烯酸酯单体间的热引发原位聚合制备了用于锂离子电池的阻燃凝胶聚合物电解质(D E V P -G P E ),具体结论如下:(1)D E V P -G P E 具有良好的阻燃性能和电化学性能:离子电导率为0.54m S ㊃c m -1;被火焰持续点燃5s 后,自熄时间仅为1.5s ,而商业电解液被点燃后便维持剧烈燃烧的状态㊂(2)石墨//D E V P -G P E //L i 半电池在0.5C 倍率下循环1000次的容量维持率高达88.7%,远高于商业电解液(25.8%);L F P //D E V P -G P E//G r a ph i t e 软包锂离子电池在0.5C 倍率下循环100471火灾科学 F I R ES A F E T YS C I E N C E 第32卷第3期次的容量维持率高达80.2%,平均库仑效率为99.73%,具有优异的长循环稳定性㊂(3)1A h软包全电池的过热测试中,阻燃型D E V P-G P E不起火只冒烟,且不漏液,而商业液态电池出现漏液,并且测试中电池上方有火焰㊂(4)T G A测试结果表明,至少有14.6w t%的增塑剂被D E V P-G P E的交联网络所截留,证明D E V P-G P E对增塑剂的挥发和热分解有很好的阻碍作用,从而提高电池的火安全性能㊂参考文献[1]C h o i JW,A u r b a c hD.P r o m i s e a n d r e a l i t y o f p o s t-l i t h-i u m-i o n b a t t e r i e sw i t h h i g h e n e r g y d e n s i t i e s[J].N a t u r e R e v i e w sM a t e r i a l s,2016,1(4):16013. [2]L i a oC,M uX W,H a nLF,L i ZR,Z h uYL,L u J Y,W a n g HJ,S o n g L,K a nYC,H uY.Af l a m e-r e-t a r d a n t h i g h i o n i c-c o n d u c t i v i t y a n de c o-f r i e n d l y s e p a r a-t o r p r e p a r e d b y p a p e r m a k i n g m e t h o d f o r h i g h-p e r f o r m-a n c e a n d s u p e r i o r s a f e t y l i t h i u m-i o n b a t t e r i e s[J].E n e r-g y S t o r a g eM a t e r i a l s,2022,48:123-132.[3]T o n g B,S o n g ZY,W u H,W a n g X X,F e n g W F, Z h o uZB,Z h a n g H.I o n t r a n s p o r t a n ds t r u c t u r a l d e-s i g no fl i t h i u m-i o nc o n d u c t i v es o l i d p o l y m e re l e c t r o-l y t e s:a p e r s p e c t i v e[J].M a t e r i a l sF u t u r e s,2022,1(4):042103.[4]G o o d e n o u g h J B,K i m Y.C h a l l e n g e s f o r r e c h a r g e a b l e l ib a t t e r i e s[J].C h e m i s t r y o f M a t e r i a l s,2010,22(3): 587-603.[5]Z e n g ZQ,M u r u g e s a nV,H a nKS,J i a n g XY,C a oY L,X i a oLF,A iXP,Y a n g H X,Z h a n g JG,S u s h-k o M L,L i uJ.N o n-f l a m m a b l ee l e c t r o l y t e sw i t hh i g h s a l t-t o-s o l v e n t r a t i o s f o rL i-i o na n dL i-m e t a lb a t t e r i e s [J].N a t u r eE n e r g y,2018,3(8):674-681. [6]Y uH,M uX W,Z h uYL,L i a oC,H a nLF,W a n g JW,C a iW,K a nYC,S o n g L,H uY.S a n d w i c h s t r u c-t u r e d u l t r a-s t r o n g-h e a t-s h i e l d i n g a e r o g e l/c o p p e rc o m-p o s i t ei n s u l a t i o n b o a r df o rs a f el i t h i u m-i o n b a t t e r i e s m o d u l e s[J].J o u r n a l o fE n e r g y C h e m i s t r y,2023,76: 438-447.[7]F a nXY,Z h o n g C,L i u J,D i n g J,D e n g YD,H a nX P,Z h a n g L,H uW B,W i l k i n s o n DP,Z h a n g J J.O p-p o r t u n i t i e s o f f l e x i b l e a n d p o r t a b l e e l e c t r o c h e m i c a l d e-v i c e s f o r e n e r g y s t o r a g e:E x p a n d i n g t h e s p o t l i g h t o n t o s e m i-s o l i d/s o l i d e l e c t r o l y t e s[J].C h e m i c a l R e v i e w s, 2022,122(23):17155-17239.[8]M uX W,L i X J,L i a o C,Y uH,J i nY,Y u B,H a nL F,C h e nLK,K a nYC,S o n g L,H uY.P h o s p h o r u s-f i x e d s t a b l e i n t e r f a c i a l n o n f l a m m a b l e g e l p o l y m e r e l e c-t r o l y t ef o rs a f ef l e x i b l e l i t h i u m-i o nb a t t e r i e s[J].A d-v a n c e dF u n c t i o n a lM a t e r i a l s,2022,32(35):2203006-2203016.[9]L i Z,W e n g S T,F uJL,W a n g X X,Z h o u X Y, Z h a n g QH,W a n g XF,W e i L,G u oX.N o n f l a m m a b l e q u a s i-s o l i d e l e c t r o l y t e f o r e n e r g y-d e n s e a n d l o n g-c y c l i n g l i t h i u m m e t a lb a t t e r i e sw i t hh i g h-v o l t a g e N i-r i c hl a y-e r e d c a t h o d e s[J].E n e r g y S t o r a g eM a t e r i a l s,2022,47: 542-550.[10]W a n g X M,Y a s u k a w aE,K a s u y aS.N o n f l a m m a b l e t r i m e t h y l p h o s p h a t es o l v e n t-c o n t a i n i n g e l e c t r o l y t e s f o r l i t h i u m-i o n b a t t e r i e s:I.f u n d a m e n t a l p r o p e r t i e s[J]. J o u r n a l o f T h e E l e c t r o c h e m i c a l S o c i e t y,2001,148(10): A1058-A1065.[11]M aYL,Q i n B S,D uXF,X uG J,W a n g DM,W a n g J,Z h a n g J J,Z h a o JW,S u Z,C u i GL.D e l i c a t e l y t a i-l o r e d t e r n a r y p h o s p h a t e e l e c t r o l y t e p r o m o t e s u l t r a s t a b l e c y c l i n g o fN a3V2(P O4)2F3b a s e d s o d i u m m e t a l b a t t e r-i e s[J].A C SA p p l i e dM a t e r i a l s&I n t e r f a c e s,2022,14(15):17444-17453.[12]H y u n g Y E,V i s s e r sD R,A m i n eK.F l a m e-r e t a r d a n ta d d i t i v e s f o r l i t h i u m-i o nb a t t e r i e s[J].J o u r n a l o f P o w e r S o u rc e s,2003,119-121:383-387.[13]F e n g JK,M a P,Y a n g HX,L uL.U n d e r s t a n d i n g t h ei n t e r a c t i o n s o f p h o s p h o n a t e-b a s e d f l a m e-r e t a r d i n g a d d i-t i v e sw i t h g r a p h i t i c a n o d e f o r l i t h i u mi o nb a t t e r i e s[J].E l e c t r o c h i m i c aA c t a,2013,114:688-692.[14]W a n g W,L i a oC,L i uLX,C a iW,Y u a nY,H o uY B,G u oW W,Z h o uX,Q i uSL,S o n g L,K a nYC, H uY.C o m p a r a b l e i n v e s t i g a t i o n o f t e r v a l e n t a n d p e n t a-v a l e n t p h o s p h o r u s b a s e d f l a m e r e t a r d a n t s o n i m p r o v i n g t h es a f e t y a n d c a p a c i t y o fl i t h i u m-i o n b a t t e r i e s[J]. J o u r n a l o f P o w e r S o u r c e s,2019,420:143-151. [15]T a n S J,Y u e J P,T i a nYF,M aQ,W a n J,X i a oY, Z h a n g J,Y i nY X,W e nR,X i nS,G u oY G.I n-s i t u e n c a p s u l a t i n g f l a m e-r e t a r d a n t p h o s p h a t ei n t o r o b u s t p o l y m e rm a t r i x f o r s a f e a n d s t a b l e q u a s i-s o l i d-s t a t e l i t h-i u m m e t a l b a t t e r i e s[J].E n e r g y S t o r a g e M a t e r i a l s, 2021,39:186-193.