第二章.工程热力学..
合集下载
工程热力学与传热学第二章稳态热传导基本概念

0)
2. 常温边界
系统边界温度恒定,即 (T = T_b)
3. 周期性边界
系统边界温度呈周期性变化, 即 (T(x, y, z, t) = T(x + L, y,
z, t))
求解方法
有限差分法
将导热微分方程转化为差 分方程,通过迭代求解温 度分布。
有限元法
将导热微分方程转化为变 分形式,利用有限元离散 化求解温度分布。
在稳态热传导过程中,导热系数和热 阻共同决定了物体内部温度分布的特 性。
当材料的导热系数越大,其对应的热 阻就越小,表示热量传递越容易;反 之,导热系数越小,热阻越大,热量 传递越困难。
04 稳态热传导的实例分析
一维稳态热传导
总结词
一维稳态热传导是热传导在单一方向上的情况,常见于细长物体或薄层材料。
三维稳态热传导
要点一
总结词
三维稳态热传导涉及三个方向的热量传递,常见于球体或 立方体。
要点二
详细描述
在三维稳态热传导中,热量在三个相互垂直的方向上传递 ,常见于球体或立方体等三维物体。三维稳态热传导的温 度分布在不同方向上都是稳定的,其数学模型比一维和二 维情况更为复杂,需要考虑三个方向的热量传递。三维稳 态热传导在解决实际问题时具有重要意义,如地球内部的 热量传递、建筑物的散热分析等。
稳态热传导的重要性
01
02
03
工程应用广泛
稳态热传导在许多工程领 域都有广泛应用,如建筑、 机械、航空航天等。
基础理论支撑
稳态热传导是传热学的基 础理论之一,对于理解更 复杂的传热过程和现象至 关重要。
节能减排
通过掌握稳态热传导规律, 有助于优化能源利用,实 现节能减排。
稳态热传导的应用场景
2. 常温边界
系统边界温度恒定,即 (T = T_b)
3. 周期性边界
系统边界温度呈周期性变化, 即 (T(x, y, z, t) = T(x + L, y,
z, t))
求解方法
有限差分法
将导热微分方程转化为差 分方程,通过迭代求解温 度分布。
有限元法
将导热微分方程转化为变 分形式,利用有限元离散 化求解温度分布。
在稳态热传导过程中,导热系数和热 阻共同决定了物体内部温度分布的特 性。
当材料的导热系数越大,其对应的热 阻就越小,表示热量传递越容易;反 之,导热系数越小,热阻越大,热量 传递越困难。
04 稳态热传导的实例分析
一维稳态热传导
总结词
一维稳态热传导是热传导在单一方向上的情况,常见于细长物体或薄层材料。
三维稳态热传导
要点一
总结词
三维稳态热传导涉及三个方向的热量传递,常见于球体或 立方体。
要点二
详细描述
在三维稳态热传导中,热量在三个相互垂直的方向上传递 ,常见于球体或立方体等三维物体。三维稳态热传导的温 度分布在不同方向上都是稳定的,其数学模型比一维和二 维情况更为复杂,需要考虑三个方向的热量传递。三维稳 态热传导在解决实际问题时具有重要意义,如地球内部的 热量传递、建筑物的散热分析等。
稳态热传导的重要性
01
02
03
工程应用广泛
稳态热传导在许多工程领 域都有广泛应用,如建筑、 机械、航空航天等。
基础理论支撑
稳态热传导是传热学的基 础理论之一,对于理解更 复杂的传热过程和现象至 关重要。
节能减排
通过掌握稳态热传导规律, 有助于优化能源利用,实 现节能减排。
稳态热传导的应用场景
工程热力学(第2章--热力学第一定律)

第一篇 工程热力学
第二章 热力学第一定律
本章主要内容
热力学第一定律的实质 系统储存能 闭口系能量方程 状态参数焓 开口系能量方程及其应用
2
2-1 热力学第一定律的实质
➢19世纪30-40年代,迈尔·焦耳(德国医生) 发现并确定了能量转换与守恒定律。恩格斯 将其列为19世纪三大发现之一(细胞学说、 达尔文进化论)。
5
永动机设想?
Q
电
锅 炉
加 热 器
汽轮机 发电机
凝
给水泵
汽
器
Wnet
Qout
6
2-2 系统储存能
➢ 能量是物质运动的度量,运动有各种不同的形 态,相应的就有各种不同的能量。
➢ 系统储存的能量称为储存能,它有内部储存能 与外部储存能之分。
系统储存能
内部储存能 (热力学能)
外部储存能 (宏观机械能)
➢能量转换与守恒定律指出:一切物质都具有 能量。能量既不可能被创造,也不可能被消 灭,它只能在一定的条件下从一种形式转变 为另一种形式。而在转换过程中,能的总量 保持不变。
3
实质:热力学第一定律是能量转换与守恒 定律在热力学中的具体应用。
热功转换可归结为两种运动形式之间的转化:
宏观物体的机械运动 微观分子的热运动
说明:由计算结果可知,将汽轮机的散热量忽略不计时,对汽轮机
功率的影响并不大。所以,将汽轮机内蒸汽的膨胀作功过程看成是绝热 过程来分析是合理的。
30
例2-3 某300MW机组,锅炉的出力为qm=1024×103kg/h,出口蒸
汽锅每焓炉小为的时h效的2=率燃33煤η92量炉.=3B9K?2J%/,kg标,准锅煤炉发进热口量给q水煤=焓29为27h01=K1J1/9k7g.,3K求J/锅kg炉,
第二章 热力学第一定律
本章主要内容
热力学第一定律的实质 系统储存能 闭口系能量方程 状态参数焓 开口系能量方程及其应用
2
2-1 热力学第一定律的实质
➢19世纪30-40年代,迈尔·焦耳(德国医生) 发现并确定了能量转换与守恒定律。恩格斯 将其列为19世纪三大发现之一(细胞学说、 达尔文进化论)。
5
永动机设想?
Q
电
锅 炉
加 热 器
汽轮机 发电机
凝
给水泵
汽
器
Wnet
Qout
6
2-2 系统储存能
➢ 能量是物质运动的度量,运动有各种不同的形 态,相应的就有各种不同的能量。
➢ 系统储存的能量称为储存能,它有内部储存能 与外部储存能之分。
系统储存能
内部储存能 (热力学能)
外部储存能 (宏观机械能)
➢能量转换与守恒定律指出:一切物质都具有 能量。能量既不可能被创造,也不可能被消 灭,它只能在一定的条件下从一种形式转变 为另一种形式。而在转换过程中,能的总量 保持不变。
3
实质:热力学第一定律是能量转换与守恒 定律在热力学中的具体应用。
热功转换可归结为两种运动形式之间的转化:
宏观物体的机械运动 微观分子的热运动
说明:由计算结果可知,将汽轮机的散热量忽略不计时,对汽轮机
功率的影响并不大。所以,将汽轮机内蒸汽的膨胀作功过程看成是绝热 过程来分析是合理的。
30
例2-3 某300MW机组,锅炉的出力为qm=1024×103kg/h,出口蒸
汽锅每焓炉小为的时h效的2=率燃33煤η92量炉.=3B9K?2J%/,kg标,准锅煤炉发进热口量给q水煤=焓29为27h01=K1J1/9k7g.,3K求J/锅kg炉,
工程热力学 第二章 热力学第一定律

wt
1 2
cf22
cf21
gz2
z1 ws
(2-11)
将轴功的表达式代入上式,即有:
2
1 d ( pv)
2
2
1 pdv 1 vdp
wt 12 pdv p2v2 p1v1 12 vdp (2-11a)
由上式可知,准静态过程的 技术功的大小可用过程线左边的 面积来表示。
准静态 pdv d( pv) wt
wt pdv d( pv) pdv ( pdv vdp) vdp
wt vdp wt vdp
准静态
q du pdv
q dh vdp
热一律解析式之一 热一律解析式之二
技术功在示功图上的表示
q12 (u2 u1) w12
Q dU pdV (2-4)
2
Q12
(U2
U1)
pdV
1
(2-4a)
q du pdv (2-4b)
2
q12
(u2 u1)
pdv
1
(2-4c)
2-3 开口系统能量方程 Energy balance for open system
式中各项的正负号规定为:系统吸热为正,放热为负; 系统对外作功为正,外界对系统作功为负。
上式既适用于准静态过程,也适用于非准静态过程。
对于无耗散的准静态过程, w pdv
因此上述诸式可写为:
Q dU W
Q12 (U2 U1) W12
对1kg工质,有:
q du w
所以有:
h1 h2
1 2
第二章——工程热力学课件PPT

