电子配料秤不确定度评定

电子配料秤不确定度评定
电子配料秤不确定度评定

电子配料秤不确定度评定

摘要:本文以jjg648-1996《非连续累计自动衡器检定规程》为依据,给出了电子配料秤校准结果不确定度的分析方法和评定结果。

关键词:电子配料秤校准方法不确定度

1 电子配料秤校准结果不确定度的分析方法

1.1 通过阅读配料秤使用说明和秤体铭牌标识,确定被检定电子配料秤的最小秤量,最大秤量以及最小累计载荷,选取最大秤量略大于被校准配料秤,且最大允许误差不大于被检衡器最大允许误差的1/3的非自动衡器。附表1:

1.1.1 确定常用物料通过对被检电子配料秤使用现场的观察,咨询操作人员,确定受检配料秤日常所配物料,注意其颗粒大小。

1.1.2 确定日常配料点现场翻阅配料记录,咨询操作人员,确定日常配料量点。

1.1.3 预加载荷并重复称量测试前,秤应预加多次载荷由零到最大秤量并重复数次,在卸去载荷后示值为零且能有效保持再进行其他试验。

1.2 零点测试或加载前的置零将秤量读数置于零位,空秤运行30分钟后能有效保持。

1.3 称重测试前的准备选取足量被检衡器常用物料供被动态称

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 本文论述了电子台秤的概念、电子台秤的误差因素以及电子台秤校准结果测量不确定度的评定方法,并且详细叙述了电子台秤误差的改进措施,适用于从事电子台秤的计量检验人员对电子台秤校准结果测量不确定度的分析,希望以此能够提出建设性意见。 标签:电子台秤;校准结果;测量;不确定度评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结

电子天平不确定度(例)(完成)

电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差;

m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1 =-??? ??-=∑=- n m m s n k i i mg 2)测量点10 g :

单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1 =-??? ??-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差: 04.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 5 )测量点200 g :

【例 4】“检定数字指示秤示值误差”的标准不确定度评定_百度.

“检定数字指示秤示值误差”的标准不确定度评定 1、概述 依据 JJG 539-1997 《数字指示秤检定规程》,用 F 2 级砝码测量数字指示秤。在环境温 度( -10~+40) ℃, 用砝码在数字指示秤上,均匀分布的 4 个点,直接加载、卸载的方式 分段测量示值与标准砝码之差。 2、建立数学模型 ① 数学模型: 式中: —— 数字指示秤示值误差; P —— 数字指示秤示值;

m —— 标准砝码质量值。 则: ② 灵敏系数,c 1=1,c 2 =-1。 3、测量不确定度的来源 测量不确定度主要来源: ① 测量数字指示秤的示值引入标准不确定度; ② 标准砝码本身存在误差引入标准不确定度。 4、标准不确定度分量的评定 采用最大秤量 15kg ,分度值 5g 的电子秤为例,以最大秤量 15kg 为测量点。 4.1 测量数字指示秤的示值引入标准不确定度 主要是电子秤测量重复性、四角偏载误差等。

①电子秤测量重复性 引入的标准不确定度 用砝码在重复性条件下对电子秤进行 20 次连续测量,得到测量列: 15.000 kg , 15.000 kg , 14.995 kg , 14.995 kg , 14.995 kg , 15.000 kg , 14.995 kg , 14.995 kg , 15.000 kg , 14.995 kg , 15.000 kg , 15.000 kg , 14.995 kg , 14.995 kg , 15.000 kg , 15.000 kg , 14.995 kg , 14.995 kg , 14.995 kg , 14.995 kg 。

落锤式冲击试验机测量不确定度评定

落锤式冲击试验机校准结果得测量不确定度评定 一、概述 1、检定依据 JJG1445-2014《落锤式冲击试验机校准规范》。 2、检定环境 温度(10~35)℃, 3、测量标准 a)电子天平,TC30KH,最大允许误差不超过±1g, b)钢卷尺,5m,最大允许误差不超过±1mm, c)速度测量装置,(1~10)m/s,最大允许误差不超过±0、5%。 4、被检对象 非金属落锤式冲击试验机。 5、校准方法 5、1在规定条件下,用电子天平直接测量落锤质量,重复测量3次,取3次测量得算术平均值作为落锤质量m ; 5、2在规定条件下,用钢卷尺直接测量跌落高度,重复测量3次,取3次测量得算术平均值作为跌落高度h ; 5、3在规定条件下,用速度测量装置测量落锤接近冲击点时得冲击速度,重复测量3次,取3次测量得算术平均值作为落锤冲击速度v 。6.评定结果得使用 符合上述条件得测量结果,一般可参照使用本不确定度得评定方法。 二、数学模型 依据上面得测量方法,得到如下数学模型: 1.落锤质量 n m m n i i ∑== 1 2.跌落高度 n h h n i i ∑==1 3.落锤冲击速度 n v v n i i ∑==1 4.能量损失