[16]J i aH,O n i s h iH,W a g n e rR,W i n t e rM,C e k i c-L a s k-o v i c I.I n t r i n s i c a l l y s a f e g e l p o l y m e r e l e c t r o l y t e c o m p r i-571V o l.32N o.3李星军等:阻燃凝胶聚合物电解质的制备及其在高安全锂离子电池中的应用s i n g f l a m e-r e t a r d i n g p o l y m e r m a t r i xf o rl i t h i u m i o n b a t t e r y a p p l i c a t i o n[J].A C SA p p l i e d M a t e r i a l s&I n-t e r f a c e s,2018,10(49):42348-42355. [17]S h e nZC,Z h o n g JW,J i a n g SY,X i eW H,Z h a nS Y,L i nKJ,Z e n g LY,H uHL,L i nG u i d e,L i nYH, S u n SH,S h i ZC.P o l y a c r y l o n i t r i l e p o r o u sm e m b r a n e-b a s e d g e l p o l y m e r e l e c t r o l y t e b y i n s i t u f r e e-r a d i c a l p o l-y m e r i z a t i o n f o r s t a b l eL im e t a l b a t t e r i e s[J].A C SA p-p l i e dM a t e r i a l s&I n t e r f a c e s,2022,14(36):41022-41036.[18]Z h u JD,Z h a n g Z,Z h a o S,W e s t o v e rAS,B e l h a r o u a k I,C a oPF.S i n g l e-i o n c o n d u c t i n gp o l y m e r e l e c t r o l y t e s f o r s o l i d-s t a t e l i t h i u m–m e t a l b a t t e r i e s:D e s i g n,p e r-f o r m a n c e a n d c h a l l e n g e s[J].A d v a n c e dE n e r g y M a t e r i-a l s,2021,11(14):2003836-2003853.[19]D a g g e rT,R a dB R,S c h a p p a c h e rF M,W i n t e r M.C o m p a r a t i v e p e r f o r m a n c e e v a l u a t i o no f f l a m e r e t a r d a n t a d d i t i v e s f o r l i t h i u m i o n b a t t e r i e s–I.s a f e t y,c h e m i c a l a n d e l e c t r o c h e m i c a l s t a b i l i t i e s[J].E n e r g y T e c h n o l o g y, 2018,6(10):2011-2022.[20]H o u JX,F e n g XN,W a n g L,L i uX,O h m aA,L uL G,R e nDS,H u a n g W S,L iY,Y iM C,W a n g Y, R e n JQ,M e n g ZH,C h u ZY,X uGL,A m i n e K,H eX M,W a n g H W,N i t t aY,O u y a n g M G.U n l o c k i n g t h e s e l f-s u p p o r t e d t h e r m a l r u n a w a y o f h i g h-e n e r g y l i t h-i u m-i o n b a t t e r i e s[J].E n e r g y S t o r a g eM a t e r i a l s,2021, 39:395-402.[21]L o n g M C,W a n g T,D u a nP H,G a oY,W a n g XL,W uG,W a n g Y Z.T h e r m o t o l e r a n t a n df i r e p r o o f g e l p o l y m e re l e c t r o l y t e t o w a r dh i g h-p e r f o r m a n c ea n ds a f e l i t h i u m-i o nb a t t e r y[J].J o u r n a l o fE n e r g y C h e m i s t r y, 2022,65:9-18.[22]H a nLF,L i a oC,M uX W,W uN,X uZM,W a n g JW,S o n g L,K a nYC,H uY.F l a m e-r e t a r d a n tA D P/ P E O s o l i d p o l y m e re l e c t r o l y t ef o rd e n d r i t e-f r e ea n d l o n g-l i f e l i t h i u m b a t t e r y b yg e n e r a t i n g A l,P-r i c hS E I l a y e r[J].N a n oL e t t e r s,2021,21(10):4447-4453.[23]Y a n g CY,J i X,F a nXL,G a oT,S u o LM,W a n g F, S u n W,C h e nJ,C h e nL,H a nFD,M i a oL,X uK, G e r a s o p o u l o sK,W a n g CS.F l e x i b l ea q u e o u sL i-I o n b a t t e r y w i t h h i g he n e r g y a n d p o w e r d e n s i t i e s[J].A d-v a n c e dM a t e r i a l s,2017,29(44):1701972-1701979.[24]F e n g XN,R e nDS,H eX M,O u y a n g M G.M i t i g a-t i n g t h e r m a lr u n a w a y o fl i t h i u m-i o n b a t t e r i e s[J]. J o u l e,2020,4(4):743-770.F l a m e-r e t a r d a n t g e l p o l y m e r e l e c t r o l y t e f o r s a f e l i t h i u m-i o n b a t t e r i e sL I X i n g j u n,M UX i a o w e i,K A NY o n g c h u n,S O N GL e i,H U Y u a n(S t a t eK e y L a b o r a t o r y o f F i r e S c i e n c e,U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y o f C h i n a,H e f e i230026,C h i n a)A b s t r a c t:T h e i n s u f f i c i e n c y o f s a f e t yp e r f o r m a n c ec a n n o t f u l l y m e e t t h ed e v e l o p m e n t r e q u i r e m e n t sf o rh i g he n e r g y d e n s i t y l i t h i u m-i o n b a t t e r i e s.T o s o l v e t h e s a f e t y p r o b l e m,p h o s p h o r u s-f i x e d f l a m e-r e t a r d a n t g e l p o l y m e r e l e c t r o l y t e(D E V P-G P E)h a sb e e n p r e p a r e db y i n-s i t u p o l y m e r i z a t i o no fd i e t h y lv i n y l p h o s p h o n a t ea n d p e n t a e r y t h r i t o l t e t r a ac r y l a t ea st h ea l t e r n a t i v et oc o n v e n t i o n a l e l e c t r o l y t e s.N o t a b l y,t h e c a p a c i t y r e t e n t i o nr a t eo f g r a p h i t e//D E V P-G P E//L i(88.7%)i sm u c hh i g h e r t h a n g r a p h i t e//l i q u ide l e c t r o l y t e//L i(25.8%).A l s o,t h e c a p a c i t y r e t e n t i o n r a t e of L F P//D E V P-G P E//g r a phi t e i s80.2%f o r100 c y c l e s a t0.5C a n d t h e a v e r a g e c o l u m b i a e f f i c i e n c y i s99.73%.A f t e r b e i n g i g n i t e d b y f i r e f o r>5s,t h e s e l f-e x t i n g u i s h i n g t i m e o f D E V P-G P E i s o n l y1.5s.B e s i d e s,n o f i r e a n d e l e c t r o l y t e l e a k a g e o c c u r r e d d u r i n g t h e o v e r h e a t i n g t e s t f o r t h e p h o s p h o r u s-c o n t a i n i n g D E V P-G P E-b a s e d p o u c hc e l lw i t hac a p a c i t y o f1A h.T h e r e f o r e,t h i sD E V P-G P E d e l i v e r sas u p e r i o rs a f e t y p e r f o r m a n c e b y h i n d e r i n g e l e c t r o l y t ev a p o r sv o l a t i l i z a t i o na n d g e n e r a t i n gp h o s p h o r u s-c o n t a i n i n g r a d i c a l sd e c o m p o s e db y d i e t h y l v i n y l p h o s p h o n a t e t o p r e v e n t s u b s e q u e n t r e a c t i o n s.K e y w o r d s:G e l p o l y m e r e l e c t r o l y t e;F l a m e r e t a r d a n t;L i t h i u m-i o n b a t t e r i e s;C y c l i n g p e r f o r m a n c e671火灾科学F I R ES A F E T YS C I E N C E第32卷第3期。

