投资收益与风险的模型

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

承诺书

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。

投资收益和风险问题的分析

摘要

在现代商业、金融的投资中,任何理性的投资者总是希望收益能够取得最大化,但是他也面临着不确定性和不确定性所引致的风险。而且,大的收益总是伴随着高的风险。在有很多种资产可供选择,又有很多投资方案的情况下,投资越分散,总的风险就越小。为了同时兼顾收益和风险,追求大的收益和小的风险构成一个两目标决策问题,依据决策者对收益和风险的理解和偏好将其转化为一个单目标最优化问题求解。随着投资者对收益和风险的日益关注,如何选择较好的投资组合方案是提高投资效益的根本保证。传统的投资组合遵循“不要将所有的鸡蛋放在一个蓝子里”的原则, 将投资分散化。

关键词:投资;收益;风险;数学建模

0问题提出

市场上有n种资产si (i = 1,2,··· ,n)可以选择,现用数额为M的相当大的资金作一个时期的投资。这 n 种资产在这一时期内购买的 si 平均收益率为ri ,风险损失率为 qi ,投资越分散,总的风险越少,总体风险可用投资的si中最大的一个风险来度量。购买 si时要付交易费(费率pi),当购买额不超过给定值ui 时,交易费按购买ui计算。另外,假定同期银行存款利率是r0,既无交易费又无风险。(r0 = 5%)

Table:已知n=4时相关数据

1问题分析

这是一个优化问题,要决策的是向每种资产的投资额,即所谓投资组合,要达到的目标有二,净收益最大和整体风险最小。一般来说这两个目标是矛盾的,收益大,风险必然也大;反之亦然,所以不可能给出这两个目标同时达到最优的所谓的完美决策,我们追求的只能是满足投资者本身要求的投资组合,即在一定风险下收益最大的决策,或在一定收益下风险最小的决策,或收益和风险按一定比例组合最优的决策。冒险性投资者会从中选择高风险下收益最大的决策,保守型投资者则可从低风险下的决策中选取。

建立优化问题的模型最主要的是用数学符号和式子表述决策变量、构造目标函数和确定约束条件。对于本题决策变量是明确的,即对S i (i=0,1,…,n)的投资份额(S0表示存入银行),目标函数之一是总风险最大,目标函数之二是总风险最小,而总风险用投资资产S i中的最大的一个风险衡量。约束条件应为总资金M的限制。

2 模型假设

1.投资数额M相当大,为了便于计算,假设M=1;

2. 投资越分散,总的风险越小;

3. 总体风险用投资项目si 中最大的一个风险来度量;

4. n 种资产si 之间是相互独立的;

5. 在投资的这一时期内,ri 、pi 、qi 、r0为定值,不受意外因素影响;

6. 净收益和总体风险只受ri 、pi 、qi 影响,不受其他因素干扰。

3 符号说明

si —第i 种投资项目,如股票、债券等,s0表示不投资 ri ,pi,qi —分别为si 的平均收益率,风险损失率,交易费率 ui —si 的交易定额 r0—同期银行利率 xi —投资项目si 的资金 a —投资风险度 Q —总体收益 ∆Q —总体收益的增量

4模型建立

在实际投资中,投资者承担风险的程度不一样,若给定风险一个界限a ,使最大的一个风险

qix i M

≤a,可找到相应的投资方案。将多目标转化成单目标线性规划。

模型一:固定风险水平,优化收益模型

max ∑(r i −p i )x i n i=0

q i x i

M

≤a

s.t. ∑(1

+p i )x i n i=0=M

x i ≥0,i=0,1,…,n

若投资者希望总盈利至少达到k 以上,在风险最小的情况下寻找相应的投资组合。

模型二:固定盈利水平,极小化风险模型 min{max{q i x i }}

∑(r i −p i )x i ≥k n i=0 s.t. ∑(1+p i )x i n i=0=M x i ≥0,i=0,1,…,n

投资者在权衡资产风险和预期收益两方面后,希望选择一个令自己满意的投资组合。

模型三:均衡模型

mins{max{q i x i }}-(1-s)∑(r i −p i )x i n i=0

∑(1+p i )x i =M n i=0 s.t.

x i ≥0,i =0,1,…,n

其中s 为投资偏好系数。

5模型求解

模型一:

0.025x1≤x5

0.015x2≤x5

s.t. 0.055x3≤≤x5

0.026x4≤x5

x0+1.01x1+1.02x2+1.045x3+1.065x4=1

x i≥0,i=0,1,…,n

模型二:

假定 q i.x i≤x5

(1)要求:在收益一定k的情况下,所冒的风险最小

q i.x i≤x5

x0+1.01x1+1.02x2+1.045x3+1.065x4+0=1

0.05x0+0.27x1+0.19x2+0.185x3+0.185x4+0≥k

0.025x1≤x5

0.015x2≤x5

0.055x3≤x5

0.026x4≤x5

相关文档
最新文档