100 U1A2 60 Q2B1 U 2B1 40
Q2B1 80
第二章 讨论课
2、一个装有2kg工质的闭口系经历了如下 过程:过程中系统散热25kJ,外界对系统 做功100KJ,比热力学能减小15KJ/kg,并 且整个系统被举高1000m。试确定过程中系 统动能的变化。
Q E W
第二章 讨论课
空
Q
调
Q W
T
第二章 讨论课
➢ 计算题
1、对某种理想气体加热100KJ,使其由状 态1沿途径A可逆变化到状态2,同时对外做 功60KJ。若外界对该气体做功40KJ,迫使 它沿途径B可逆返回状态1。问返回过程中该 气体是吸热还是放热?热量是多少?
Q1A2 U1A2 W1A2 Q2B1 U 2B1 W2B1
V
1b 2
2c1
状态参数 ( Q W ) ( Q W )
1a 2
1b 2
热力学能及闭口系热一律表达式
定义 dU = Q - W 热力学能U 状态函数
Q = dU + W Q=U+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
热力学能U 的物理意义
不可能制成的”
§2-2 热一律的推论热力学能
热力学能的导出 闭口系循环
Q W
( Q W ) 0
热力学能的导出
( Q W ) 0 对于循环1a2c1
p1
( Q W ) ( Q W ) 0
b
1a 2
2c1
a
c
对于循环1b2c1
2
( Q W ) ( Q W ) 0
• u : 比参数 [kJ/kg] • 热力学能总以变化量出现,热力学能零点人 为定
工程热力学第2章 热力学基本定律

卡诺循环热机效率
任意正循环的热效率:
t
w q1
q1 q2 1 q2
q1
q1
T
卡诺循环热效率:
T1
t,C1T T12ss22 ss111T T12 T2
T1
q1
Rc
w
q2 T2
Q1
Q2 S1
S2 S
t,c的说明
t,C
1
T2 T1
• t,c 只取决于T1和T2 ,而与工质的性质无关;
Q1 > Q’1 ,Q2 < Q’2
多热源可逆循环t < t c
引入:平均吸热温度:T 1 平均吸热温度:T 2
t
1Q2 Q1
T2 T1
T
Q1
T1
T1
A
T2
T2 Q2
S1
Q’1
B
Q’2
S2
S
卡诺定理的意义
1、从理论上确定了通过热机循环,实现热能 转变为机械能的条件。
2、指出了提高热机热效率的方向,是研究热 机性能不可缺少的准绳。
• T1 或 T2 或 温差
t,c
• T1 ≠ ∞, T2 ≠ 0 K, t,c < 100%, 热二律 • 当T1=T2, t,c = 0, 单热源热机不可能实现
[例1] 某热机工作于1500K的高温热源和300K的低温热源 之间,从高温热源吸取1000kJ 热量,最多能做多少功?
逆向卡诺循环制冷
理解:
系统和外界
1、第二类永动机不可能实现, 热机的热效率<100%
2、热二律:功可全变热、而热不能全变功? No!
若允许产生其它变化,则热能全变功,如理想气体定温过程:
工程热力学第二章

可逆
8
∫ pdv
q = ∫ Tds
条件
7
准静态或可逆
4、示功图与示热图 p W T Q
二、储存能
1、内部储存能——热力学能 储存于系统内部的能量, ,与系统内工质粒子的微 储存于系统内部的能量 观运动和粒子的空间位置有关。 观运动和粒子的空间位置有关。 分子动能( 分子动能(移动、 移动、转动、 转动、振动) 振动)T 分子位能( 分子位能(相互作用) 相互作用)V 核能 化学能
对推进功的说明
1、与宏观流动 与宏观流动有关 流动有关, 有关,流动停止, 流动停止,推进功不存在 2、作用过程中, 作用过程中,工质仅发生位置 工质仅发生位置变化 位置变化, 变化,无状 态变化 3、w推=p v与所处状态有关, 与所处状态有关,是状态量 4、并非工质本身的能量( 并非工质本身的能量(动能、 动能、位能) 位能)变化引 起,而由外界做出, 而由外界做出,流动工质所携带的能量 流动工质所携带的能量 可解为: 可理解为:由于工质的进出, 由于工质的进出,外界与系统之间 所传递的一种机械功 所传递的一种机械功, 机械功,表现为流动工质进出系 统使所携带 统使所携带和所 携带和所传递 和所传递的一种 传递的一种能量 的一种能量
15 16
三、焓
内能+流动功 焓的定义式 焓的定义式: 定义式:焓=内能+ 对于m 对于m千克工质: 千克工质: H = U + pV 对于1 对于1千克工质: 千克工质: h=u+ p v 焓的物理意义: 焓的物理意义: --对 --对流动工质 流动工质( 工质(开口系统 开口系统) 系统),表示沿流动方向传递 的总能量中, 的总能量中,取决于热力状态 取决于热力状态的那部分能量 热力状态的那部分能量. 的那部分能量. --对 --对不流动工质 不流动工质( 闭口系统) 焓只是一个复合状 工质(闭口系统 系统),焓只是一个复合状 态参数 思考: 思考:特别的对理想气体 h=f(T h=f(T) f(T) 17
8
∫ pdv
q = ∫ Tds
条件
7
准静态或可逆
4、示功图与示热图 p W T Q
二、储存能
1、内部储存能——热力学能 储存于系统内部的能量, ,与系统内工质粒子的微 储存于系统内部的能量 观运动和粒子的空间位置有关。 观运动和粒子的空间位置有关。 分子动能( 分子动能(移动、 移动、转动、 转动、振动) 振动)T 分子位能( 分子位能(相互作用) 相互作用)V 核能 化学能
对推进功的说明
1、与宏观流动 与宏观流动有关 流动有关, 有关,流动停止, 流动停止,推进功不存在 2、作用过程中, 作用过程中,工质仅发生位置 工质仅发生位置变化 位置变化, 变化,无状 态变化 3、w推=p v与所处状态有关, 与所处状态有关,是状态量 4、并非工质本身的能量( 并非工质本身的能量(动能、 动能、位能) 位能)变化引 起,而由外界做出, 而由外界做出,流动工质所携带的能量 流动工质所携带的能量 可解为: 可理解为:由于工质的进出, 由于工质的进出,外界与系统之间 所传递的一种机械功 所传递的一种机械功, 机械功,表现为流动工质进出系 统使所携带 统使所携带和所 携带和所传递 和所传递的一种 传递的一种能量 的一种能量
15 16
三、焓
内能+流动功 焓的定义式 焓的定义式: 定义式:焓=内能+ 对于m 对于m千克工质: 千克工质: H = U + pV 对于1 对于1千克工质: 千克工质: h=u+ p v 焓的物理意义: 焓的物理意义: --对 --对流动工质 流动工质( 工质(开口系统 开口系统) 系统),表示沿流动方向传递 的总能量中, 的总能量中,取决于热力状态 取决于热力状态的那部分能量 热力状态的那部分能量. 的那部分能量. --对 --对不流动工质 不流动工质( 闭口系统) 焓只是一个复合状 工质(闭口系统 系统),焓只是一个复合状 态参数 思考: 思考:特别的对理想气体 h=f(T h=f(T) f(T) 17
工程热力学第二章气体的热力性质..