固态电解质的电化学测试方法

固态电解质的电化学测试方法

固态电解质的电化学测试方法1.引言1.1 概述概述固态电解质是一种新型电解质材料,具有良好的热稳定性、化学稳定性和电化学稳定性,被广泛应用于电池、超级电容器、传感器等领域。

而了解和掌握固态电解质的电化学性能对于研究和开发高性能能源材料和设备具有重要意义。

本文旨在总结固态电解质的电化学测试方法,系统介绍不同的测试手段及其原理,并探讨其应用前景。

通过对固态电解质电化学测试方法的综合分析和对比,旨在促进相关领域的研究人员深入理解固态电解质的电化学特性,进一步提高材料的性能和电池设备的性能。

在本文中,我们将首先介绍固态电解质的定义和重要性,概述固态电解质在能源领域的应用前景。

随后,我们将分类和介绍不同的电化学测试方法,并详细说明每种方法的原理和优缺点。

最后,我们将对固态电解质的电化学测试方法的应用前景进行探讨,并总结本文的主要观点。

通过本文的阅读,读者将对固态电解质的电化学测试方法有一个全面的了解,并能够根据实际情况选择合适的测试方法。

同时,本文的研究成果也可为固态电解质材料和相关电池设备的开发提供理论指导和技术支持。

本文的研究成果具有一定的创新性和应用价值,对于推动固态电解质领域的研究和发展具有积极的促进作用。

1.2 文章结构文章结构篇为:文章的结构是为了让读者更好地理解和掌握固态电解质的电化学测试方法。

本文结构如下:引言部分主要包括了对整篇文章的概述、文章的结构以及文章的目的。

首先,我们将简要介绍固态电解质的概念和它在电化学领域的重要性。

然后,我们将详细讨论不同分类的电化学测试方法以及它们的原理。

最后,在结论部分,我们将展望固态电解质的电化学测试方法的应用前景,并对全文进行总结。

引言部分的概述将为读者提供一个对固态电解质的概念和重要性有基本了解的背景。

我们将介绍固态电解质的定义及其在电化学领域中的重要作用。

通过了解固态电解质的基本概念和重要性,读者将更好地理解本文后续内容的意义和目的。

接下来,我们将介绍文章的结构。

电化学测试技术——交流阻抗法

电化学测试技术——交流阻抗法

代入Zf中整理为:
因此
RT i 1 R .o 2 2 s n F 2Do Co i i C .o RT i 1 R .o 2 2 s n F 2DR C R i i C .R RT i Rr nF i i
4.两种常用的等效电路
并联模拟等效电路 串联模拟等效电路
Cp Rp
Rs
Cs
这些等效电路仅为理论处理方便,并无明确物理意义。 对电解池等效电路而言: 当Rl可略时,用并联模拟等效电路 当Rl不可略时,用串联模拟等效电路
§2 电化学极化下界面阻抗

一、电化学极化时的Faraday阻抗:
Z包括Rr、Cw、Rw,在电化学极化下Zw=0,即Z=Rr
二、方法特点
1.高精度测量 因交流信号激励时间较长时体系各种参量均按正 弦规律变化,已达到平稳态,在任一周期内信号 响应情况完全相同,任取一周期分析,所得结果 一致,且是平均结果,消除了许多误差。
2. i 处理简单 因小幅度激励信号,往往用线性化处理,可以得 到许多线性关系式。
三、注意事项
1.极化状态不一定完全是电化学极化,可能 是有浓差极化,因测量之前已用幅度较大的 直流信号进行极化,仅测量体系对微扰信号 的响应,该情况相当于“载波”用小幅度把 大信号产生的结果带出果。 2.即使是纯电化学极化或混合极化也不一定 在线性极化区。 3.注意小幅度激励信号与小幅度测量信号
四、电解池等效电路
小幅度线性化到t后nn1周期无差别仅是重复已达暂稳态每一个周期内是暂各周期之间完全重复是稳rtnfnfrtnfrtnfrtnfrtnfrtnfrt各信号变化由激励信号决定参变量变化按相同规律变化仅是幅度相位上有差异因此交流阻抗法能提供更多的信息

聚合物电解质的制备及电化学性能表征-2018

聚合物电解质的制备及电化学性能表征-2018

实验一聚合物电解质的制备及电化学性能表征一. 实验目的1.学习溶液浇铸法制备聚合物电解质膜;2.掌握交流阻抗法测试聚合物膜的本体电阻,交流阻抗与计时电流法测钠离子迁移数,线性扫描或循环伏安法表征电解质膜的电化学窗口。

二. 实验内容1.电解质膜电导率实验中将固体电解质组装成SS/电解质膜/SS对称阻塞电池进行交流阻抗(EIS)测试。

根据公式(3.1)计算电解质膜的电导率。

其中σ为聚合物电解质膜的电导率,R为EIS测得的电解质膜的本体电阻,L为膜的厚度,S为电极面积。

σ(3.1)测试条件:振幅为10mV,频率为106Hz~10Hz,温度范围25~80℃,测试前将电池在测试温度下静置1h使电池稳定。

2.电解质膜钠离子迁移数将电解质组装成Na/电解质膜/Na对称非阻塞电池进行直流极化测试,直流极化电压为10mV,在直流极化测试前进行EIS测试,振幅为10mV,频率为106Hz~0.01Hz. 根据公式(3.2)计算电解质膜的钠离子迁移数。

其中R0和Rss分别为直流极化前后EIS测得的电解质膜与金属钠的界面阻抗,I0和Iss分别为初始电流和稳定电流值。

(3.2)3.电解质膜电化学窗口通过线性扫描伏安测试(LSV)和循环伏安测试(CV)来表征电解质的电化学窗口,在给定的电压范围内以一定的速率对电池的电压进行扫描,当电池在测试电压范围内发生氧化或还原反应时,可以观察到电路的显著变化,基于这些特征,LSV和CV可以用于评价电解质的电化学稳定性。

