spss对数据进行相关性分析实验报告
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管理统计实验报告
实验一
一.实验目的
掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。
二.实验原理
相关性分析是考察两个变量之间线性关系的一种统计分析方法。更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。P值是针对原假设H0:假设两变量无线性相关而言的。一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。越小,则相关程度越低。而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。
三、实验内容
掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。
(1)检验人均食品支出与粮价和人均收入之间的相关关系。
a.打开spss软件,输入“回归人均食品支出”数据。
b.在spssd的菜单栏中选择点击Analyze correlate Bivariate,
弹出一个对话窗口。
C.在对话窗口中点击ok,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为
0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。
(2)研究人均食品支出与人均收入之间的偏相关关系。
读入数据后:
A.点击Analyze correlate partial,系统弹出一个对话窗口。
B.点击OK,系统输出结果,如下表。
从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。
通过相关关系与偏相关关系的比较可以得知:在粮价的影响下,人均收入对人均食品支出的影响更大。
三、实验总结
1、熟悉了用spss软件对数据进行相关性分析,熟悉其操作过程。
2、通过spss软件输出的数据结果并能够分析其相互之间的关系,并且解决实际问题。
3、充分理解了相关性分析的应用原理。
实验二
一、实验目的
掌握用spss软件对数据进行分析,用K-S检验单一样本是否来自某一特定分布,熟悉其操作过程,并能分析其结果。
二、实验原理
K-S检验方法能够利用样本数据推断样本来自的总体是否服从某一理
论分布,是一种拟合优度的检验方法,适用于探索连续型随机变量的分布。单样本K-S检验的原假设是:样本来自得总体与指定的理论分布无显著差异,SPSS 的理论分布主要包括正态分布、均匀分布、指数分布和泊松分布等。它的假设检验问题:H0:样本所来自的总体分布服从某特定分布
H1:样本所来自的总体分布不服从某特定分布
k-s检验是一种非常实用的检验数据分布的方法,应该熟练掌握。
二.实验内容
用k-s检验“回归人均食品支出”数据中的人均收入服从什么分布,并且了解k-s检验的操作过程和原理。
A.打开spss软件,输入“回归人均食品支出”数据。
B.点击nonparametric tests 1-sample k-s,系统弹出一个对话窗口。
C.点击OK,系统输出结果,如下表。
在上面有四个检验,Test1是检验这组数据是否服从标准正态分布,从表中可看出T检验的显著性概率为0.140>0.05,接受零假设,即这组数据服从标准正态分布。Test2是检验这组数据是否服从均匀分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从均匀分布。Test3是检验这组数据是否服从指数分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从指数分布。Test4是检验这组数据是否服从泊松分布,从表中可看出T检验的显著性概率为0.000<0.05,拒绝零假设,即这组数据不服从泊松分布。
三、实验总结
k-s检验方法是以样本数据的累计频数分布与特定理论分布比较,若两者间的差距很小,则推论该样本取自某特定分布族。