u cv ( )v ( ) v dT T
q
h cp ( ) p ( ) p dT T
q
• 定容比热:在定容情况下,单位物量的物体, 温度变化1K(1℃)所吸收或放出的热量,称 为该物体的定容比热。 • 定压比热:在定压情况下,单位物量的物体, 温度变化1K(1℃)所吸收或放出的热量,称 为该物体的定压比热。
第二章 气体的热力性质
●理想气体与实际气体 ●理想气体比热容 ●混合气体的性质 ●实际气体状态方程 ●对比态定律与压缩因子图
本章基本要求
1 掌握理想气体状态方程的各种表述形式,
并应用理想气体状态方程及理想气体定值 比热进行各种热力计算
2掌握理想气体平均比热的概念和计算方法
3理解混合气体性质
4掌握混合气体分压力、分容积的概念
ni R0 R0 nR0 R i 0 M m m
n
mi
i 1
n
R0 Mi
m
gi Ri
i 1
n
2 、若已知各组成气体的容积成分及气体常数.
R R0 R0 M r1M1 r2 M 2 rn M n 1 r1 r2 R1 R2 rn Rn 1 ri i 1 Ri
t1 t2
c c2
2 A 1
q c t (t2 t1 )
1
t2
c=f (t)
q ct 1 (t2 t1 )
t2
ct
t1
t2
1
B
c1
D
0
q cdt cdt cdt
t1 0
t2
t2
q
F E
q D2E 0D D1F 0D
工程热力学第二章

n
i
i
混合气体的折合气体常数
R R = eq Meq R nR ∑ni Mi R ∑mR i i i = 0= 0= = m m m m n = ∑gi R i
五、分压力的确定
piV = ni R T pi ni 0 = = xi 或 pi = xi p = ri p pV = nR T p n 0
混 合 气 体 第i种组成气体 相对成分
m mi
n ni
V Vi
相对成分= 相对成分=
分 总
量 量
质量分数:
摩尔分数:
体积分数:
m gi = i , m ni xi = , n V r= i, i V
∑g =1
i
∑x =1
i
∑r =1
i
Vi为分体积
gi、xi、ri的转算关系
V ni i = ⇒xi = r i V n
=q02-q01
= ∫ cdt − ∫ cdt
0 0 t2 t1
= c 0 ⋅ t2 − c 0 ⋅ t1
t2 t1
c 0 , c 0 表示温度自 °C到t1和0°C到t2的平均比热容. 0
t2 t1
q ct = 1 t2 −t1
t2
∫ = ∫ =
t
t2
t1
cdt
t2
t2 −t1
0 t1
cdt + ∫ cdt
通用气体常数不仅与气体状态无关,与气 体的种类也无关 R =8.314J /(mol ⋅ K)
0
气体常数与通用气体常数的关系:
m pV = nR T = R T 0 0 M pV = mR T
R0 R= 或 R0 = M R M
《工程热力学》第二章—热力学基本定律

在孤立系统中,能的形式可以相互转换, ● 在孤立系统中,能的形式可以相互转换,但能 的总量保持不变。 的总量保持不变。 第一类永动机是不可能制成的。 ● 第一类永动机是不可能制成的。 ● 工程热力学中常以热力系统为对象来研究能量 的传递、转换和守恒。 的传递、转换和守恒。 对任一热力系统,热力学第一定律可表述为: ● 对任一热力系统,热力学第一定律可表述为: 进入系统的能量 - 离开系统的能量 = 系统中储存能量的变化
2
热力学基本定律
2.1 热力学第一定律的实质
能量守恒与转换定律: ● 能量守恒与转换定律:自然界中的一切物质都具有 能量,能量既不可能被创造,也不可能被消灭; 能量,能量既不可能被创造,也不可能被消灭;但 它可以从一种形式转变为另一种形式,从一个物体 它可以从一种形式转变为另一种形式, 传递给另一个物体,在转换和传递过程中, 传递给另一个物体,在转换和传递过程中,能的总 量保持不变。 量保持不变。 第一定律的实质: ● 第一定律的实质:能量守恒与转换定律在热现象中 的应用。 的应用。
2.2.3 储存能
能量是物质运动的量度, ● 能量是物质运动的量度,运动是物质存 在的形式,因此一切物质都有能量。 在的形式,因此一切物质都有能量。 物质本身具有的能量称为储存能 储存能。 ● 物质本身具有的能量称为储存能。
◆ 外部储存能 内部储存能(内能) ◆ 内部储存能(内能)
一、外部储存能
2.2.1 功
一、定义
● 在力学中,功的定义为:物体所受的力F和物体在 在力学中,功的定义为:物体所受的力 和物体在 力的方向下的位移X的乘积, 力的方向下的位移 的乘积,即W=FX。 的乘积 。 ●在热力学中,系统与外界相互作用而传递的能量, 在热力学中,系统与外界相互作用而传递的能量, 若其全部效果可表现为使外界物体改变宏观运动状 态,则这种传递的能量称为功。 则这种传递的能量称为功。
工程热力学第二章教材

第二章 热力学第一定律
First Law Of Thermodynamics
第一章内容回顾
一、本章基本公式列表于1-1,在学习中应熟练掌握。
表1-1 第一章的基本公式
v V m m v p pb p e p pb p v t T 273.15K W1 2. Q1 2 或 或 或 T t 273.15K w1 2 q1 2
二、迁移能——功量和热量
功量和热量都是系统与外界相互作用所传递的能量,而不 是系统本身所具有的能量(如热力学能、宏观动能和重力
位能等),其值并不由系统的状态确定,而是与传递时所
经历的具体过程有关。 功量和热量不是系统的状态参数,而是与过程特征有关的过 程量,称为迁移能。
三、功量
热力系与外界发生功的作用有多种形式,包括容积功、 推动功、流动功等。
pb
f
传热(不需要物体的宏观位移):当热源与工质接触时,接
触处两个物体中杂乱运动的质点进行能量交换,结果高 温物体把能量传递给低温物体
作功过程往往伴随着能量形态的转化:
工质膨胀过程:热力学能→机械能 工质压缩过程:机械能→热力学能 热能转化为机械能的过程包括两类过程: (1)能量转换的热力学过程:由热能传递转变为工质的热 力学能,然后由工质膨胀把热力学能变为机械能,转换过 程中工质的热力状态发生变化,能量的形式也发生变化; (2)单纯的机械过程:由热能转换而得的机械能再变成活 塞和飞轮的动能,若考虑工质本身的速度和离地面高度的变 化,则还变成工质的宏观动能和位能,其余部分则通过机器 轴对外输出。
第二章 热力学第一定律
First Law Of Thermodynamics
本章的基本要求
深入理解热力学第一定律的实质; 掌握能量、储存能、热力学能、迁移能、焓的概念及计算式; 掌握体积变化功、推动功、轴功和技术功的概念及计算式; 熟练掌握热力学第一定律的基本能量方程式(闭口系统和开口 系统),能够正确、灵活地应用热力学第一定律表达式来分析 计算工程实际中的有关问题。
First Law Of Thermodynamics
第一章内容回顾
一、本章基本公式列表于1-1,在学习中应熟练掌握。
表1-1 第一章的基本公式
v V m m v p pb p e p pb p v t T 273.15K W1 2. Q1 2 或 或 或 T t 273.15K w1 2 q1 2
二、迁移能——功量和热量
功量和热量都是系统与外界相互作用所传递的能量,而不 是系统本身所具有的能量(如热力学能、宏观动能和重力
位能等),其值并不由系统的状态确定,而是与传递时所
经历的具体过程有关。 功量和热量不是系统的状态参数,而是与过程特征有关的过 程量,称为迁移能。
三、功量
热力系与外界发生功的作用有多种形式,包括容积功、 推动功、流动功等。
pb
f
传热(不需要物体的宏观位移):当热源与工质接触时,接
触处两个物体中杂乱运动的质点进行能量交换,结果高 温物体把能量传递给低温物体
作功过程往往伴随着能量形态的转化:
工质膨胀过程:热力学能→机械能 工质压缩过程:机械能→热力学能 热能转化为机械能的过程包括两类过程: (1)能量转换的热力学过程:由热能传递转变为工质的热 力学能,然后由工质膨胀把热力学能变为机械能,转换过 程中工质的热力状态发生变化,能量的形式也发生变化; (2)单纯的机械过程:由热能转换而得的机械能再变成活 塞和飞轮的动能,若考虑工质本身的速度和离地面高度的变 化,则还变成工质的宏观动能和位能,其余部分则通过机器 轴对外输出。
第二章 热力学第一定律
First Law Of Thermodynamics
本章的基本要求
深入理解热力学第一定律的实质; 掌握能量、储存能、热力学能、迁移能、焓的概念及计算式; 掌握体积变化功、推动功、轴功和技术功的概念及计算式; 熟练掌握热力学第一定律的基本能量方程式(闭口系统和开口 系统),能够正确、灵活地应用热力学第一定律表达式来分析 计算工程实际中的有关问题。
工程热力学 第二章 热力学第一定律