实验中使用不锈钢SS为工作电极,金属钠为对电极和参比电极,将聚合物电解质膜组装成SS/电解质膜/Na电池进行LSV或CV测试,扫描范围为-0.5~6V,扫描速度为5mV/s.三.实验步骤1. 将PEO与NaClO4按照摩尔比EO:Na=20的比例进行称量,加入无水乙腈(CAN),加入一定量的介孔分子筛SBA-15和不同质量比的离子液体(0,20wt%,40wt%,60wt%,80wt%),磁力搅拌24h至完全溶解,获得均匀溶液;2. 将溶液浇铸于聚四氟乙烯模具内,室温下干燥24h,使溶剂自然挥发,然后置于50℃烘箱内继续干燥48h使溶剂完全挥发,获得聚合物电解质,用打孔器将聚合物电解质裁成直径为19mm的圆片进行;3. 将电解质圆片、不锈钢圆片和2025纽扣电池壳组装成SS/电解质膜/SS对称阻塞电池、Na/电解质膜/Na对称非阻塞电池、SS/电解质膜/Na电池分别进行离子电导率、离子迁移数、电化学窗口等测试。

固态电解质界面处的li2o的离子电导率_概述及解释说明

固态电解质界面处的li2o的离子电导率_概述及解释说明

固态电解质界面处的li2o的离子电导率概述及解释说明1. 引言1.1 概述在固态电解质界面处,Li2O的离子电导率是一个重要的研究领域。

固态电解质在能源储存和转换中起着关键的作用,而界面处的Li2O对离子传输具有显著影响。

因此,深入了解Li2O在固态电解质界面中的离子电导率特性对于优化固态电池性能具有重要意义。

1.2 文章结构本文主要分为五个部分进行论述。

引言部分介绍了文章的背景及目标;在第二部分中,我们将概述固态电解质界面处Li2O的离子电导率问题,并探讨其在固态电解质界面中的重要性以及已有研究成果和发展动向;第三部分将着重解释说明固态电解质界面处Li2O离子电导率问题,包括对固态电解质界面对离子传输影响机制、Li+离子在Li2O结构中运动机理以及界面工程等方面进行探讨;接下来,在第四节中,我们将介绍实验方法与结果分析,选取样品并介绍实验条件,对实验结果进行意义分析,并与已有研究成果进行比较讨论;最后,在第五节中,我们将总结固态电解质界面处Li2O离子电导率的研究,探索未来的研究展望与建议。

1.3 目的本文旨在全面概述和解释固态电解质界面处Li2O的离子电导率问题。

通过深入研究固态电解质界面中Li2O对离子传输的影响机制、Li+离子在Li2O结构中的运动机理以及界面工程等方面的内容,我们希望能够揭示Li2O在固态电解质界面处的重要性,并为进一步优化固态电池性能提供理论依据和技术指导。

2. 固态电解质界面处的Li2O的离子电导率概述2.1 Li2O在固态电解质界面中的重要性在固态电解质界面中,Li2O具有重要的作用。

首先,作为一种常见的氧化物,Li2O可以形成与固态电解质材料之间的界面层。

这个界面层对于稳定电解质材料和提高离子传输效率非常重要。

其次,固态电解质界面处的Li2O还能够限制固相接触和防止不必要的反应,从而减少了离子传输路径和介质损耗。

2.2 Li2O在离子电导率方面的作用和特点Li2O在离子电导率方面具有独特的特点和作用。

PEO基聚合物复合电解质的制备及性能研究

PEO基聚合物复合电解质的制备及性能研究

山东化工SHANDONG CHEMICAL INDUSTRY・44・2021年第50卷PEO基聚合物复合电解质的制备及性能研究梁文珂,王彦#,诸静,于俊荣,胡祖明(东华大学材料科学与工程学院东华大学纤维材料改性国家重点实验室,上海201620)摘要:将不同含量的单宁酸加入到聚环氧乙烷(PEO)和双三氟甲磺酰胺亚胺锂(LiCFSI)体系中,采用流延法来制备聚合物电解质膜’在氢键的作用下破坏PEO的结晶度来提高聚合物电解质的离子电导率°通过X射线衍射、差示扫描量热仪、热重分析仪、力学性能、表面形貌以及交流阻抗法等对聚合物电解质膜进行表征’结果表明,随着单宁酸(TA)含量的增加,结晶度下降,断裂伸长率提高,最高达到了675%,热力学性能也有很大的改善°室温下,当单宁酸含量为1%时,拉伸强度达到0固2MPg,离子电导率最大达到了3.4X10-5^^cm o 关键词:聚环氧乙烷;双三氟甲磺酰胺亚胺锂;氢键;聚合物电解质中图分类号:TQ151%0646.1文献标识码:A文章编号:1008-021X(2021)03-0044-03Sthdy on Preraration and Performancc of PEO-baseS Polymer Composite ElectrolyteLiang Wenke,Wang Yan*,Zhu Jing,Yu Junrong,Hu Zuming(State Key Laboratory for Modification of Chemical FiCers and Polymer Materials,Colleae of Materials Science and Engineering,Donghua University,Shanghai201620,China)Abstract:DiOerent contents of tannic acid were added to polyethylene oxide(PEO)and lithium bis(miUuowmethane )uooonamide)imide(LiTFSC))y)tem,and thepooymeeeoecteooytemembeanewa)peepaeed byca)tingmethod.Theionic conductieityoothepooymeeeoecteooytei impeoeed byde)teoyingthecey)ta o inityooPEO theough theaction oohydeogen bond).The polymer electrolyte membrane was characterized by X-ray dCfraction,d/ferential scanning ca/rimeter,thermog/vioemic anayaee,mechanicaHpeopeeties,sueoacemoephoogy,and ACimpedancemethod.Theeesu tsshowed thatwith theinceeaseoothe tannin content,theceystainitydeceeased,theeongation atbeeak inceeased,up to675%,and thetheemodynamicpeopeeties weeeasogeeatyimpeoeed.Ateoom tempeeatuee,when thetannicacid contentis1%,thetensiesteength eeaches0.22MPa, and the maxioum ionic conductivity reaches3.4x105S/cm.Key words:polyethylene oxiUe%lithium bisOiCuo/methane su/onamide ioide%hydrogen bond%polymer electrolyte锂离子电池作为储能装置的代表,因为其化学稳定性、循环寿命长和能量密度高等优势,比其他类型的电池如锌c电池、铅酸电池等有更广泛的应用[1]。

干货锂电池研究中的电导率测试分析方法

干货锂电池研究中的电导率测试分析方法

干货锂电池研究中的电导率测试分析方法导读:锂离子电池充放电过程中,电池极片内部存在锂离子和电子的传输,其中锂离子通过电极孔隙内填充的电解液传输,而电子主要通过固体颗粒,特别是导电剂组成的三维网络传导至活物质颗粒/电解液界面参与电极反应。