h g v 212 -=η 三、标准不确定度分量得计算 1、落锤质量m 得标准不确定度分量)(m u 评定 )(m u 得标准不确定度主要来源于两个方面,其一就是电子天平不准确引入得不确定度分量u δm ,其二就是落锤质量测量重复性引入得不确定度分量u Rm 。1、1由电子天平不准确引入得不确定度分量u δm ; 采用B 类方法评定,已知电子天平得最大允许误差为±1、0g,故半宽为1、0g,服从均匀分布,包含因子3=k ;因此:u δm =3 0.1g =0、58g 1、2落锤质量测量重复性引入得不确定度分量u Rm ; 采用A 类方法进行评定,用电子天平在重复性条件下,对一3kg 落锤连续进行3次测量,得到实测值得测量列:测得值为3000g,3001g,3002g,极差 R =(3002-3000)g=2g,估计服从正态分布,则单次测量结果得实验标准差s :s ==C R 2/1、69=1、2g 实际测量中测量3次,因此u Rm ===3 s 0、69g 1、3合成标准不确定度)(m u c 得评定 )(m u c =22Rm m u u +δ=0、9g 2、跌落高度h 得标准不确定度分量)(h u 评定 )(h u 得标准不确定度主要来源于两个方面,其一就是钢卷尺不准确引入得不确定度分量u δh ,其二就是跌落高度测量重复性引入得不确定度分量u Rh 。2、1由钢卷尺不准确引入得不确定度分量u δh ; 采用B 类方法评定,已知钢卷尺得最大允许误差为±1、0mm,故半宽为1、0mm,服从均匀分布,包含因子3=k ;因此:u δh =3 0.1mm =0、58mm 1、2钢卷尺测量重复性引入得不确定度分量u Rh ;

电子天平不确定度(例)(完成)

吉林省国绘仪器测试有限公司 文件编号:GHT/ZYB-0036 作业指导书 页 码: 第 1页 共 7页 第1版 第1次 修订 标 题 电子天平示值误差 测量结果CMC 不确定度评定 批 准 人 实施日期 2016年 11月06日 电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差; m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、

50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 2)测量点10 g : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差:

综合不确定度分析

电子天平测量结果不确定度评定报告 1 概述 1.1 测量依据:JJG 1036-2008《电子天平检定规程》(电子天平部分); 1.2 测量标准:E2级标准砝码装置,出厂编号968,根据JJG 99-2006《砝码检定规程》中给出100g砝码的扩展不确定度不大于0.053mg,包含因子k=2; 1.3 环境条件:温度23℃,相对湿度31 %; 1.4 测量对象:电子天平100g/0.1mg,型号AB104-S,出厂编号1128422995; 1.5 测量过程:检定方法属直接测量法,标准砝码与电子天平示值之差为电子天平示值误差。 2 不确定度来源分析 2.1 输入量m的标准不确定度u(m),包括: 2.1.1 被检天平测量重复性的标准不确定度u1(m); 2.1.2 电子天平的分辨力引入的标准不确定度u2(m); 2.1.3 由温度不稳定及振动等引入的标准不确定度u3(m); 2.2 由标准砝码本身的误差引入的标准不确定度u(m B)。 3 数学模型 Δm = m —m B 式中: Δm——电子天平示值误差; m——电子天平示值; m B——标准砝码值。 但实际上考虑电子天平的示值与上述不确定度来源中的被检天平的测量重复性、电子天平的分辨力及环境温度的不稳定和振动等影响因素有关,故在测量不确定度评定中必须考虑这三个附加因素的影响,考虑到上述不确定度来源,于是数学模型成为: Δm = m ×f重复性×f分辨力×f温度、振动—m B

4 输入量的标准不确定度评定 4.1 输入量m的标准不确定度分量u(m)的评定 4.1.1 重复性测量 被检天平测量重复性的标准不确定度u1(m),可以通过连续测量得到测量列,采用A类方法评定: 以100g为天平最大称量点,进行n=10次重复测量,测得结果如表1所示。 表1 测量数列 次数12345 实测值(g)100.0004100.0004100.0003100.0004100.0003次数678910 实测值(g)100.0004100.0002100.0003100.0004100.0004 其平均值为:100.0004 g 可用贝塞尔公式计算得:u1(m) = s(x i)= 0. 071mg 自由度:υ(m1) =(n-1)= 9 4.1.2 分辨力 电子天平的分辨力引入的不确定度u2(m) ,我们采用标准不确定度的B类评定方法,我们所采用的天平的分辨力为0.1mg,根据经验,数字式测量仪器的分辨力导致的不确定度一般可以近似地估计为矩形分布(均匀分布),矩形分布k取3, 所以有u2(m)=a/k= 0.05÷3= 0.03 mg 自由度为υ(m 2) = ∞ 4.1.3温度不稳定及振动等引起示值不确定度u3 (m),由于实验室在采用砝码校准的过程中完全采用计量标准规定的方法要求,环境温度的控制、周围振动等影响在此予以忽略。 电子天平示值合成标准不确定度u c(m) 由于没有任何输入量具有值得考虑的相关性,因此 u2 (m) = u12(m)+u22(m) +u32(m) u (m)= √u12 (m)+u22 (m) +u32 (m) = 0.078 mg 4.2 标准砝码误差引入的不确定度量分量u(m B)的评定 该不确定度分量主要由检定装置的误差引起,采用B类评定方法: 由JJG 99-2006《砝码检定规程》可知100g砝码的扩展不确定度不大于 0.053mg,包含因子k = 2 则:标准不确定度u(m B) = 0.053mg ÷2 = 0.027mg/3=0.016mg 5 合成标准不确定度的评定 5.1数学模型Δm = m×f重复性×f分辨力×f温度、振动—m B 灵敏系数为:

数字指示秤测量值的不确定度评定

数字指示秤测量值的不确定度评定 数字指示秤是人们常用于计量的一种计量器具,被广泛的应用于生产、科研、贸易以及人们的日常生活中,给人们的生活带来了较大的影响。而随着科技技术的不断更新与发展,对数字指示秤的使用,不再只是局限于测量和检定,更加注重测量结果的精准性。但是,数字指示秤在测量检定时,还较易受到其他因素的影响,具有較大的不确定性,以此也就给最终的测量结果带来了影响。因此,就应对数字指示秤测量值的不确定度进行综合的评定,确保能够提高测量结果的精准性,充分的发挥出数字指示秤的使用价值。 标签:数字指示秤;测量值;不确定度评定 引言 测量不确定度主要就是对测量结果可能误差的度量,也是衡量测量结果好坏的重要因素。因此,就应做好数字指示秤测量值的不确定度评定工作,确保能够缩小测量结果的误差,提高测量结果的精准性,以此才能更好的为企业的生产和人们的生活提供优质化服务。本文就针对数字指示秤测量值的不确定度评定展开具体的分析与讨论。 一、数字秤测量原理及测量依据 (一)、数字秤测量原理 在对数字指示秤测量值展开不确定度评定工作时,首先就应了解数字秤的测量原理,只有这样才能确保评定工作的开展能够更具针对性和科学性。其中,数字秤通常利用称重传感器来作为能量的转换元件,这样称重传感器就能有效的将承载器上被测物体的质量有效的转换为弹性体的位移量,并且还能将这个位移量以电信号的形式输出,以此就能实现对物体重量的精准测量。此外,电信号被输出后,还会经过一系列的转化和放大操作,此时被称重显示器显示的则是被测量物体的质量值。 (二)、数字秤测量依据 我国数字秤的测量依据主要就是依据:《数字指示秤》国家计量检定规程和《非自动秤通用检定规程》两个测量标准,以此就能更好的给评定工作的展开提供理论依据。 二、测量用标准器、被测对象及环境条件 (一)、测量用标准器 检定Ⅲ级数字秤,使用1Kg的M1级公斤砝码,并共计15块。第二,就是

不确定度评定

不确定度评定 重量法测定水中溶解性总固体结果不确定度评定 1 概述测量不确定度在实验室数据比对、结果临界值的判断、方法确定以及实验室质控方面具有重要意义。ISO/IEC17025中要求检测实验室应具有评价测量不确定度的程序。本文对水中溶解性总固体测量结果不确定度进行评定。 2 测量过程及主要设备 2.1 检测过程:依据GB/T 5750.4-2006,8.1~水样经过滤后~在105?烘干~所得的固体残渣即为溶解性总固体。 平行测量8份水样~计算得平均值为258.1mg/L~100ml溶解性总固体为 0.02581g~标准差为0.0011g。 2.2 仪器设备:BS124S电子天平 3 数学模型 mm,21TDS,,,10001000 V 式中:m1——蒸发皿的质量~g m2——蒸发皿与溶解性总固体的质量~g V——水样体积~ml 4 不确定度的来源分析 4.1 ,m-m,引起的相对标准不确定度分量 u 21,m, 4.2 取样量V引起的相对标准不确定度分量u(V) 5 不确定度的评定 5.1 ,m-m,引起的不确定度分量 u 21,m, 5.1.1 称量产生的不确定度u ,m1,