pv p2v2 p1v1
是系统为维持工质流动所需的功
对推动功的说明
1、与宏观流动有关,流动停止,推动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之间
The work depends on the process path
作功的说明
“作功”是系统与外界间的一种相互作用,是越过系统边
界的能量交换。
功是指作功过程中在传递着的能量的总称,过程一旦结束
就再无所谓功。
机械能与机械功、电能与电功等同吗?
系统可以拥有电能,机械能,但决不会拥有电功、机械功之类的功。 功只不过是特定条件下在过程中传递着的能量。
实质:能量守恒及转换定律在热现象中的应用
• 18世纪初,工业革命,热效率只有1% • 1842年,J.R. Mayer阐述热力学第一定律, 但没有引起重视
• 1840-1849年,Joule用多种实验的一致性 证明热力学第一定律,于1850年发表并得 到公认
热力学第一定律的普遍表达式
第一定律的表述: 热是能的一种,机械能变热能,或热能 变机械能的时候,他们之间的比值是一定的。 或:热可以变为功,功也可以变为热;一定量的热消失时 必定产生相应量的功;消耗一定量的功时,必出现与之相 应量的热。
系统是否作功应以过程在外界所引起的效果来判断,而不
应从系统的内部去寻找依据,对系统的内部来说无所谓 “功”。
功是有序能量传递。
传热
系统与外界之间的另一种相互作 用,是系统与外界之间依靠温差进行 的一种能量传递现象,所传递的能量 称放热为负
是系统为维持工质流动所需的功
对推动功的说明
1、与宏观流动有关,流动停止,推动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之间
The work depends on the process path
作功的说明
“作功”是系统与外界间的一种相互作用,是越过系统边
界的能量交换。
功是指作功过程中在传递着的能量的总称,过程一旦结束
就再无所谓功。
机械能与机械功、电能与电功等同吗?
系统可以拥有电能,机械能,但决不会拥有电功、机械功之类的功。 功只不过是特定条件下在过程中传递着的能量。
实质:能量守恒及转换定律在热现象中的应用
• 18世纪初,工业革命,热效率只有1% • 1842年,J.R. Mayer阐述热力学第一定律, 但没有引起重视
• 1840-1849年,Joule用多种实验的一致性 证明热力学第一定律,于1850年发表并得 到公认
热力学第一定律的普遍表达式
第一定律的表述: 热是能的一种,机械能变热能,或热能 变机械能的时候,他们之间的比值是一定的。 或:热可以变为功,功也可以变为热;一定量的热消失时 必定产生相应量的功;消耗一定量的功时,必出现与之相 应量的热。
系统是否作功应以过程在外界所引起的效果来判断,而不
应从系统的内部去寻找依据,对系统的内部来说无所谓 “功”。
功是有序能量传递。
传热
系统与外界之间的另一种相互作 用,是系统与外界之间依靠温差进行 的一种能量传递现象,所传递的能量 称放热为负
工程热力学第二章

二、理想气体比热容 1.定义:单位物量的物质,温度升高或降 低1K(1℃)所吸收或放出的热量。 2.种类、单位及关系 c ' kJ / (kg3 K ) (1)质量比热容: c kJ / (m K ) (2)体积比热容: Mc kJ / (kmol K ) (3)摩尔比热容:
Mc c c 0 22.4
2.对比参数:各状态参数与临界状态的同名 参数的比值。 3.对比态定律:对于满足同一对比状态方程 式的各种气体,对比参数中若有两个相等, 则第三个对比参数就一定相等,物质也就处 于对应状态中。
一、填空题 1.气体常数与气体的种类 有 关,与状态 无 关。 通用气体常数与气体种类无关,与状态无关。 在SI制中通用气体常数的数值是 8314 , 单位是 J/Kmol.K 。 2.质量比热容,摩尔比热容与体积比热容之 间的换算关系为 。 3.理想气体的 cp 及 cv 值与气体的种类有关, 与温度有关。它们的差值与气体种类有关, 与温度无关。它们的比值 与气体种类有关, 与温度有关。
Mi Mi i R 相互间的换算关系: gi xi M ri M ri R ri i
6.混合气体的折合分子量与气体常数
(1)折合分子量
M ri M i
i 1 n
1 M n gi i 1 M i
n
(2)折合气体常数
R0 R M
R gi Ri
i 1
R
p [ 合气体中组成气体具 有与混合气体相同的温度和压力时,单独存 在占有的容积。
4.阿密盖分特容积定律
V [Vi ]T , p
i 1 n
5.混合气体的成分表示方法及换算 m g (1)质量成分: m
i i
Vi (2)容积成分:ri V ni x (3)摩尔成分: i n
Mc c c 0 22.4
2.对比参数:各状态参数与临界状态的同名 参数的比值。 3.对比态定律:对于满足同一对比状态方程 式的各种气体,对比参数中若有两个相等, 则第三个对比参数就一定相等,物质也就处 于对应状态中。
一、填空题 1.气体常数与气体的种类 有 关,与状态 无 关。 通用气体常数与气体种类无关,与状态无关。 在SI制中通用气体常数的数值是 8314 , 单位是 J/Kmol.K 。 2.质量比热容,摩尔比热容与体积比热容之 间的换算关系为 。 3.理想气体的 cp 及 cv 值与气体的种类有关, 与温度有关。它们的差值与气体种类有关, 与温度无关。它们的比值 与气体种类有关, 与温度有关。
Mi Mi i R 相互间的换算关系: gi xi M ri M ri R ri i
6.混合气体的折合分子量与气体常数
(1)折合分子量
M ri M i
i 1 n
1 M n gi i 1 M i
n
(2)折合气体常数
R0 R M
R gi Ri
i 1
R
p [ 合气体中组成气体具 有与混合气体相同的温度和压力时,单独存 在占有的容积。
4.阿密盖分特容积定律
V [Vi ]T , p
i 1 n
5.混合气体的成分表示方法及换算 m g (1)质量成分: m
i i
Vi (2)容积成分:ri V ni x (3)摩尔成分: i n
工程热力学第二章气体的热力性质