电子的传导特性对电池性能影响大,主要影响电池的倍率性能。

而电池极片中,影响电导率的主要因素包括箔基材与涂层的结合界面情况,导电剂分布状态,颗粒之间的接触状态等。

通过电池极片的电导率能够判断极片中微观结构的均匀性,预测电池的性能。

本文根据自己的经验和文献资料对电池极片的电导率测试方法进行简单总结,并列举极片电导率的部分影响因素。

01电导率测试方法1.1 测试装置的构建和电极选择最常规的测试装置将测试材料夹在两片测试电极之间,构成一个三明治结构,如图1 所示。

而对于薄膜材料,则必须设计合适的微电极,一般分为两种:三明治结构和面内电极结构(叉指电极、平行条状电极)。

图1 测试电极示意图构成测试装置的极片有 3 类,可逆电极(reversible electrode)、全阻塞电极(blocking electrode)和半阻塞电极(semi-blocking electrode)。

可逆电极和全阻塞电极对应于传统电化学中交换电流很大的理想不极化电极和交换电流接近于零的理想极化电极,半阻塞电极常用于混合导体中离子电导率和电子电导率的区分。

利用这些电极可以组成不同类型的测试装置,以满足不同导电特性材料的不同测试需要。

不同类型电极的特点列于表1。

表1 不同电极类型及特点1.2 离子电导率和电子电导率的测试方法3 种测试离子电导率和电子电导率的电极构筑方式。

BUSCHMANN 等分别用金属锂可逆电极和Au 离子阻塞电极作为测试电极进行交流阻抗谱测试[图2(a)],得到材料的离子电导率和电子电导率之和;图2(b)用金属锂作为测试电极(170 ℃退火处理,保证测试电极和测试材料之间的良好接触)进行四电极直流法测试,得到总电导率和交流阻抗谱的结果基本一致;图2(c)一侧用Au电极,一侧用金属锂电极,通过Hebb-Wagner 直流极化,混合离子和电子的高瞬态电流很快下降,并最终达到稳定的电子电流,从而确定电子和空穴的电导率;之后,由交流阻抗谱得到的总电导率和直流极化法得到的电子电导率,用迁移数的定义计算电子迁移数。

nafion115膜电导率 -回复

nafion115膜电导率 -回复

nafion115膜电导率-回复什么是nafion115膜电导率?Nafion115膜是一种常用的离子交换膜,被广泛应用于燃料电池、电解水制氢和电化学器件等领域。

在这些应用中,膜的电导率是一个重要的性能指标,它决定了电子和离子在膜中传输的效率。

因此,了解和研究Nafion115膜的电导率对于优化其应用至关重要。

电导率是一个描述材料导电性的物理量,它表示单位面积上电流通过的能力。

在本文中,我们将着重讨论Nafion115膜的电导率。

首先,需要明确几个相关概念。

电导率可以通过测量电阻和几何参数来计算。

简单来说,电导率是电阻的倒数,表示一个物质电流导通的能力。

其单位是西门子每米(S/m)。

由于Nafion115膜是一种聚合物电解质膜,其电导率主要来自于其中的离子传导。

因此,我们需要关注离子在膜中的传输行为。

在Nafion115膜中,离子传输的主要机制是质子交换。

这意味着,质子(即氢离子)通过Nafion115膜的过程中,与膜中的硫醚基团发生交换。

因此,质子在膜中的传输是通过质子与硫醚基团之间的反应来实现的。

要理解Nafion115膜的电导率,我们需要考虑影响离子传输的几个因素。

首先是膜的厚度。

较薄的膜有更高的电导率,因为电流只需要通过较短的路径。

而较厚的膜则会导致电阻增加,从而降低电导率。

其次是膜的含水量。

水分子对电导率有很大的影响,适当的水分会促进离子的传导。

然而,过多或过少的水分都会影响电导率。

最后是膜的温度。

通常情况下,较高的温度会提高离子的动力学活化能,从而提高电导率。

对于研究Nafion115膜的电导率,一种常用的方法是使用交流阻抗谱技术。

该技术可以在不同频率下测量样品的阻抗,并根据测量结果计算电导率。

此外,还有其他方法可以用于测定电导率,如四探针法和离子选择电极法等。

除了测量Nafion115膜的电导率,研究者们还致力于改进膜的电导率。

一种改进方法是在膜中引入导电纳米填料,如金属颗粒或碳纳米管。

化学电导率测量

化学电导率测量

化学电导率测量在化学领域中,电导率是衡量溶液中离子浓度的重要指标之一。

通过测量物质的电导率,可以判断其导电性能及溶质的浓度,从而深入了解化学反应机制,有助于工业生产和科学研究。

本文将介绍化学电导率测量的原理和常用方法。

一、电导率测量原理电导率是指电流通过单位长度和单位截面积时,所产生的电场强度的大小。

电导率常用单位是西门子/米(S/m)。

在溶液中,离子的运动能够导致电导率的出现。

溶剂中的离子具有正负电荷,它们在电场的作用下向相反方向运动,形成离子电流。

离子的浓度越高,电导率就越大。

二、直流电导率测量方法直流电导率测量是测量电流通过固定距离和固定截面积时的电场强度。

常用的直流电导率测量方法有两电极法和四电极法。

1.两电极法两电极法是最简单的电导率测试方法之一。

它使用两个电极将电流传递到溶液中,并测量通过溶液的电压降。

根据欧姆定律,电导率可以通过测量电流和电压的比值得到。

两电极法适用于电导率较低的溶液测量,但其结果可能受到电极极化和电压降的影响。

2.四电极法四电极法是一种更精确的电导率测量方法,它能够消除电极极化和电压降的影响。

四电极法使用两对电极,两对电极分别用于电流输入和电压测量。

其中,电流电极只用于电流输入,而电压电极则只用于电压测量。

通过这种方法,可以有效消除电极极化和电压降对电导率测量结果的影响,提高测量准确性。

三、交流电导率测量方法交流电导率测量是测量电流经过固定距离和固定截面积时的交变电场强度。

交流电导率测量方法常用的有交流阻抗法和频率扫描法。

1.交流阻抗法交流阻抗法利用交流电导率仪来测量电导率。

该方法通过交流电场对溶液中离子的频率依赖性进行测量,从而得出溶液的电导率数据。

交流阻抗法具有较高的测量准确性和稳定性。

2.频率扫描法频率扫描法是一种测量交流电导率的高级方法。

它通过在一定频率范围内变化交流电场的频率,从而得到不同频率下的电导率数据。

频率扫描法可以获得更丰富的电导率信息,有助于分析溶液中离子的运动特性和浓度变化。

单离子固态聚合物锂离子电解质膜的研究

单离子固态聚合物锂离子电解质膜的研究

单离子固态聚合物锂离子电解质膜的研究崔尧;尹雷;余晴春;蒋峰景【摘要】Novel single-ion solid-state polymer lithium-ion electrolyte membranes were prepared by blending lithiated perfluorinated sulfonic with polyethylene glycol dimetyl ether [PEGDE, CH3O(CH2CH2O) CH3, =3-8] in various molar ratios of ethylene oxide unite to Li+ (EO/Li+). The fundamental properties of thermal stability, mechanical strength, micro-morphology and electrochemical performance were studied. The TGA test shows that the polymer electrolyte membranes are thermal y stable up to 250℃and the maximum tensile strength is up to 4.25 MPa. At aEO/Li+ratio of 20, high ionic conductivities of 4.26×10-4 and 2.16×10-5S/cm are obtained at 100 and 40℃,respectively. The solid polymer menbrane exhibits single lithium-ion conductor behavior with Li+>0.9. It’s hopeful that the prepared electrolyte membranes would be used in mid and high temperature lithium-ion battery.%将锂化后的Nafion树脂与聚乙二醇二甲醚按不同比例共混涂膜,制备得到新的固态单一离子聚合物锂离子电解质膜,并对该电解质膜的热化学稳定性,机械强度,微观形貌以及电化学性能等进行了测试和分析。