(1) 天平校准产生的不确定度u 1 型号为BS124S电子分析天平~校准产生的不确定度由计量证书 给出~扩展不确定度为0.3mg~包含因子k=2。 u=0.0003/2=0.00015g 1 ,2, 天平的分辨率产生的不确定度u 2 天平的分辨率为0.1mg~我们可以取其为均匀分布的不确定度,真值读数可能在0.01mg或0.09mg之间~即0.05mg~其不确定度 u=0.00005/=0.000029g 33 ,3, 恒重产生的不确定度u 3 GB/T 5750.4-2006规定两次称重相差不得大于0.4mg~按均匀分布计算得 u=0.0004/=0.00023g 34 222以上三项合成 uuuug,,,=0.00028123m1,, 5.1.2 样品重复测量产生的不确定度u ,m2, 100ml水样重复测量得溶解性总固体为0.0258g~标准差为 0.00110.0011g。标准不确定度ug,, 0.00039m2,,8 5.2 ,m-m,引起的合成不确定度分量 u 21,m, 22uuug,, =0.00048m(2)(m1)m,, 6.1 吸取水样产生的不确定度u ,v, 用无刻度吸管吸取100ml水样测定~最佳测量能力为0.071ml~k=2~不确定度u=0.071/2=0.036ml。 ,v, 100ml溶解性总固体为0.0258g~那么u=0.0000093g ,v, 7 合成标准不确定度评定 由于各分项的不确定度来源彼此独立不相关~故该方法的标准不 22uuug,,确定度为:=0.00048 v()c(m)

电子秤不确定度评定

15Kg电子秤示值误差测量结果的不确定度评定 1概述 1.1测量依据:JJG555-1996《非自动秤通用检定规程》。 1.2 环境条件:温度(-10~40)℃ 1.3 测量标准器:M1等级砝码,根据JJG99-2006《砝码检定规程》中给出100mg~10kg砝码质量最大允许误差MPE:±(0.5mg~0.5g)。 1.4被测对象: 电子秤 e为5g,0~500e为±0.5e;>500~2000e为±1.0e;> 2000e~max为±1.5e。 1.5测量过程:用砝码直接加载、卸载方式,分段测量示值与标准砝码之差即为示值误差。 一般情况下,检定电子秤大致均匀分布的10个称量点。 1.6评定结果的使用: 在符合上述条件下,对15kg规格电子秤的15kg称量点示值误差的测量,一般可使用本不确定度评定结果,对其他示值和其他电子秤的示值误差测量结果的不确定度评定,可采用本评定方法。 2 数学模型: △E=P-m 式中,△E--电子秤的示值误差 P--电子秤示值 m--标准砝码质量值 3 输入量的标准不确定度评定 本评定方法以最大称量15kg点为例 3.1输入量P的标准不确定度u(P)的来源主要是电子秤测量重复性、四角偏载误差以及示 值随电源变化等。 3.1.1电子秤测量重复性引入的不确定度分量u(P1)的评定(用A类方法评定) 用标准砝码在重复性条件下对电子秤进行连续10次测量,得到测量数据15.0000; 15.0000;4.9995;14.9995;14.990;15.0000;14.9995;14.9990;15.0000;14.9995(kg)

单次测量的标准偏差: 3.1.2电子秤的偏载误差引入的不确定度分量u (P 2)的评定(用B 类方法评定) 电子秤在进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积中最大值与最小值之差,根据试验数据,一般不会超过5g ,其半宽α=2.5g 。而在实际工作时,放置砝码的位置比较注意,实际的偏载量,根据经验,一般只有试验偏载量的1/3。 实际偏载量为:2.5g/3=0.83g 此误差属于平均分布,包含因子为3。 所以u (P 2)=0.83g/3=0.48g 3.1.3 电源电压不稳定引入的不确定度分量u (P 3)的评定(用B 类方法评定) 根据有关资料,电源电压在规定条件下(电源电压变化:220V -15%~+10%;电源频率变化:-2%~+2%)变化会造成示值变化0.2e ,即1.0g 。 半宽度为α=1.0g 。此误差属于平均分布,根据《JJF1059测量不确定度评定与表示》附录中的规定,其包含因子(p =100%)为3。 所以u (P 3)=1.0g/3=0.58g 3.1.4 输入量P 的标准不确定度u (P )的计算 由于输入量P 的各分量彼此独立不相干,因此 g P u P u P u P u 82.0)()()()(322212=++= 3.2 输入量m 的标准不确定度u(m) 输入量m 的标准不确定度u(m)可以根据检定证书上得到,如果检定证书上没有给出扩展不确定度,可查找检定规程,得到15kg M 1等级砝码的最大允许误差为±0.75g ,根据《JJF1059测量不确定度评定与表示》附录中的规定,按级使用的数字式仪表、测量仪器最大允许误差导致的不确定度为均匀分布,其包含因子(p =100%)为3。 所以u(m)=0.75g/3=0.43g g n P P P s n i i i 40.01 ) ()(1 2 =--= ∑=

数字指示秤示值误差测量结果不确定度报告

数字指示秤示值误差测量结果不确定度报告 一、概述 依据JJG555—1996 《非自动秤通用检定规程》 JJG539—1997 《数字指示秤》 JJF 1059—1999 《测量不确定度评定与表示》 JJF 1001—1998 《通用计量术语及定义》 在环境温度为28.4℃,湿度为47%的条件下,用标准器为M1等级标准砝码(0~2)kg,对检定分度值为e =1g ,最大秤量 2kg ,最小秤量20g的(Ⅲ)数字指示秤进行检定,对其最大秤量2kg点测量十次,得到数据如下:(g) 二、建立数学模型 E =P – m 式中: E —数字指示秤的示值误差; P —数字指示秤的示值; m —标准砝码质量值。 其灵敏系数为: 1 1 = ? ? = P E c 1 2 - = ? ? = m E c

