大学统计学第七章练习题及答案电子教案

合集下载

统计学贾俊平第四版第七章课后答案目前最全

统计学贾俊平第四版第七章课后答案目前最全

7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。

7.2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。

2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。

统计学 第四版 第七章答案

统计学 第四版 第七章答案

第四章 抽样分布与参数估计7。

2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差.x σ===2。

143 (2)在95%的置信水平下,求边际误差.x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4。

2 (3)如果样本均值为120元,求总体均值 的95%的置信区间. 置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115。

8,124.2)7。

4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12.要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝。

2 (1)构建μ的90%的置信区间.2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79。

03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间.2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77。

91,84。

09)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36解:(1)样本均值x =3.32,样本标准差s=1.61; (2)抽样平均误差: 重复抽样:x σ≈不重复抽样:x σ≈=0。

268×0.998=0。

267(3)置信水平下的概率度:1α-=0.9,t=2z α=0.05z =1。

统计学7-10章课后作业答案

统计学7-10章课后作业答案

第7章 相关与回归分析1、设销售收入x 为自变量,销售成本y 为因变量。

现已根据某百货公司某年12个月的有关资料计算出以下数据(单位:万元):2()425053.73ix x -=∑ 647.88x =2()262855.25iy y -=∑549.8y =()()334229.09iix x y y --=∑(1)拟合简单线性回归方程,并对方程中回归系数的经济意义作出解释。

(2)计算可决系数和回归估计的标准误差。

(3)对回归系数进行显著性水平为5%的显著性检验。

(4)假定下年一月销售收入为800万元,利用拟合的回归方程预测销售成本,并给出置信度为95%的预测区间。

解:(1)定性分析可知,销售收入影响销售成本,以销售收入为自变量,销售成本为因变量拟合线性回归方程i i i y x u αβ=++,采用最小二乘法估计回归参数得:22()()(,)334229.09ˆ0.7863()425053.73ii xix x y y Cov x y x x βσ--===≈-∑∑ˆˆ549.80.7863647.8840.372y x αβ=-=-⨯= 因此,拟合的回归方程为:ˆˆˆ40.3720.7863i i iy x x αβ=+=+ 其中,回归系数β表示自变量每变动一个单位,因变量的平均变量幅度。

在此,表示销售收入每增加1万元,销售成本平均增加0.7863万元。

(2)可决系数22222[()()]334229.090.9998()()425053.73262855.25i i i i x x y y SSR R SST x x y y --===≈-⋅-⨯∑∑∑ (本问接下来的计算不做要求:为计算回归系数的标准误差,根据离差平方和分解,可知:2222222[()()]ˆˆˆˆˆˆ()[()()]()()334229.09262811.68425053.73i i i iiix x y y SSR y y x x x x x x αβαββ--=-=+-+=-=-==∑∑∑∑∑22ˆ()()262855.25262811.6843.57i i SSE SST SSR y y yy =-=---=-=∑因此有ˆ()0.0032S β===≈) (3)陈述假设:01:0 :0H H ββ=≠在原假设成立的前提下,构造t检验统计量245.598t ===在5%的双侧检验显著性水平下,查自由度为10的t 分布表,得临界值0.025(10) 2.228t t =<,因此拒绝原假设。

《统计学概论》第七章课后练习题答案

《统计学概论》第七章课后练习题答案

《统计学概论》第七章课后练习题答案一、思考题1.抽样推断的意义和作用是什么?2.抽样推断的特点是什么?3.为什么抽样调查要遵循随机原则?4.总体参数与样本统计各有什么特点?5.为什么区间估计比点估计优越?6.样本平均误差的定义就是什么?它存有什么关键意义?7.影响样本平均误差的因素存有哪些?8.优良估计量的衡量标准存有哪些?9置信区间、置信度、概率度之间的关系怎样?10.区间估计的原理是什么?11.为什么说道在n紧固的情况下参数区间估算的精确度和可靠性就是此消彼长的?12.怎样同时提升区间估算的精确度和可靠性?13.影响样本音速误差的因素存有哪些?14.怎样正确理解样本音速误差的概念?15.确认样本容量的因素存有哪些?16.样本方案设计的基本原则就是什么?17.怎样认知类型样本的原理和意义?18.等距样本的原理和意义就是什么?19.整群抽样的原理以及与类型抽样的区别是什么?二、单项选择题1.以()为基础理论的统计调查方法就是抽样调查法。