一、比热容的定义与单位
定义:单位物量的物质,升高或降低1K所吸收或放 出的热量。
c q
dT
质量比热容 c :
kJ/(kg·K)
体积比热容c :
kJ/(m3·K) 注意:标准状态下的体积
摩尔比热容 Mc:
kJ/(kmol·K)
三者换算关系
c'
Mc 22.4
c 0
标准状态下的密度
思考:比热容是过程量还是状态量?
cp
q p
dT
定压质量比热容 cp
定压体积比热容 cp
定压摩尔比热容 Mcp
3、定压比热容与定容比热容的关系
q p qv pdvp d ( pv) p
对于理想气体 pv RT
c p dT cv dT RdT
c p cv R c' p c'v 0 R Mc p Mcv MR R0
1kg
只与气体种类有关,与气体状态无关
2) pV mRTpMv MRT
pVM R0T
M—摩尔质量 VM=M v—摩尔体积
R0=MR —通用气体常数 ,定值
X nkmol
4) pV nR0T
V—nkmol气体所占的体积
1kmol nkmol
三、气体常数与通用气体常数
比热容与温度的函数关系:
Mcp a0 a1T a2T 2 a3T 3
Mcv (a0 R0 ) a1T a2T 2 a3T 3
➢平均比热容
t2 cdt
cm
|t2
t1
t1
t2
t1
本章作业:2-6 2-8 2-13
思考
1.当某一过程完成后,如系统能沿原路线反向进行回
复到初态,则上述过程称为可逆过程。×
工程热力学第二章

解:根据公式Q = U + W 因此 W Q U 60 70 130kJ W<0,说明外界对空气作功,即空气被 压缩。 提示:热量的正负值及功的正负值的物理 意义要记住.
符号规定
系统吸热Q为正,放热Q为负; 系统对外作功W为正,反之为负; 系统热力学能增大ΔU为正,反之为负。
δq du δw
δQ dU pdV
q u w
Q U pdV
1 2
3.对于可逆过程:
4. 对于单位质量工质可逆过程: 5. 动能位能变化不能忽略时:
δq du pdv
Ek 0 Ep 0
q u pdv
1
2
Q E W
34
q e w
e u ek ep
外部储存能
比总能e还可写成:
28
宏观动能与内动能的区别
3.热力学第一定律的一般表达式
热是能的一种,机械能变热能,或热能变 机械能的时候,他们之间的比值是一定的。 或: 热可以变为功,功也可以变为热;一定量 的热消失时必定产生相应量的功;消耗一定量 的功时,必出现与之相应量的热。
能量不能产生,也不能消灭;不同形式能 量之间可以相互转换,但能的总量不变 热力学第一定律实质上就是能量守恒和转换定律对热 现象的应用
⑵ 热力学第一定律的普遍表达方式
对任何系统的任何过程都应有如下能量平衡关系: 进入系统的能量 = 离开系统的能量 + 系统能量贮存的增量
2014-9-27
22
热力学第一定律的实质
功的正负规定
系统对外界作功为正;外界对系统作功为负
2014-9-27
10
准静态过程中功的计算
工程热力学第二章热力学第一定律

*
压气机
01
燃烧室
02
பைடு நூலகம்
燃烧室出口焓值:
涡轮
02
喷管
某燃气轮机装置如图所示,已知压气机进口处空气的比焓h1为290kJ/kg。经压缩后空气升温使比焓增为h2=580kJ/kg,在截面2处空气和燃料的混合物以cf2=20m/s的速度进入燃烧室,在定压下燃烧,使工质吸入热量q=670kJ/kg。燃烧后燃气进入喷管绝热膨胀到状态3‘,h3’=800kJ/kg,流速增加到cf3’,此燃气进入动叶片,推动转轮回转作功。若燃气在动叶片中的热力状态不变,最后离开燃气轮机的速度cf4=100m/s,求: 若空气流量为100kg/s,压气机消耗的功率为多少? 若燃气发热值qB=43960kJ/kg,燃料耗量为多少? 燃气喷管出口处的流速是多少? 燃气轮机的功率为多少? 燃气轮机装置的总功率为多少?
第二章 热力学第一定律
添加副标题
汇报人姓名
答案:(39.2m/s)
3、压力为10bar、容积为0.085m3的空气,由一质量为90Kg、直径为60cm的无摩擦活塞封闭在一垂直放置的气缸内。若突然释放活塞向上运动。试确定当活塞上升1.2m时的速度及气缸内空气的压力。设空气按pV1.35=定值的规律膨胀,空气的速度可以忽略不计,作用在活塞上的大气压力P0=760mmHg。
压气机
01
燃烧室
02
பைடு நூலகம்
燃烧室出口焓值:
涡轮
02
喷管
某燃气轮机装置如图所示,已知压气机进口处空气的比焓h1为290kJ/kg。经压缩后空气升温使比焓增为h2=580kJ/kg,在截面2处空气和燃料的混合物以cf2=20m/s的速度进入燃烧室,在定压下燃烧,使工质吸入热量q=670kJ/kg。燃烧后燃气进入喷管绝热膨胀到状态3‘,h3’=800kJ/kg,流速增加到cf3’,此燃气进入动叶片,推动转轮回转作功。若燃气在动叶片中的热力状态不变,最后离开燃气轮机的速度cf4=100m/s,求: 若空气流量为100kg/s,压气机消耗的功率为多少? 若燃气发热值qB=43960kJ/kg,燃料耗量为多少? 燃气喷管出口处的流速是多少? 燃气轮机的功率为多少? 燃气轮机装置的总功率为多少?
第二章 热力学第一定律
添加副标题
汇报人姓名
答案:(39.2m/s)
3、压力为10bar、容积为0.085m3的空气,由一质量为90Kg、直径为60cm的无摩擦活塞封闭在一垂直放置的气缸内。若突然释放活塞向上运动。试确定当活塞上升1.2m时的速度及气缸内空气的压力。设空气按pV1.35=定值的规律膨胀,空气的速度可以忽略不计,作用在活塞上的大气压力P0=760mmHg。
工程热力学2 温度与热力学第零定律详解