三、分析不确定度来源 1.测量重复性引起的不确定度u (P 1) 2.电源电压稳定度引起的不确定度u (P 2) 3.偏载测量引起的不确定度u (P 3) 4.使用标准砝码引起的不确定度u (m ) 四、评定各分量的不确定度 1.测量重复性引起的不确定度u (P 1) 据贝塞尔公式得出单词测量标准差为: 1 12 --=∑=n P P s n i i )( ≈0.063g 平均值标准差: ()() g 020.010 063 .010====s P s P u 故: u (P 1) =|C1|() P u =|C1|*0.020 =0.020g 2.电源电压稳定度引起的不确定度u (P 2) 电源电压在规定条件下变化可能会造成的示值变化为: ±0.2e(e=1g) 即±0.2g 区间半宽a=0.2 其服从均匀分布,包含因子k=3 有

电子天平检定或校准结果的测量不确定度评定

1、测量依据:JJG 1036-2008《电子天平》检定规程。 1.1环境条件:温度(18~26)℃,温度波动不大于0.5℃∕h ,相对温度不大于(30%~70%)RH 1.2测量标准:F 1等级标准砝码,JJG 99-2006 《砝码》检定规程中给出其200g 砝码扩展不确定度不大于0.3㎎,包含因子k=2 1.3被测对象: 200g/ 1㎎电子天平。量程(0.020~50)g ,最大允许误差为±5㎎;量程(50~200)g ,最大允许误差为±10㎎.一般情况下,校准天平的空载、最小称量点、最大允许误差转换点对应载荷、最大称量点以及大致均匀分布点。 1.4测量方法:采用标准砝码直接来测量天平的示值,可得标准砝码与电子天平实际值之差,即为电子天平的示值误差。 1.5评定结果的使用:在符号上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 2、数学模型:s m m m -=? 式中: △m —电子天平示值误差 m —电子天平示值 m s —标准砝码折算质量值 3、输入量的标准不确定度评定

第2页 共4页 ZY/CSZX JD BD 09-2015电子天平检定结果的测量不确定度分析作业指导书 作业指导书 评定方法以200g 天平最大称量点为例,其它称量点的示值误差测量结果的不确定度可参照本方法进行评定。 3.1 输入量m s 的标准不确定度u (ms )的评定 标准砝码输入量m s 的标准不确定度u (ms )采用A 类和B 类方法进行评定。 根据JJG 99-2006 《砝码》检定规程中所给出,F 1等级标准砝码200g 的扩展不确定度为0.3㎎,包含因子k=2 标准不确定度 ()mg mg u ms 15.023.0== ' 3.2 标准砝码质量的不稳定性引起的不确定度,采用A 类评定 对一稳定的电子天平在半年内六次测得值为(单位为g ) 200.002g 200.003g 200.002g 200.003g 200.003g 200.003g ()mg g n x x u n i i ms nst i 52.000052.0)1()(1 2 ==--= ∑= 因此()mg u u u ms nst i ms ms 54.0)(2 2 )(=+'= 3.3 输入量m 的标准不确定度u(m)的评定 输入量m 的标准不确定度来源于天平的测量重复性,可以用同一砝码,通过连续测量得到测量列,采用A 类方法进行评定。以200g 为天平最大称量点,在重复性条件下连续测量10次,得到的测量列为:199.999g 199.998g 199.999g 199.998g 199.999g 200.000g 199.999g 200.000g 199.999g 199.998g

电子台秤不确定度评定

For personal use only in study and research; not for commercial use 宁波市计量测试研究院 电子台秤测量结果的不确定度评定

1.概述 1.1 测量依据:JJG539-1997《数字指示秤检定规程》。 1.2 环境条件:温度(-10~40)℃。 1.3 测量标准:M1等级标准砝码,根据JJG99-2006《砝码检定规程》中给出500mg~15kg砝码最大质量允差 为±(0.8 mg~750 mg)。 1.4 被测对象: 电子秤的分类 允许误差为:(0~500)e为±0.5e;>(500~2000)e为±1e; >2000e为±1.5e。 1.5 测量过程 用砝码直接加载、卸载的方式,分段测量示值与标准砝码之差。 1.6 评定结果的使用 在符合上述条件下,对3kg规格电子秤的3kg点示值误差的测量,一般可使用本不确定度评定结果。对其他示值和其他规格电子秤的示值误差测量结果的不确定度可采用本评定方法。 2. 评定模型 ΔE = P - m 式中:ΔE—电子秤示值误差; P—电子秤示值; m—标准砝码质量值