交流阻抗技术测量聚合物电解质离子电导率

交流阻抗技术测量聚合物电解质离子电导率

实验 交流阻抗技术测量聚合物电解质离子电导率一、实验目得1、了解交流阻抗技术原理及应用2、应用交流阻抗技术测定聚合物电解质离子电导率二、实验原理交流阻抗法就是一种以小振幅得正弦波电位(或电流)为扰动信号,叠加在外加直流电压上,并作用于电解池.通过测量系统在较宽频率范围得阻抗谱,获得研究体系相关动力学信息及电极界面结构信息得电化学测量方法。

例如,可从阻抗谱中含有时间常数个数及其大小推测影响电极过程得状态变化情况,可以从阻抗谱观察电极过程中有无传质过程得影响等.本实验采用交流交流阻抗技术测量聚合物电解质离子电导率。

基本测试电池回路得等效电路示于图1。

其中C dl 就是双电层电容,由电极/电解质界面得相反电荷形成,C g 就是两个平行电极构成得几何电容,它得数值较双电层电容Cdl 小。

Rb 为电解质得本体电阻。

图1 测试电池得等效电路由图1等效电路计算得相应得阻抗值:(1)其中,实部:Z ¹= (2)虚部:-Z "= (3)在低频区ω→0,式(2)简化为Z ¹=当C dl >〉C g时,则Cg /Cdl →0得到:Z¹=Rb (4)此时图1简化成纯电阻R b,在复平面图上就是一条垂直于实轴并与实轴交于R b 得直线。

在高频区ω→∞,当Cdl >>C g时式(2)简化为Z ¹= (5)而式(3)简化为-Z"= (6)将式(5)与式(6)中得ω削去可得(7)式(7)表示得就是一个以(Rb /2,0)为圆心,R b /2为半径得圆方程.在复平面图上表现为一个半圆。

综合式(4)与(7),与图1对应得阻抗图谱如图2所示。

该阻抗图就是一个标准得半圆(高频部分),外加一条垂直于实轴Z¹得直线(低频部分)。

图2 与图1 等效电路对应得阻抗图谱.通过测定测试由图2中直线与实轴得交点,可求出本体电解质得电阻值Rb电池得电极面积A与聚合物电解质膜得厚度d,即可求得该导电聚合物得电导率:(s、cm—1)在实际聚合物电解质电导率测量中,通常得到得就是由压扁得半圆与倾斜得尾线组成,如图3所示。

llzto的离子电导率

llzto的离子电导率

llzto的离子电导率摘要:1.离子电导率的概念2.锂离子电导率的重要性3.锂离子电导率的测量方法4.锂离子电导率的应用正文:一、离子电导率的概念离子电导率是指在溶液或固体中,离子在电场作用下移动的能力。

它反映了离子在电场中的传导性能,是衡量电解质溶液或固态电解质性能的重要参数。

离子电导率与离子浓度、离子电荷数以及离子在溶液或固体中的移动速率等因素有关。

二、锂离子电导率的重要性锂离子电导率在能源、化学和环境等领域具有重要的应用价值。

在锂离子电池领域,锂离子电导率是衡量电池性能的关键参数。

锂离子电池的电导率越高,电池的充放电速率越快,电池的能量密度和循环寿命也会相应提高。

因此,研究锂离子电导率对于优化锂离子电池性能具有重要意义。

三、锂离子电导率的测量方法锂离子电导率的测量方法主要包括以下几种:1.四端电阻法:四端电阻法是测量电解质溶液电导率的常用方法。

通过在溶液中放置两个电极,在电极间施加一定的电压,测量流过电极的电流,可以计算出电解质溶液的电导率。

2.交流阻抗法:交流阻抗法是测量固态电解质离子电导率的有效方法。

通过在固态电解质中施加交流电压,测量固态电解质的阻抗变化,可以计算出固态电解质的离子电导率。

3.核磁共振法:核磁共振法可以测量锂离子在溶液或固态电解质中的自旋- 自旋耦合常数,从而计算出锂离子的电导率。

四、锂离子电导率的应用锂离子电导率的研究成果广泛应用于以下几个领域:1.锂离子电池:锂离子电池是当前最受关注的能源存储设备之一。

通过研究锂离子电导率,可以优化锂离子电池的性能,提高电池的充放电速率、能量密度和循环寿命。

2.固体电解质:固体电解质在电池、电容器等电化学器件中有广泛的应用。

研究锂离子电导率可以帮助我们了解固体电解质的离子传导性能,从而优化固体电解质的性能。

3.水处理:在水处理领域,锂离子电导率可以用于评估水体的污染程度。

交流阻抗测试

交流阻抗测试

对电化学电池使用一正弦信号激励,然后分析产生的电流,这是最早用来测量快速电子转移反应速率常数的一种方法.在任何快速反应的测量中,无论采用什么技术,都必须在短时间得到有关信息,否则扩散,而不是动力学,成为速率决定过程.交流电桥一度曾是可用来在毫秒及更短时间量程上测量的唯一仪器方法,利用平衡下的电化学电池作为wheatstone电桥的未知臂,从而建立了目前的交流电技术和分析方法的基础.现代仪器方法位交流电测量比手动平衡电桥迅速得多,因此可在动态而不是平衡条件下连续记录交流电参数,例如在循环伏安法或极谱实验中.在时间量程的另一端,交流电技术在腐蚀腐蚀研究中现在是重要的,在这方面,快速响应不如常见的涉及表面和溶液反应的复杂过程的全面分析来得重要.这里现代计算方法在交流电方法得应用中是必不可少的.8.2 电化学电池阻抗的测量在任何交流电方法中有几个共同性问题的考虑要记住.(a)激励信专的频率如果交流电方法作为判别性方法使用,则频率范围应该尽可能宽.在理想中这意味着,如果所有理论工具已齐备,包括Kramers-Krong分析法(见下文),那么频率范围在6到7个10倍频,如10-2到105Hz的潜力应充分使用.(b)线性.专虑到基元反应步骤的速率是指数性依赖斤电位的,电化学过程在本质上是非线性的。