第二章 温度与热力学第零定律
温度通常指的是物体的冷热程度。
这一概念来源于人们对于冷热现象的经验感觉,譬如通过触觉,可以把各种
物体按冷、凉、温、热等作一排列。但感觉不能成为科学概念,感觉往往也 可能会是错觉。
常与热的概念混淆-- 物体“冷热”的热与物体间传递“热量”的热是同一个字,不
像英语中可分别用Hotness和Heat区分,但此热非彼热也。人们用手触摸物体感受其温 度时,他所感到的实际上是单位时间物体传给他的热量。诚然,热量源自于温差,即 外界物体的温度越高,势差也越大,传给我们手的热量也越多,这种感觉似乎也能指 示物体的温度。但要知道物体所传的热量不仅和温差有关,还和物体本身材料的导热 性质又称导热系数有关。触摸处于相同环境同一温度的铁与木头,冬天你会觉得铁比 木头冷,夏天又可能会觉得铁比木头热。
上述证明很易推广到任意多个系统处于热平衡且每个系统有任意独立
变量个数的情况。
这一结果表明:任何系统均有一个状态函数存在,它对于所有相互处于 热平衡的系统数值相同。我们将这个状态函数定义为温度,作为判断 一个系统与其它系统是否处于热平衡的宏观性质。一切处于热平衡的 系统,其温度均相等。
在我们的温度感觉可以信赖的范围内,所有各个物体相互接触一段足够 长的时间之后,这些物体的冷热程度都将变得相同。因此,这个温度 概念与我们日常估量系统冷热程度的温度概念是一致的。
2. 温度测量--温度计与温标
我们已得到了热力学第零定律的一个重要推论——状态参数温度存在。
现将温度这一性质定量化。若要判断两个系统温度是否相等,根据 热力学第零定律,可用第三个系统分别与它们接触,如果都是处于热平 衡的,即没有热的相互作用,则这两个系统也处于热平衡,它们的温度 相等。如果第三个系统和其中一个热平衡而和另一个有热的相互作用, 则这两系统温度不等。对于一般第三个系统和它们可能均达不成热平衡 的情况,我们进一步推想,若选的第三个系统的热容相对很小,它与其 它系统接触时,即使有热的相互作用,对它们的状态也几乎没有影响, 而自己的状态却有明显的改变,那么当其与第一个系统达成热平衡处于 某一状态后,若与第二个系统达不成热平衡,状态继续变化,则这两系 统温度不等。这里比较两个系统的温度,它们无须接触,第三个系统状 态参数的变化可指示温度的异同。因此,我们得到了热力学第零定律的 另一个重要推论--温度计存在。
温度通常指的是物体的冷热程度。
这一概念来源于人们对于冷热现象的经验感觉,譬如通过触觉,可以把各种
物体按冷、凉、温、热等作一排列。但感觉不能成为科学概念,感觉往往也 可能会是错觉。
常与热的概念混淆-- 物体“冷热”的热与物体间传递“热量”的热是同一个字,不
像英语中可分别用Hotness和Heat区分,但此热非彼热也。人们用手触摸物体感受其温 度时,他所感到的实际上是单位时间物体传给他的热量。诚然,热量源自于温差,即 外界物体的温度越高,势差也越大,传给我们手的热量也越多,这种感觉似乎也能指 示物体的温度。但要知道物体所传的热量不仅和温差有关,还和物体本身材料的导热 性质又称导热系数有关。触摸处于相同环境同一温度的铁与木头,冬天你会觉得铁比 木头冷,夏天又可能会觉得铁比木头热。
上述证明很易推广到任意多个系统处于热平衡且每个系统有任意独立
变量个数的情况。
这一结果表明:任何系统均有一个状态函数存在,它对于所有相互处于 热平衡的系统数值相同。我们将这个状态函数定义为温度,作为判断 一个系统与其它系统是否处于热平衡的宏观性质。一切处于热平衡的 系统,其温度均相等。
在我们的温度感觉可以信赖的范围内,所有各个物体相互接触一段足够 长的时间之后,这些物体的冷热程度都将变得相同。因此,这个温度 概念与我们日常估量系统冷热程度的温度概念是一致的。
2. 温度测量--温度计与温标
我们已得到了热力学第零定律的一个重要推论——状态参数温度存在。
现将温度这一性质定量化。若要判断两个系统温度是否相等,根据 热力学第零定律,可用第三个系统分别与它们接触,如果都是处于热平 衡的,即没有热的相互作用,则这两个系统也处于热平衡,它们的温度 相等。如果第三个系统和其中一个热平衡而和另一个有热的相互作用, 则这两系统温度不等。对于一般第三个系统和它们可能均达不成热平衡 的情况,我们进一步推想,若选的第三个系统的热容相对很小,它与其 它系统接触时,即使有热的相互作用,对它们的状态也几乎没有影响, 而自己的状态却有明显的改变,那么当其与第一个系统达成热平衡处于 某一状态后,若与第二个系统达不成热平衡,状态继续变化,则这两系 统温度不等。这里比较两个系统的温度,它们无须接触,第三个系统状 态参数的变化可指示温度的异同。因此,我们得到了热力学第零定律的 另一个重要推论--温度计存在。
工程热力学 第2章 热力学第一定律

6
可逆膨胀过程:
系统内部准静→系统的压力与外界压力相差只是无穷小 →可看作过程中P=Ps→微元过程中系统对外界所作的膨 胀功可完全用系统内部参数表示:
W PdV
对1kg工质的微元过程 对1→2的有限过程
m kg工质:
w Pdv
1 kg工质:
以上公式适用于任何简单可压缩物质可逆过程
2020/1/10
• 系统温度的变化与传热并无必然的联系 • 热能是微观粒子无序紊乱运动的能量;传热是微观粒
子间无序运动能量的传递
2020/1/10
12
⑵ 可逆过程的热量计算
①利用熵参数进行热量计算
热力学状态参数熵的定义
经历可逆的微元过程时,系统的熵变 量dS等于该微元过程中系统所吸入的热 量đQ与吸热当时的热源温度T之比
这时
E=U
2020/1/10
20
§2.5 控制质量(CM)能量分析
⑴热力学第一定律基本表达式
控制质量 热力过程中吸入热量Q, 对外界作功W,热力学能增加∆U 根据热力学第一定律
Q = ∆E + W W——广义功
输入能量 贮能增量 输出能量
若系统固定不动,U=E,则
Q = ∆U + W
对于微元能
⑴状态参数热力学能
物质内部拥有的能量统称为热力学能(内能)
分子平移运动、转动和振动的动能(内动能) 分子间因存在作用力而相应拥有的位能(内位能) 维持一定分子结构的化学能、分子的结合能 U 电偶极子和磁偶极子的偶极矩能 原子核能(原子能) ……(电子的运动能量等)
第2章 热力学第一定律
( The First Law of Thermodynamics )
主要内容
工程热力学第二章习题详解