3. 输入量的标准不确定度评定 本评定方法以ACS —3电子秤,3kg 称量点为例。 3.1 输入量P 的标准不确定度来源u(P )主要是电子秤测量重复性u(P 1)及电子秤分辨率的影响u(P 2)。 3.1.1 ACS-3电子秤测量重复性引起的标准不确定度分项u(P 1)的评定(A 类评定方法) 用标准砝码在重复性条件对电子秤在最大秤量进行10次连续测量,得到测量列为:(单位:g )2.9995,2.9994,2.9995,2.9997,2.99995,2.9994,2.9997,2.9999,2.9998,2.9994。 单次实验标准差为 0.18s g == 则标准不确定度为1()0.056u P g = == 自由度v P1可按下式计算: v P1 =n-1=10-1 =9 3.1.2电子秤分辨率引起的标准不确定度分项u (P 2)的评定,用B 类标准不确定度评定 被检电子秤的分度值为1g ,采用闪点法可以使数字分辨率为0.1g ,则不确定度区间半宽为0.1g ,按均匀 分布计算:2()0.058u P g = = 3.1.4 输人量P 的标准不确定度的计算 由于输人量P 的分项彼此独立不相关,因此, 则 222 12()()()u P u P u P =+ 3.2输入量m 的标准不确定度评定 输人量m 的不确定度可以根据检定证书中得到,如检定证书中没有给出扩展不确定度,则可按OIML R111砝码国际建议的约定,对低准确度级砝码的标准不确定度等于允差表规定的最大允许误差的 。 查表得到3kg 砝码,允差±0.15g ,估计分布为均匀分布,即k = 4.合成标准不确定度的评定 4.1合成标准不确定度的计算 输入量P 与m 彼此独立不相关,所以合成标准不确定度可按下式得到: 5.扩展不确定度的评定 取置信概率95%,按有效自由度,查t 分布表得到 k p = t 95(50) = 2.01 扩展不确定度 U 95 = t 95(50)·u c (ΔE) =2×0.11=0.22g 13

电子台秤校准结果测量不确定度的评定

电子台秤校准结果测量不确定度的评定 一、电子台秤的概念 电子台秤是利用电子应变元件受力形变原理输出微小的模拟电信号,通过信号电缆传送给称重显示仪表,进行称重操作和显示称量结果的称重器具。 二、电子台秤的误差因素 1、零点漂移误差。 经常会在称量重力不同的多种物体,从而使电子台秤的称重传感器受到多次往复负载的影响,在进行计量检定的过程中初始状态就出现了一系列的变化,仪表的指针已经不能够准确的归到零位,使电子台秤出现零点漂移现象,从而影响了对物体实际重量的准确测量。 2、四角偏载误差。 四角偏载误差的引起主要是由于电子台称传感器的灵敏度出现偏差。因为电子台秤的材料不尽相同,造成传感器的激励电压没有理想的那么稳定,电压不稳,导致传感器上面的信号输出是不同的,因此就产生了四角偏载误差。 3、重复测量误差。 所谓重复测量误差,就是同一物品在同意环境下连续多次进行称重实验,由于电子台称等计量器具的传感器产生侧向力和传感器条件缺失两个因素导致。首先,由于测量现场的限制因素,非常容易造成负载接收器发生偏移,导致托盘对传感器的力并不垂直,就会产生测力,就会导致测量物品的误差;另一个原因,由于传感器工作需要同时满足传力构造特性、传感参数标准的一致性等工作条件,而且有一个不满足,就会发生误差。 4、计量环境误差。 物体的本质会随着的外界环境的变化而发生轻微的变化,比如环境的温度、湿度等原因,这些因素都有可能造成电子台秤在测量称重

的的时候发生客观的偏差,当然误差不会太大。作为电子台秤的使用者,我们要在日常生活中多去总结经验和规律用科学的方法不断去修正,保障电子台秤测量结果的真实性以及可靠性。 5、鉴别力误差。 电子台秤的鉴别力大小反映了电子台秤对负载的微小变化的反应快慢能力。对电子台秤进行鉴别力误差测试的目的在于更加准确的检验电子台秤的结构连接过程以及摩擦过程,所以,机械连接中的摩擦和应力是造成电子台秤的鉴别力误差的主要影响因素。 三、电子台秤校准结果测量不确定度的评定 1 范围。 适用于电子台秤示值误差测量结果的不确定度评定。 2 引用文件。 JJF 1059.1- 2012 测量不确定度评定与表示 JJG 539- 97 数字指示秤检定规程 3 概述。 3.1 测量依据:JJG 539- 97 数字指示秤检定规程。 3.2 环境条件:温度:21.5℃ 湿度:48%RH。 3.3 测试标准:M1级砝码。 3.4 被测对象:电子台秤。 3.5 测量过程:用砝码直接测量的方式,分段测量示值与标准砝码之差。 3.6 评定结果的使用在符合上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 4 数学模型。 E=P- m 其中:E———电子台秤示值误差; P———电子台秤示值; m———标准砝码质量值。 5 输入量的标准不确定度评定。