然而最充分发展的交流电理论全是线件理论,这意味着要使用它们就要将激励信号幅但保持得足够小,以使体系成为非常近似于线性.(即可以应用Butlter-V olmer方程式的线性近似式,见式(1.34).)振幅容许值随试验的体系和频率领改变,但一般规则是,峰—峰幅值不超过l0mV,除非有某种特别指明可以安全地这样做,而且即使是这—低水平的扰动,也可能产生问题.非线性是通过在电池响应中而产生激励信号的谐被而表现出来的,因此可以用频谱分析仪之类的检测系统来检洲它们的存在相测迢它们的帕值.应该按常规地使用示波器来监测电池电流中的交流成分,而由正弦波响应的可见畸变作为表示任何显著的非线性的方法.进一步的简单检查是用不问激励幅值进行分析,响应的如何差异都意味着非线性已成为问题.(c)谬误的响应众所用知,交流电技术易于因测量回路中的谬误效应而产生歪曲.不易设计一种恒电位仪,在高频时不发生相位移而仍具有足够高的增益.接线与地和接线本身之间的杂散电容,以及接线和电池内部结构的自感应在很高的频率时总是一个问题.设计良好的电池可以帮助在一定程度上减轻这些问题,应该对下列几点加以注意.工作电极相对电圾应该对称放置,以便提供非常均匀的电流分布.Luggin毛细管应该靠近工作电极,但不要靠很大近,这样可尽可能减小末补偿的Ohm电阻,但又避免了引起不规则电流分布的屏蔽效应.毛细管最好应该是直而短的,但口径不要太细,否则其电阻将是高的.参考电极本身的电阻应尽可能地低,并通过一个用短导线与之相连的高输入阻抗的单位增益放大器来对之进行缓冲,以便将参考回路的RC时间常数降到最小(参见第十一章).由于需要保持小的激励信号,所以散杂电噪声或来自市电电源频率下的干扰也可能成为一个问题.通常需要仔细将电池和检测回路屏蔽起来,以将这种干扰降低到可接受的程度.有几种迥然不同类型的仪器方法可供使用于借正弦被激励而测量。

全固态电池电解质参数 导电率 单位含义

全固态电池电解质参数 导电率 单位含义

全固态电池是一种新型的电池技术,相比传统液态电解质电池具有更高的安全性和能量密度,因此备受关注。

在全固态电池中,电解质是其中一个关键的参数,其导电率对于电池的性能和稳定性有着重要的影响。

本文将深入探讨全固态电池电解质参数中的导电率,包括其单位含义,以期为相关研究和技术开发提供参考。

一、导电率的定义导电率是描述材料导电性能的物理量,通常用σ 表示。

在固体电解质中,导电率表示单位体积内的电流密度与电场强度之比,其单位是(S/m)。

导电率高表示材料导电性能好,反之导电率低则意味着材料的电导性能较差。

二、影响导电率的因素1. 结构:固态电解质的晶体结构对其导电性能有着重要的影响。

晶格结构的稳定性、组分的均匀性以及晶粒的尺寸都会直接影响导电率的大小。

2. 温度:温度是影响固态电解质导电率的重要因素。

一般来说,提高温度可以增加固体电解质的离子迁移速率,从而提高导电率。

3. 杂质:固态电解质中的杂质、缺陷或者界面效应都会影响其导电性能。

一些杂质或者缺陷可以提高或者降低导电率,因此需要进行精确的控制。

三、常见固态电解质的导电率数据1. LiPON (Li3PO4):LiPON是一种无机玻璃电解质,在温度为25℃时其导电率约为10^-6 S/cm。

2. LLZO (Li7La3Zr2O12):LLZO是一种典型的氧化锂固体电解质,其导电率可达到10^-4 S/cm以上。

3. Sulfide类固体电解质:一些硫化物或者硒化物固态电解质由于其离子导电机制的特殊性,可以具有非常高的导电率,达到10^-2 S/cm 以上。

四、导电率与全固态电池性能的关系导电率直接影响全固态电池的充放电性能、内阻和循环寿命。

高导电率可以提高电池的充放电效率,降低内阻;而低导电率则可能导致电池性能下降、内阻增加,甚至在高功率放电时出现过热现象。

全固态电池材料设计中需要兼顾导电率和其他性能指标,以实现全固态电池的高安全性和高能量密度。

五、导电率测量技术1. 交流阻抗法:交流阻抗法是常用的固态电解质导电率测量技术之一,通过测量电解质中施加的交流电场对应的交流电流,可以计算出电解质的导电率。

交流阻抗技术测量聚合物电解质离子电导率

交流阻抗技术测量聚合物电解质离子电导率
综合式( 4)和( 7),与图 1 对应的阻抗图谱如图 2 所示。 该阻抗图是一个 标准的半圆(高频部分) ,外加一条垂直于实轴 Z1的直线(低频部分) 。
图 2 与图 1 等效电路对应的阻抗图谱
由图 2 中直线与实轴的交点, 可求出本体电解质的电阻值 Rb 。通过测定测试 电池的电极面积 A 与聚合物电解质膜的厚度 d,即可求的该导电聚合物的电导率:
Z1= 1
Rb 2Cg2Rb2
(5)
而式( 3)简化为
C
2 g
Rb2
-Z"= 1 2Cg2 Rb2
( 6)
将式( 5)与式( 6)中的 ω削去可得
(Z ' Rb / 2) 2 ( Z ") 2 Rb2 / 4
(7)
ቤተ መጻሕፍቲ ባይዱ
式(7)表示的是一个以(R b/2 ,0)为圆心,R b/2 为半径的圆方程。在复 平面图上表现为一个半圆。
Z
Cd2l Rb (C g Cdl )2 2 Cd2l C 2gRb2
j
Cg Cdl 2Cd2l Cg2Rb2 (Cg Cdl )2 3Cd2l C 2gRb2
其中,实部:
Cd2l Rb
Z1= ( Cg Cdl ) 2 2Cd2l Cg2 Rb2
虚部:
-Z"=
Cg Cdl 2Cd2l Cg2 Rb2 ( Cg Cdl ) 2 3Cd2l Cg2 Rb2
-p
-p
Zcpe=K(j ω) = Kω [cos(pπ/2 ) -j (sin (pπ/2 ))
其中, 0≤p≤1,K 为常数 将固定相元 cpe 引入聚合物电解质测定的等效电路中能较好地解释图 2 与图
3 阻抗图谱的不同。(具体推导过程略)在低频区阻抗图上,是一条与实轴相交 于 O(Rb, 0)点并与实轴 呈 pπ/2 角度的一条直线,在高频区为一旋转放大的 半圆 .

P_MMA_MAh_凝胶聚合物电解质的制备及其性能

P_MMA_MAh_凝胶聚合物电解质的制备及其性能

P(MMA2MA h)凝胶聚合物电解质的制备及其性能3王书会,颜红侠,马晓燕,黄 韵,张启路(西北工业大学应用化学系,陕西西安710072)摘 要: 以自制的甲基丙烯酸甲酯与马来酸酐的共聚物(P(MMA2MAh))为基体,丙烯碳酸酯(PC)为增塑剂,LiClO4为锂盐,制备成凝胶聚合物电解质(GPE);采用交流阻抗法、差示扫描量热法(DSC)、热失重分析(T GA)对此GPE的电性能及热性能作了研究,并且研究了不同配比及温度对其离子电导率的影响。

结果表明,以P(MMA2MAh)为基体的GPE与PMMA基GPE相比,共聚型P(MMA2MAh)的凝胶体系较好的成膜性和热稳定性;当共聚物含量为60% (质量分数)时,凝胶体系的玻璃化转变温度为27.28℃,质量损失为5%时热分解温度为145℃;当共聚物含量为45%(质量分数)时,凝胶聚合物电解质的综合性能较好;且共聚物P(MMA2MAh)基GPE的离子电导率与温度的关系服从Arrhenius方程。

关键词: P(MMA2MAh);凝胶聚合物电解质;电导率中图分类号: TM911文献标识码:A 文章编号:100129731(2008)05207752041 引 言聚合物锂离子电池的技术核心是采用聚合物基质作为电极与电解质的骨架结构,液态电解质分子固定在其中,从而电极和电解质内部具有高的离子导电性。