=
1kg × 260J/(kg ⋅ K) × 300.15K 0.5×106 Pa
=
0.1561m3
代入(a)
V2 = 2V1 = 0.3122m3
c2 = 2× (54.09J/kg ×1kg ×103 − 0.1×106 Pa × 0.1561m3 ) /10kg = 87.7m/s
2-3 气体某一过程中吸收了 50J 的热量,同时,热力学能增加 84J,问此过程是膨胀过程还是 压缩过程?对外作功是多少 J?
= 979J = 0.98kJ
Q = ∆U +W = 3.90kJ + 0.98kJ = 4.88kJ
2-8 有一橡皮球,当其内部气体的压力和大气压相同,为 0.1MPa 时呈自由状态,体积为
0.3m3 。气球受火焰照射而受热,其体积膨胀一倍,压力上升为 0.15MPa ,设气球的压力与
体积成正比。试求:(1)该过程中气体作的功;(2)用于克服橡皮气球弹力所作的功,若初
解 (1) p1 = pe,1 + pb = 9MPa + 0.101325MPa = 9.1MPa
p2 = pb − pv,2 = 0.101325MPa − 0.0974MPa = 0.3925×10−2 MPa
(2) 据稳流能量方程
Q = ∆H + Wt 每小时技术功
Pt =ψ − ∆H& =ψ − qm∆h = −6.81×105 kJ/h − 40×1000kg/h × (3441− 2248)kJ/kg = 4.704×107 kJ/h
第二章 热力学第二定律
第二章 热力学第一定律
2-1 一辆汽车 1 小时消耗汽油 34.1 升,已知汽油发热量为 44000kJ/kg ,汽油密度 0.75g/cm3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i i2 Mcv R0、Mcp R0 2 2 (i 3、 5或7)
2
说明:1)单原子分子极为吻合,双原子分子大致相近,多原子分子相 差较大。2)当温度不太高时,才能将热容看作不随温度变化的定值热 容。因此该方法仅适用于精度要求不高的场合,定性分析热力学问 题。
例2-2:教材P26页。
15
Mc c c VM
'
8
2-2 理想气体比热容
2) 热容的大小与热量传递过程有关:
热力学中常见的热量传递过程有定容过程和定压过程, 对应的比热容为定容比热容cv和定压比热容cp。 定容比热容: cv 定压比热容: c p
δqv dT δq p
dT
两种比热容的关系:
δq p δqv ( pdv) p d( pv) p d( RT ) p RdT 且δq p δqv c p dT cv dT c p cv R Mcp Mcv MR R0
绝对压力为:p =0.22106+765 133.3=0.322 106 Pa
根据理想气体状态方程:
pV mRT m R0 T M
pV 0.322 10 6 3200 mM 28.97 8366.3kg/h R0T 8314 429.15
7
2-2 理想气体比热容
2
3) g CO
g H 2O
3.16 / 44 1.15/32 0.1037,g O 2 0.0519 20 / 28.89 20 / 28.89 1.24/18 14.45/28 0.0994,g N 2 0.745 20 / 28.89 20 / 28.89
1. 总参数的加和性: Y Y i
Y包括总质量m、总摩尔数n、总体积V、总压力p、总 热力学能U、总焓H、总熵S等。 理解:可以认为理
m n n V V (T , p)
m
i i i
p (T ,V ) U U (T ,V ) U (T ) H H (T ,V ) H (T ) S S (T ,V )
注意:蒸气动力装置中的水蒸气、氟利昂蒸气和氨蒸气离液态
不远,不能看作为理想气体。
3
2-1 理想气体与实际气体
二、理想气体状态方程式
1) 对1kg的气体 :
pv RT — —克拉贝隆方程
p为绝对压力;R为气体常数,J/(kgK),其值仅与
气体种类有关而与气体状态无关。
例如:空气 R = 287J/(kgK),氧气 R = 259.8J/(kgK) 2) 对m kg的气体: pV mRT
g v (T , p) c g c (T ,V ) g c c g c (T ,V ) g c Mc x M c (T ) Mc x M c (T )
v
p i i i p ,i v i v ,i i p i p ,i v i i v ,i
u
i p ,i (T )
g CO 2 g H 2O 3.16 1.15 0.158,g O 2 0.0575 20 20 1.24 14.45 0.062,g N 2 0.7225 20 20
2) R g i Ri 0.158 188.9 0.0575 259.8
0.062 461.5 0.7225 296.8 287.8J/(kg K) R 8314 M 0 28.89kg/kmol R 287 .8
2-3 混合气体的性质
2. 亚美格分体积定律 分体积:当各组成气体处于与混合气体相同压力p和 温度T时所占有的体积,记做Vi。
+
k k
pVi ni R0T、
pV n R T nR T pV
i i 0 0 i 1 i 1
V V
i i 1
k
注意:两定律仅适用于理想气体!
第二章 气体的热力性质
2-1 理想气体与实际气体
2-2 理想气体比热容
2-3 混合气体的性质 2-4 实际气体状态方程 2-5 对比态定律与压缩因子图
1
2-1 理想气体与实际气体
热力过程本身 热能与机械能 的转化效率 工质性质 显著的体积变化能力: 气态物质(气体和蒸汽)
理想气体 模型
分子运动情形复杂、 状态参数间关系复杂
cm 0 与cm 50 ? 比较 cm 0 、
50
100
100
13
说明:表中只能查到
c pm
100 0
、 c pm
200 0
、 c pm
300 0
等平
均比定压热容,其他温 度对应的平均比定压热
容c pm 0 需线性插值得到。
t
14
2-2 理想气体比热容
3. 定值比热容 根据分子运动学说,理想气体热力学能按分子运动的 i 自由度平均分配,与温度呈线性关系: U M R0T 由此可见,理想气体热容与温度无关,仅仅与分子运 动的自由度有关,即与分子结构(原子数量)有关。这种 热容称为定值热容。
由于 cm t 随t1、t2的不同而不同, 1 t c 常选用参考温度0C,பைடு நூலகம்出 m 0。
cm 0
cm t 2
1
t
q0t t 0
t
t2
t1
cdt
t 2 t1
t2
0
cdt
t1
0
cdt
t 2 t1
t
cm 02 t 2 cm 01 t1 t 2 t1
t
t
t
q12 q02 q01 cm 02 t 2 cm 01 t1
MR R0 nkmol的气体 pVM MRT 令 pVM R0T 摩尔数为 pV nR0T
通用气体常数R0 :8314J/(kmolK),与气体种类和状态无关 8.314J/(molK)
5
2-1 理想气体与实际气体
注意:1)理想气体状态方程的几种形式不能混淆:
18
2-3 混合气体的性质
三. 混合气体的成分 各组元的量占总量的百分数
mi 质量成分 g i m ni x 摩尔成分 i n Vi r 体积成分 i V
g
i
i
1
x 1 r 1
i
成分间的关系: pVi ni R0T、pV nR0T
mi ni M i Mi gi xi m nM M R /R M R g i ri i ri 0 i ri M R0 / R Ri
Vi ni ,ri xi V n
思考:混合气体中组元A、B的摩尔成分xA> xB,则一定有gA> gB吗?
19
2-3 混合气体的性质
四. 折合摩尔质量和折合气体常数 1. 折合摩尔质量
mi m M n n m m M n ni
n M x M n
i i k i
对1kg气体:
pv RT
对m kg的气体: pV mRT 对1kmol的气体:pVM R0T 对nkmol的气体:pV nR0T 2)状态方程中用绝对压力和热力学温度代入;
3)两个气体常数的区别与联系。
6
例 2-1:某压缩机每小时输出 3200m3、表压力 0.22MPa、温 度 156℃ 的压缩空气。已知当地的大气压为 765mmHg ,空 气的摩尔质量为28.97kg/kmol,求输出空气的质量流量。 解:输出空气的温度为:T=156+273.15=429.15K
一、热容的概念
C 定义:物体温度升高1C(或1K)所需要的热量, δQ δQ dT dt
1) 热容的大小与物质的量有关:
δq δq 质量比热容:1kg物质的热容,J/(kgK), c dT dt
摩尔比热容:1kmol物质的热容,J/(kmolK),Mc 体积比热容:1m3物质的热容,J/(m3K),
9
梅耶公式:仅适用于理想气体!
2-2 理想气体比热容
比热容比:
cp cv 1
R R cv ,c p 1 1
注意: 1) 气体的比热容c通常随温度的升高而增大; 2) 对某种气体而言,两种比热容之差是定值,但比热容 之比不是定值,随温度升高而减小; 3) 对不可压缩流体和固体,热膨胀性很小,可认为两种 比热容相等。
T1
T2
T1
