短波通信发展趋势及策略
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
短波通信发展趋势及策略
摘要:短波通信在通信领域具有其它通信手段无法替代的地位。本文分析了信息化时代对短波通信提出的需求及其发展趋势,针对目前短波通信存在的问题,提出了相应的解决思路。
关键词:短波通信发展需求发展趋势发展策略
短波通信是指利用波长为100m~10m(频率为3~30MHz)的电磁波进行的无线电通信。它主要是利用电离层反射进行数千乃至上万公里的远距离通信。由于电离层是一种典型的时变传输媒介,存在着瑞利衰落、多径效应、多普勒频移等复杂时变因素,使接收端的码元在时间上展宽,包络发生畸变,严重地影响短波通信的质量,甚至会造成通信中断。以这样的信道条件进行数据通信,为了保证对误码率的要求,其传输速率必然有限。在很长一段时期内,短波信道数据传输速率不超过200b/s。同时,短波信道是带宽受限的信道,射频频谱非常拥挤,信道间互相干扰严重。上世纪六十年代卫星通信问世后,短波通信一度处于发展低潮[1]。八十年代以后,短波通信在电波传播研究、频率自适应通信、中高速数据通信、组网通信、自适应跳频及近垂直入射天波通信等方面都取得了重大突破,短波通信方式存在的许多问题和缺点得到克服和改进;随着微型计算机、移动通信和微电子技术的迅猛发展,人们利用微处理器、数字信号处理(DSP),不断提高短波通信的质量和数据传输速率,使现代短波通信重新焕发青春。世界各国近年来又加紧了对短波通信技术的研究,竞相推出和装备各种短波自适应和跳频电台,我国也研制出了短波自适应通信系统、频率管理预报系统、跳频系列电台。
本文从信息时代对短波通信的需求入手,结合短波通信发展的现状及趋势,对我国的短波通信发展策略提出相应的建议。
一、未来信息时代对短波通信发展提出了新的需求
现代通信的特点是高度信息化。信息化对通信系统提出了越来越高的要求。新型通信设备总的发展趋势是集成化、数字化、一体化与网络化,数据和图像将发展成为未来通信的主要业务。无线电通信业务的飞速发展、电磁环境将进一步恶化,作为无线电通信重要手段之一的短波通信,至少应该满足以下几个方面的需求:
(一)远距离通信。正是由于短波通信仅需较小的功率就可以实现远距通信,而且设备简单,成本低廉,建立迅速,机动灵活,更重要的是因为它有不易被摧毁的“中继站”——电离层,所以它比卫星通信等其它通信方式能更好地满足某些业务对远距离通信的需求。但是,由于电磁密度的增加,使得远距离通信对电台功率的要求越来越大,而此举又使得电磁环境进一步恶化。在人为电磁干扰日益增大的今天,以较少代价实现远距离和超远距离的通信是短波通信的优势,也是它要解决的问题。
(二)可靠通信。由于电离层反射、多径衰落、传播损耗、可用频率范围、电离层不规则性、电离层骚动、电离层倾斜、波导传播和散射传播等方面随机特性的存在,获得可靠的通信质量一直是短波通信追求的目标。
(三)大容量/高速通信。传统短波通信难以崛起的一个重要原因,就是短波信道容量小,其电报速率很低(不超过200波特b/s)。这不仅无法传送数字语音和数字图像,就是传报也远远满足不了实际需求。为了适应数据通信业务及数字保密话迅速增长的需求,在短波通信的新近发展中,采取了一些有效抗衰落和抗多径(通常指抗码元串扰) 的技术措施,使系统的误码率可达10-5~10-6。
(四)组网通信。采用网络式通信,一方面可增加通信链路的抗毁性及顽存性;另一方面,可在网内选用最佳链路,克服由于电离层随经纬度变化而使单条链路质量很差的影响。组网通信已成为短波通信克服信道不稳定的又一种有效技术。此外,计算机网络的迅速蔓延,必将使短波信道成为其无线传输媒体之一。由于高性能的短波电台、Modem和网络入口设备的应用,在网络无处不在的新世纪,短波将与卫星、激光等无线信道同光纤等有线信道一起在计算机网络四通八达的通信子网中扮演重要角色。
(五)抗干扰通信。由于短波通信保密(或隐蔽)性不强,抗干扰能力差,以及现代电磁环境的特点和规律,短波通信应该具有在不同电磁环境中的生存能力,以及抗干扰等能力。
二、短波通信新技术发展趋势