最新1电子天平不确定度评定

1 概述 1.1 测量依据:JJG1036—2008《电子天平检定规程》。 1.2.评定依据:JJF1059.1—2012《测量不确定度评定与表示》 1.3 测量环境条件:温度(20±5)℃,湿度≤85%RH,温度波动≤5℃/h。 1.4 测量标准:(1mg~500g)、F1级标准砝码组和(1mg~2000g)、F2级标准砝码组,见表1: 表1 两组砝码技术指标 以上两组砝码经顺德质量技术监督检测所检定合格,在检定有效期内。 1.5 被测对象:各范围的电子天平,见表2: 表2各范围的电子天平

广东联塑科技实业有限公司计量质量检测中心 编号:LS ·QEO ·GZ ·27·QD53-2014 电子天平示值误差的不确定度评定 实施日期:2014年05月01日 页码:2/12 1.6 测量方法:采用标准砝码直接测量电子天平各技术参数(各载荷点)的示值,可得电子天平示值与标准砝码之差,即为电子天平的示值误差。 1.7 评定结果的使用:在符合或十分接近上述条件下电子天平的示值误差的不确定度,可直接使用本不确定度的评定结果。 2 测量模型 2.1 示值误差: ? m = P -m 式中 : ? m — 电子天平示值误差,g ; P — 电子天平示值,g ; m — 标准砝码值,g 。 2.2 方差和灵敏系数: 根据 于是 [][]2 .2.2 2 2 )()()(.)(.) (21m u c P u c m u m m P u P m m u c +=?? ???????+?????????=? 式中 11=???= P m c 12-=???=m m c 3 不确定度来源 电子天平示值误差Δm 的不确定度来源主要有: 3.1 天平示值测量重复性引入的标准不确定度分量 )(1P u ; 3.2 偏载测量引起的的标准不确定度)(2P u ; 3.3 天平分辨力引入的标准不确定度分量)(3P u ; 3.4 标准砝码m 最大允许误差引入的标准不确定 )(m u ;

数字指示秤不确定度评定

电子台秤示值误差测量结果的不确定度评定 1.概述: 1.1测量依据:JJG539-1997《数字指示秤检定规程》 1.2环境条件:温度-10℃~40℃ 1.3测量标准:M1级砝码,根据JJG99-1990《砝码检定规程》中给出50g~20kg质量最大允许误差为±(3mg~1g)。 1.4被测对象:电子秤Ⅲ级,检定分度值e=0.5kg,0~500e为± 0.5e,(500~2000)e为±1.0e,2000e~Max为1.5e。 1.5测量过程:用砝码直接加载、卸载的方式,观察测量示值与标准砝码之差即为示值误差。 2.数学模型:△E=p-m 式中:△E—电子秤示值误差(kg) p—二次仪表显示值(kg) m—标准砝码质量值(kg) 对上式求偏导得灵敏系数为:C1=1,C2=-1 3.输入量的标准不确定度评定: 3.1输入量p的标准不确定度来源u(p)主要是电子秤测量重复性、四角偏载误差、示值随电源电压变化以及二次仪表分度值选取引起 的示值误差等。 3.1.1电子秤测量重复性引起的标准不确定度来源u(p1)的评定 (A类评定方法)。

用固定砝码在重复性条件下对电子秤进行10次连续测量,得到测量列:1000.00,1000.00,999.95,999.85,1000.00,1000.00,999.85,999.85,1000.00,1000.00kg p — = 1n ∑i=1 n p i =999.95(kg ) 根据贝塞尔公式:S =∑ i=1 n (p i -p 1 ̄)2 n-1 = 0.12(kg ) u (p 1)= S n = 0.12 3 = 0.07(kg ) 自由度γp1 = 3×(n-1)=27 3.1.2电子秤的偏载误差引起的标准不确定度分项u (P 2)评定。 电子秤进行偏载试验时,用最大称量1/3的砝码,放置在1/4秤台面积上,最大值与最小值之差一般不会超过0.5kg ,半宽a=0.25kg 。假设其误差为偏载时的1/3,并服从均匀分布,包含因 子k= 3 ,可得u (p 2)= 0.25 33 =0.05(kg ) 估计△u (p 2) u (p 2) = 0.10,则γρ2= 12 [△u (p 2) u (p 2) ]-2= 50 3.1.3电源电压稳定度引起的标准分项u (p 3)评定。 电源电压在规定条件下变化可能会造成示值变化0.2e ,即0.1kg 。假设半宽度a=0.1kg ,服从均匀分布,包含因子k= 3 u (p 3)= 0.1 3 =0.06(kg )

电子天平不确定度评定报告[1].doc

电子天平不确定度评定报告[1]