聚合物锂离子电池的关键技术是制备聚合物电解质,要求聚合物电解质具有高的离子传导率、适宜的机械强度、柔韧性和化学及电化学稳定性等[1]。

聚甲基丙烯酸甲酯(PMMA)作为凝胶聚合物电解质(GPE)的基体材料,由于其结构单元中有一羰基侧基,与碳酸酯类增塑剂中的氧有很强的相互作用,因此能够包容大量的液体电解质,且PMMA系列凝胶电解质对锂电极有较好的界面稳定性,与金属锂电极的界面阻抗低[2,3]。

但是,PMMA基GPE机械强度较低、结构稳定性较差、Li+离子迁移数偏低(阳离子迁移数一般不超过0.5)、难以与电极充分接触[4],影响了其进一步应用。

La0.8Sr 0.2Ga0.8Mg0.2O3与La0.8Sr 0.2Ga0.8Mg0.15Co0.05O3电导的对比

La0.8Sr 0.2Ga0.8Mg0.2O3与La0.8Sr 0.2Ga0.8Mg0.15Co0.05O3电导的对比

Keywords: Lanthanum gallate, Total electrical conductivity, Electronic conductivity, Oxygen ion conductivity, Hebb鄄Wagner polarization
LaGaO3 基钙钛矿氧化物是近来研究较多的一 种中温固体氧化物燃料电池(ITSOFC)电解质 , [1鄄7] 该
文献[1鄄7] 中对镓酸镧体系材料的电导特性进行 了初步研究. Jang 等[2]测试了不同锶、镁掺杂量的镓 酸镧电解质的电子电导特性. Ishihara 等[3鄄7]研究了钴 掺杂的 LSGM8282 的电导特性, 考察了 LSGMC5 电子电导特性与钴价态的关系, 发现随着氧分压的 降低, LSGMC5 中钴的价态显著降低, 氧空位的数 量增加. 理论上, 氧离子空位数量的变化应该引起氧 离子电导率的变化, 然而目前文献中尚未有关于氧 分压对 LSGMC5 氧离子电导率影响的详细报道. 氧 分压和温度对二者电导率具体影响的报道亦很少, 并且对 LSGMC5 中传荷物种产生机制的分析存在 一定的分歧[3鄄7].
致密氧化铝片, Pt(阻塞电极)| 测试样品 | Pt(可 逆电极), 空气
涂有电极测试样品的一个表面采用 Pyrex 玻璃 环以及玻璃粉密封于一个致密氧化铝片上, 形成阻 塞电极; 样品的另一面暴露于流动的空气中, 形成 可逆电极. 空气的流速为 100 mL·min-1.为了避免在 极化条件下氧气自发地由可逆电极一侧渗透到阻塞 电极一侧, 测试样品表面没有涂电极的部分用玻璃 胶覆盖. 极化采用恒电位方式进行. 测试用的电化学 仪器为: VMP2/Z鄄40 电化学工作站(AMETECH).
WU, Ling鄄Li WANG, Shi鄄Zhong鄢 LIANG, Ying
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d Rb
A

-1
s.cm

在实际聚合物电解质电导率测量中, 通常得到的是由 压扁的半圆和倾斜的尾 线组成 ,如图 3 所示。因此 仅用电阻和电容组成的等效电路 ,不能很好的解释 电极 /电解质界面双电层。近年来,人们采用固定相元 cpe 作为等效元件来解释 阻抗数据。
所谓固定相元 cpe,可想象为一个 漏电容,其性质介于电阻与电容之间 ,其 阻抗表达式为:
本实验采用交流交流阻抗技术测量聚合物电解质离子电导率。 基本测试电池 回路的等效电路示于图 1。其中C dl是双电层电容,由电极/电解质界面的相反 电荷形成, Cg是两个平行电极构成的几何电容, 它的数值较双电层电容C dl 小。 R b为电解质的本体电阻 。
图 1 测试电池的等效电路 由图 1 等效电路计算得相应的阻抗值:
在低频区 ω→0,式( 2)简化为
Cd2l Rb Z1= ( Cg Cdl )2
( 1) (2)
( 3)
当C dl >>Cg时,则C g/C dl→0 得到:
Z1=R b
( 4)
此时图 1 简化成纯电阻R b,在复平面图上是一条垂直于实轴并与实轴交于
R b的直线。
在高频区 ω→∞,当C dl>>C g时式( 2)简化为
实验 交流阻抗技术测量聚合物电解质离子电导率
一、实验目的
1、了解交流阻抗技术原理及应用 2、应用交流阻抗技术测定聚合物电解质离子电导率
二、实验原理
交流阻抗法是一种以小振幅的正弦波电位(或电流)为扰动信号,叠加在外 加直流电压上, 并作用于电解池。 通过测量系统在较宽频率范围的阻抗谱, 获得 研究体系相关动力学信息及电极界面结构信息的电化学测量方法。 例如,可从阻 抗谱中含有时间常数个数及其大小推测影响电极过程的状态变化情况, 可以从阻 抗谱观察电极过程中有无传质过程的影响等。
综合式( 4)和( 7),与图 1 对应的阻抗图谱如图 2 所示。 该阻抗图是一个 标准的半圆(高频部分) ,外加一条垂直于实轴 Z1的直线(低频部分) 。
图 2 与图 1 等效电路对应的阻抗图谱
由图 2 中直线与实轴的交点, 可求出本体电解质的电阻值 Rb 。通过测定测试 电池的电极面积 A 与聚合物电解质膜的厚度 d,即可求的该导 )2 2 Cd2l C 2gRb2
j
Cg Cdl 2Cd2l Cg2Rb2 (Cg Cdl )2 3Cd2l C 2gRb2
其中,实部:
Cd2l Rb
Z1= ( Cg Cdl ) 2 2Cd2l Cg2 Rb2
虚部:
-Z"=
Cg Cdl 2Cd2l Cg2 Rb2 ( Cg Cdl ) 2 3Cd2l Cg2 Rb2
图 3 聚合物电解质阻抗图
三、实验步骤
将一定尺寸聚合物电解质膜夹在两片金属电极间, 连接好测量线路 2、在电化学综合测试仪 Solartron SI1287+SI1260上测定样品的交流阻抗谱。 频率范围从 1Hz 到 105Hz 3、由交流阻抗图谱中 尾线与实轴的交点 ,读取聚合物电解质的 本体电阻 , 计算该聚合物电解质的电导率。
-p
-p
Zcpe=K(j ω) = Kω [cos(pπ/2 ) -j (sin (pπ/2 ))
其中, 0≤p≤1,K 为常数 将固定相元 cpe 引入聚合物电解质测定的等效电路中能较好地解释图 2 与图
3 阻抗图谱的不同。(具体推导过程略)在低频区阻抗图上,是一条与实轴相交 于 O(Rb, 0)点并与实轴 呈 pπ/2 角度的一条直线,在高频区为一旋转放大的 半圆 .
Z1= 1
Rb 2Cg2Rb2
(5)
而式( 3)简化为
C
2 g
Rb2
-Z"= 1 2Cg2 Rb2
( 6)
将式( 5)与式( 6)中的 ω削去可得
(Z ' Rb / 2) 2 ( Z ") 2 Rb2 / 4
(7)
式(7)表示的是一个以(R b/2 ,0)为圆心,R b/2 为半径的圆方程。在复 平面图上表现为一个半圆。
相关文档
最新文档