(a0 R0 a1T a2T 2 a3T 3 )dT
12
2-2 理想气体比热容
2. 平均比热容
单位质量气体从温度t1升高到t2所吸收的热量除以温
度变化所得的商称为这一温度范围内的平均比热容 cm t12 。
制表太繁琐
t2
t
cm t 2
1
t
q12 t 2 t1
实际气态分子具有一 定体积,不能忽略相 互作用力
2
2-1 理想气体与实际气体
一、理想气体的概念
1) 气体分子是弹性的、不占体积的;
2) 分子间没有作用力(引力和斥力)。
理想气体就是当气体p0或v时的极限情形。 实验证明,当气体压力不太高,温度不太低时,气体 性质接近理想气体。 例如:氧气、氮气、一氧化碳、空气、燃气等
i
记住
2. 折合气体常数
R R0 M
m mi Mi
R0
i 1
1 gi Mi
1 xi Ri
i i
R0 xi M i
R0 R R0 M
R0 ( xi ) Ri gi g i Ri R0 Mi R0
2
说明:1)单原子分子极为吻合,双原子分子大致相近,多原子分子相 差较大。2)当温度不太高时,才能将热容看作不随温度变化的定值热 容。因此该方法仅适用于精度要求不高的场合,定性分析热力学问 题。
例2-2:教材P26页。
15
Mc c c VM
'
8
2-2 理想气体比热容
2) 热容的大小与热量传递过程有关:
热力学中常见的热量传递过程有定容过程和定压过程, 对应的比热容为定容比热容cv和定压比热容cp。 定容比热容: cv 定压比热容: c p
δqv dT δq p
dT
两种比热容的关系:
δq p δqv ( pdv) p d( pv) p d( RT ) p RdT 且δq p δqv c p dT cv dT c p cv R Mcp Mcv MR R0
绝对压力为:p =0.22106+765 133.3=0.322 106 Pa
根据理想气体状态方程:
pV mRT m R0 T M
pV 0.322 10 6 3200 mM 28.97 8366.3kg/h R0T 8314 429.15
7
2-2 理想气体比热容
2
3) g CO
g H 2O
3.16 / 44 1.15/32 0.1037,g O 2 0.0519 20 / 28.89 20 / 28.89 1.24/18 14.45/28 0.0994,g N 2 0.745 20 / 28.89 20 / 28.89
1. 总参数的加和性: Y Y i
Y包括总质量m、总摩尔数n、总体积V、总压力p、总 热力学能U、总焓H、总熵S等。 理解:可以认为理
m n n V V (T , p)
m
i i i
p (T ,V ) U U (T ,V ) U (T ) H H (T ,V ) H (T ) S S (T ,V )
注意:蒸气动力装置中的水蒸气、氟利昂蒸气和氨蒸气离液态
不远,不能看作为理想气体。
3
2-1 理想气体与实际气体
二、理想气体状态方程式
1) 对1kg的气体 :
pv RT — —克拉贝隆方程
p为绝对压力;R为气体常数,J/(kgK),其值仅与
气体种类有关而与气体状态无关。
例如:空气 R = 287J/(kgK),氧气 R = 259.8J/(kgK) 2) 对m kg的气体: pV mRT
g v (T , p) c g c (T ,V ) g c c g c (T ,V ) g c Mc x M c (T ) Mc x M c (T )
v
p i i i p ,i v i v ,i i p i p ,i v i i v ,i
u
i p ,i (T )
g CO 2 g H 2O 3.16 1.15 0.158,g O 2 0.0575 20 20 1.24 14.45 0.062,g N 2 0.7225 20 20
2) R g i Ri 0.158 188.9 0.0575 259.8
0.062 461.5 0.7225 296.8 287.8J/(kg K) R 8314 M 0 28.89kg/kmol R 287 .8
2-3 混合气体的性质
2. 亚美格分体积定律 分体积:当各组成气体处于与混合气体相同压力p和 温度T时所占有的体积,记做Vi。
+
k k
pVi ni R0T、
pV n R T nR T pV
i i 0 0 i 1 i 1
V V
i i 1
k
注意:两定律仅适用于理想气体!
第二章 气体的热力性质
2-1 理想气体与实际气体
2-2 理想气体比热容
2-3 混合气体的性质 2-4 实际气体状态方程 2-5 对比态定律与压缩因子图
1
2-1 理想气体与实际气体
热力过程本身 热能与机械能 的转化效率 工质性质 显著的体积变化能力: 气态物质(气体和蒸汽)
理想气体 模型
分子运动情形复杂、 状态参数间关系复杂
cm 0 与cm 50 ? 比较 cm 0 、
50
100
100
13
说明:表中只能查到
c pm
100 0
、 c pm
200 0
、 c pm
300 0
等平
均比定压热容,其他温 度对应的平均比定压热
容c pm 0 需线性插值得到。
t
14
2-2 理想气体比热容
3. 定值比热容 根据分子运动学说,理想气体热力学能按分子运动的 i 自由度平均分配,与温度呈线性关系: U M R0T 由此可见,理想气体热容与温度无关,仅仅与分子运 动的自由度有关,即与分子结构(原子数量)有关。这种 热容称为定值热容。
由于 cm t 随t1、t2的不同而不同, 1 t c 常选用参考温度0C,பைடு நூலகம்出 m 0。
cm 0
cm t 2
1
t
q0t t 0
t
t2
t1
cdt
t 2 t1
t2
0
cdt
t1
0
cdt
t 2 t1
t
cm 02 t 2 cm 01 t1 t 2 t1
t
t
t
q12 q02 q01 cm 02 t 2 cm 01 t1
MR R0 nkmol的气体 pVM MRT 令 pVM R0T 摩尔数为 pV nR0T
通用气体常数R0 :8314J/(kmolK),与气体种类和状态无关 8.314J/(molK)
5
2-1 理想气体与实际气体
注意:1)理想气体状态方程的几种形式不能混淆:
18
2-3 混合气体的性质
三. 混合气体的成分 各组元的量占总量的百分数
mi 质量成分 g i m ni x 摩尔成分 i n Vi r 体积成分 i V
g
i
i
1
x 1 r 1
i
成分间的关系: pVi ni R0T、pV nR0T
mi ni M i Mi gi xi m nM M R /R M R g i ri i ri 0 i ri M R0 / R Ri
Vi ni ,ri xi V n
思考:混合气体中组元A、B的摩尔成分xA> xB,则一定有gA> gB吗?
19
2-3 混合气体的性质
四. 折合摩尔质量和折合气体常数 1. 折合摩尔质量
mi m M n n m m M n ni
n M x M n
i i k i
对1kg气体:
pv RT
对m kg的气体: pV mRT 对1kmol的气体:pVM R0T 对nkmol的气体:pV nR0T 2)状态方程中用绝对压力和热力学温度代入;
3)两个气体常数的区别与联系。
6
例 2-1:某压缩机每小时输出 3200m3、表压力 0.22MPa、温 度 156℃ 的压缩空气。已知当地的大气压为 765mmHg ,空 气的摩尔质量为28.97kg/kmol,求输出空气的质量流量。 解:输出空气的温度为:T=156+273.15=429.15K
一、热容的概念
C 定义:物体温度升高1C(或1K)所需要的热量, δQ δQ dT dt
1) 热容的大小与物质的量有关:
δq δq 质量比热容:1kg物质的热容,J/(kgK), c dT dt
摩尔比热容:1kmol物质的热容,J/(kmolK),Mc 体积比热容:1m3物质的热容,J/(m3K),
9
梅耶公式:仅适用于理想气体!
2-2 理想气体比热容
比热容比:
cp cv 1
R R cv ,c p 1 1
注意: 1) 气体的比热容c通常随温度的升高而增大; 2) 对某种气体而言,两种比热容之差是定值,但比热容 之比不是定值,随温度升高而减小; 3) 对不可压缩流体和固体,热膨胀性很小,可认为两种 比热容相等。
T1
T2
T1
(a0 R0 a1T a2T 2 a3T 3 )dT
12
2-2 理想气体比热容
2. 平均比热容
单位质量气体从温度t1升高到t2所吸收的热量除以温
度变化所得的商称为这一温度范围内的平均比热容 cm t12 。
制表太繁琐
t2
t
cm t 2
1
t
q12 t 2 t1
实际气态分子具有一 定体积,不能忽略相 互作用力
2
2-1 理想气体与实际气体
一、理想气体的概念
1) 气体分子是弹性的、不占体积的;
2) 分子间没有作用力(引力和斥力)。
理想气体就是当气体p0或v时的极限情形。 实验证明,当气体压力不太高,温度不太低时,气体 性质接近理想气体。 例如:氧气、氮气、一氧化碳、空气、燃气等
i
记住
2. 折合气体常数
R R0 M
m mi Mi
R0
i 1
1 gi Mi
1 xi Ri
i i
R0 xi M i
R0 R R0 M
R0 ( xi ) Ri gi g i Ri R0 Mi R0