电子天平测量不确定度报告 1 测量方法 依据JJF 1036-2008《电子天平计量检定规程》,天平的校准项目主要包括偏载、重复性和示值误差等 1.1偏载的测量:用标称值至少等于最大载荷1/3的砝码分别放置在天平秤盘的不同位置,记录天平相应的示值。 1.2重复性的测量:实验载荷应为单个砝码,其标称值尽量接近于天平的最大称量。在测量之前,显示器置零,测量次数至少6次。每次取下砝码后都要检测零点,必要时可将显示器重新置零。 1.3示值误差的测量:至少选择6个可以覆盖整个称量范围的载荷点(标准砝码),其中必须包括天平的最小和最大称量载荷,所有载荷都放置在秤盘的中心,计算出被测天平的示值误差。 2 测量模型 2.1偏载误差:示值误差的测量时,所有载荷都放置在秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略。 2.2重复性:采用贝塞尔公式计算重复性,假设在整个称量范围其结果恒定,故在计算示值误差不确定度时,各个载荷点的重复性均为此值。 2.3示值误差 对于每一个试验载荷,示值误差的计算公式为:m I E ref j j -= I j :天平示值 m ref :标准砝码的实际值 ()()()ref m j I j c m u C I u C E u 2 2222+= 1=??= j j I I E C 1-=??= ref j m m E C 相关性:各输入量之间未发现任何值得考虑的相关性 3 不确定度分量

3.1标准砝码引入的标准不确定度分量 依据JJG99-2006《砝码》规程,编号为0216的标准砝码200g 的扩展不确定度U =0.10mg ,k =2 ()?? ? ??=2U m u ref =0.00005g 因此:标准砝码引起的不确定度分量为:()m u ref =0.00005g 3.2天平显示值的标准不确定度分量 对于天平显示变动的修正,可通过下式计算 I I I ecc rep δδ+= 故天平显示的不确定度按正态分布计算如下: ()()()I u I u u ecc rep I δδ2 22 += 3.2.1 天平重复性引起的不确定度分量() rep I u δ 次数 1 2 3 4 5 6 示值(g ) 200.00 200.00 200.01 200.00 200.01 200.00 ()()I s I u rep =δ= () () 11 2 --∑=n n I I n i i =0.002g 3.2.2分度值引起的不确定度分量d u 假设其为均匀分布,得到d u =0.006g 因为d u >() rep I u δ,所以合成不确定度选取d u 作为其中一个分量。 3.2.3 偏载引起的不确定度分量()ecc I u δ 此项误差为试验载荷的重心偏离了秤盘的中心位置引起的误差,在测量时,单个载荷可放在秤盘的中心,多个载荷可通过叠放的形式放于秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略不计。 天平200g 显示值的合成标准不确定度为 ()()I u u I u ecc d δ2 2 +==0.006g 4 不确定度概算 不确定度分量汇总表

数字指示秤的示值误差的不确定度评定

数字指示秤的示值误差的不确定度评定 一、概述: 1、检测依据:JJG539—1997《数字指示秤》检定规程。 2、环境条件:25℃。 3、标准器具:1M 级标准砝码,100mg-2kg 4、被测对象:数字指示秤 型号ACB —06B 6kg Ⅲ级。 5、测量过程:用标准砝码直接均匀加载或卸载的方式,重复测量。 二、数学模型: s m m d =+ m —质量值 s m —测得值 d —误差 灵敏系数: 11s m c m ?= =? 21m c d ?==? 三、输入量的标准不确定度评定: 1、数字指示秤重复性测量引入的标准不确定度分量1u (A 类评定方法),在重复性条件下,用3kg 标准砝码在此秤上进行10次连续测量,结果如下(单位:kg ): 算术平均值:1 13000.200n i i i x x g n ===∑ 单次实验标准偏差为:s A 类标准不确定度:41110i u s x g -==?()() 此分量可以忽略不计。 2、1M 级标准砝码引入标准不确定度分量2u (B 类评定方法)为均匀分布 1M 级标准砝码,2 kg 砝码mpe=100mg 1kg 砝码mpe=50mg 2u 3、被检数字指示秤分辨力误差引入的标准不确定度3u (B 类评定方法)为均匀分布,

在实际测量时,模拟指示秤的分度值为1g ,x ?=1g 3u =0.29×1=0.290g 4、数字指示秤最大误差引入的不确定度分量4u (B 类评定方法)为均匀分布, 分度值为e=1g ,mpe=1.5e=1.5g 4u 四、标准不确定度一览表: 标准不确定度分量一览表 五、合成标准不确定 0.302c u g === 六、扩展不确定度为: U =k c u =2×0.302=0.60g k=2 七、测量不确定度报告为: 依据JJG539—1997《数字指示秤》检定规程,数字指示秤测量结果不确定度报告为: U =0.60g k =2。

相关文档
最新文档