近年来短波通信的发展势头非常迅猛,短波通信在技术上已相继取得了一系列的突破和进展。可以说,迄今为止影响短波通信的主要难题大部分已得到解决,短波通信质量已赶上有线、微波、卫星通信的性能指标[2]。其发展趋势表现为以下几个方面:
(一)由单一自适应技术向全自适应技术方向发展。短波通信存在着短波信道的时变色散特性和高电平干扰的弱点。因此,为了提高短波通信的质量,最根本的途径是“实时地避开干扰,找出具有良好传播条件的无噪声信道”。完成这一任务的关键是采用自适应技术。所谓自适应,就是能够连续测量信号和系统变化,自动改变系统结构和参数,使系统能自行适应环境的变化和抵御人为干扰。因此,短波自适应的含义很广。现已发展的自适应技术有:自适应选频与信道建立技术、功率自适应技术、传输速率自适应技术、自适应调制解调技术、自适应分集技术、自适应信道均衡及辨识技术、自适应编码技术、自适应调零天线技术。除上述技术外,尚有自适应时隙利用、自动转信技术等。
传统意义上的自适应主要是指频率自适应,是以实时信道估值为基础,采用自动链路建立和链路质量分析技术,因此也称之为实时选频技术。在未来信息时代,网络数据通信将成为主要的通信方式,但是单一的频率自适应还无法满足网络数据通信的要求,由于短波通信中各种新技术的出现,特别是分组交换和各种自适应短波通信技术的发展,为短波数据网的发展打下了基础,频率自适应技术可与其它自适应功能综合构成全自适应短波通信系统。未来通信的需求促进了短波自适应通信系统正在向全自适应技术的方向发展。
(二)短波抗干扰技术体制正逐步实现由窄带低速数据通信技术向宽带高速数据通信技术发展。针对短波通信存在的保密(或隐蔽)性不强、抗干扰能力差的弱点,以及电磁环境的特点和规律,为了提高短波通信抗干扰等能力,发展起来了短波通信电子防御技术[3]。这类技术以短波扩频(扩展频谱)通信技术为主体,包括短波跳频和自适应跳频技术、短波直接序列扩频技术等。
传统的绝大多数短波跳频电台都是传输模拟话音的模拟跳频电台,此类短波跳频电台在技术上存在话音质量差、通信距离短、跳速低(通常为几十跳)等问题,而且几乎都是窄带跳频。为提高抗干扰能力,一方面必须提高跳频速率;另一方面可以增加信号带宽,使信号淹没于噪声之中。通常采取纠错、交织、加密等措施,但与此同时,又会使信息的有效传输速率降低。为了提高信息的有效传输速率,也必须增加频率和信道带宽。也就是说高速、宽带已成为短波通信增强抗干扰能力的焦点。如美国近年来研制的短波跳频电台跳速已达5000跳/秒以上(跳频带宽2MHz、信息传输速率19.2kb/s)。
(三)短波终端技术向自适应调制解调技术发展。现代短波通信终端技术,主要是针对短波通信存在着严重的电磁干扰的特点,为了满足人们对数据业务,特别是高速数据业务的需求,围绕着提高数据传输的可靠性和数据传输速率而发展起来的。主要包括语音编码技术、数字调制技术、短波调制解调器技术,差错控制技术等。
传统的短波通信工作方式主要是“话”和“低速报”,无法满足数据通信的需要。在短波信道上传输数据话音和其他数据信号必须要有短波Modem,调制解调器就成为实现短波数据通信的关键部件。由于短波信道是一个典型的时变信道,多种反射模式并存,不仅存在衰落而且存在多径时散,绝大多数多径时延在2~5ms范围内。同时,由于信息时代严重的电磁干扰,为了保证网络传输信息的可靠性,调制解调方式必须具有抗干扰、抗多径和抗衰落的能力,保证快速准确地传递信息。因此,短波自适应抗多径调制解调技术成为现代短波通信研究的重要方面[4]。
(四)短波通信系统由数字化向软件化发展。短波通信数字化主要包括两个方面的内容,一是语音数字化通信,二是数据通信业务,特别是高速数据业务。因此,在短波信道条件下高速率的可靠数字信号传输,低误码率的话音编码,以及数字信号处理等技术,是实现短波数字化的关键技术。微电子技术的发展,促进了大规模集成电路以及微处理机在短波通信设备中的广泛应用,短波通信设备集成化、小型化、通用化程度大大加强,技术性能显著提高。目前短波通信主要在自适应技术、电子对抗技术、计算机组网技术等三个主流方向发展。但是,传统的短波通信设备在结构上存在很大的限制,实现不同的业务需要接入不同类型的终端。另外,上述三个技术在现有系统中实现面临着很大的困难,从而迫使人们寻找一种有效的解决方案。软件无线电是近年来国际上兴起的一项新技术,被称为是自模拟通信过渡到数字通信之后,无