a.高等代数b.微分几何c.概率论d.博弈论2.典型调查与抽样调查的相同之处为()。

a.均遵守随机原则b.以部分推断总体c.误差均可估计d.误差均可控制3.抽样推断必须遵守的首要原则是()。

a.大量性原则b.随机原则c.可比性原则d.总体性原则4.既可进行点估计又可进行区间估计的是()。

a.重点调查b.典型调查c.普查d.抽样调查5.误差可以计算并加以控制的是()。

a.抽样调查b.普查c.典型调查d.重点调查6.()可以对于某种总体的假设展开检验。

a.回归分析法b.抽样推断法c.综合指数法d.加权平均法7.以下正确的是()。

a.总体指标与样本指标均为随机变量b.总体指标与样本指标均为常数c.总体指标是常数而样本指标是随机变量d.总体指标是随机变量而样本指标是常数8.总体属性变量平均数恰等于()。

a.1-pb.pc.p(1-p)d.p(1?p)9.总体属性变量的方差等于()。

统计学贾俊平第四版第七章课后答案目前最全

统计学贾俊平第四版第七章课后答案目前最全

7.1从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, (1)样本均值的抽样标准差x σ=n σ=405=0.7906 (2)已知置信水平1-α=95%,得 α/2Z =1.96, 于是,允许误差是E =nα/2σZ =1.96×0.7906=1.5496。

7.2 某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

x nσ=49==2.143 (2)在95%的置信水平下,求边际误差。

x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。

置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=(115.8,124.2) 7.37.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。

要求:大样本,样本均值服从正态分布:2,xN n σμ⎛⎫ ⎪⎝⎭或2,s xN n μ⎛⎫⎪⎝⎭置信区间为:2x z x z n n αα⎛-+ ⎝n 100=1.2 (1)构建μ的90%的置信区间。

2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。

2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。

统计学课后习题答案(全章节)(精品).docx

统计学课后习题答案(全章节)(精品).docx

第二章、练习题及解答2.为了确定灯泡的使用寿命(小时),在一批灯泡中随机抽取100只进行测试,所得结果如下:700 716 728 719 685 709 691 684 705 718 706 715 712 722 691 708 690 692 707 701 708 729 694 681 695 685 706 661 735 665 668 710 693 697 674 658 698 666 696 698 706 692 691 747 699 682 698 700 710 722 694 690 736 689 696 651 673 749 708 727 688 689 683 685 702 741 698 713 676 702 701 671 718 707 683 717 733 712 683 692 693 697 664 681 721 720 677 679 695 691 713 699 725 726 704 729 703 696 717 688要求:(2)以组距为10进行等距分组,生成频数分布表,并绘制直方图。

3.某公司下属40个销售点2012年的商品销售收入数据如下:单位:万元152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 10897 88 123 115 119 138 112 146 113 126要求:(1)根据上面的数据进行适当分组,编制频数分布表,绘制直方图。

(2)制作茎叶图,并与直方图进行比较。

1.已知下表资料:25 20 10 500 2.5 30 50 25 1500 7.5 35 80 40 2800 14 40 36 18 1440 7.2 4514 7 630 3. 15 合 计200100687034. 35_y xf 6870根据频数计算工人平均日产量:〒=金^ =北* = 34.35 (件)£f 200结论:对同一资料,采用频数和频率资料计算的变量值的平均数是一致的。

统计学第四版第七章课后题最全答案

统计学第四版第七章课后题最全答案

第七章 练习题参考答案7.1 (1)已知σ=5,n=40,x =25,α=0.05,z05.0=1.96样本均值的抽样标准差σx=n σ=79.0405= (2)估计误差(也称为边际误差)E=z 2αnσ=1.96*0.79=1.55 7.2(1)已知σ=15,n=49,x =120,α=0.05,z05.0=1.96(2)样本均值的抽样标准差σx=nσ==49152.14 估计误差E=z 2αnσ=1.96*=49154.2 (3)由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=120±1.96*2.14=120±4.2,即(115.8,124.2)7.3(1)已知σ=85414,n=100,x =104560,α=0.05,z05.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=104560±1.96*=10085414104560±16741.144即(87818.856,121301.144)7.4(1)已知n=100,x =81,s=12, α=0.1,z21.0=1.645由于n=100为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=81±1.645*=1001281±1.974,即(79.026,82.974)(2)已知α=0.05,z205.0=1.96由于n=100为大样本,所以总体均值μ的95%的置信区间为:ns x z 2α±=81±1.96*=1001281±2.352,即(78.648,83.352)(3)已知α=0.01,z201.0=2.58由于n=100为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=81±2.58*=1001281±3.096,即(77.94,84.096)7.5(1)已知σ=3.5,n=60,x =25,α=0.05,z05.0=1.96由于总体标准差已知,所以总体均值μ的95%的置信区间为: nx z σα±=25±1.96*=60.5325±0.89,即(24.11,25.89)(2)已知n=75,x =119.6,s=23.89, α=0.02,z202.0=2.33由于n=75为大样本,所以总体均值μ的98%的置信区间为:ns x z 2α±=119.6±2.33*=759.823119.6±6.43,即(113.17,126.03)(3)已知x =3.419,s=0.974,n=32,α=0.1,z21.0=1.645由于n=32为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=3.419±1.645*=3274.90 3.419±0.283,即(3.136,3.702)7.6(1)已知:总体服从正态分布,σ=500,n=15,x =8900,α=0.05,z205.0=1.96由于总体服从正态分布,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=155008900±253.03,即(8646.97,9153.03)(2)已知:总体不服从正态分布,σ=500,n=35,x =8900,α=0.05,z205.0=1.96虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的95%的置信区间为:nx z σα2±=8900±1.96*=355008900±165.65,即(8734.35,9065.65)(3)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=0.1,z21.0=1.645虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的90%的置信区间为:ns x z 2α±=8900±1.645*=355008900±139.03,即(8760.97,9039.03)(4)已知:总体不服从正态分布,σ未知, n=35,x =8900,s=500, α=0.01,z201.0=2.58虽然总体不服从正态分布,但由于n=35为大样本,所以总体均值μ的99%的置信区间为:ns x z 2α±=8900±2.58*=355008900±218.05,即(8681.95,9118.05)7.7 已知:n=36,当α=0.1,0.05,0.01时,相应的z21.0=1.645,z205.0=1.96,z201.0=2.58根据样本数据计算得:x =3.32,s=1.61由于n=36为大样本,所以平均上网时间的90%置信区间为:ns x z 2α±=3.32±1.645*=361.61 3.32±0.44,即(2.88,3.76)平均上网时间的95%置信区间为:ns x z 2α±=3.32±1.96*=361.61 3.32±0.53,即(2.79,3.85)平均上网时间的99%置信区间为:ns x z 2α±=3.32±2.58*=361.61 3.32±0.69,即(2.63,4.01)7.8 已知:总体服从正态分布,但σ未知,n=8为小样本,α=0.05,)(18t205.0-=2.365 根据样本数据计算得:x =10,s=3.46 总体均值μ的95%的置信区间为:ns x t 2α±=10±2.365*=83.4610±2.89,即(7.11,12.89)7.9 已知:总体服从正态分布,但σ未知,n=16为小样本,α=0.05,)(116t205.0-=2.131 根据样本数据计算得:x =9.375,s=4.113从家里到单位平均距离的95%的置信区间为:ns x t 2α±=9.375±2.131*=144.1139.375±2.191,即(7.18,11.57)7.10 (1)已知:n=36,x =149.5,α=0.05,z205.0=1.96由于n=36为大样本,所以零件平均长度的95%的置信区间为:ns x z 2α±=149.5±1.96*=361.93149.5±0.63,即(148.87,150.13)(2)在上面的估计中,使用了统计中的中心极限定理。

统计学第七章习题答案

统计学第七章习题答案

第7章 相关与回归分析二 单项选择题1-5 BCBAC 6-10 CCABA 11-15 BCCAA 16-20 CCBDB 21-25 CBBAA 26_30 BCBBA 31_35 CBABA 36_40 BAAAA三计算分析题7.1(1)散点图如下:从散点图可以看出,销售收入与广告费用之间为正的线性相关关系。

(2)利用Excel 的“CORREL”函数计算的相关系数为947663.0=r 。

(3)首先提出如下假设:0:0=ρH ,0:1≠ρH 。

计算检验的统计量 272.7947663.0128947663.01222=--=--=r n rt 当05.0=α时,9687.2)28(205.0=-t 。

由于检验统计量9687.2272.72=>=αt t ,拒绝原假设。

表明产量与生产费用之间的线性关系显著。

7.2 (1)散点图如下:从散点图可以看出,复习时间与考试分数之间为正的线性相关关系。

(2)利用Excel 的“CORREL”函数计算的相关系数为8621.0=r 。

相关系数8.0>r ,表明复习时间与考试分数之间有较强的正线性相关关系。

7.3 (1)散点图如下:7.3利用Excel 的“CORREL”函数计算的相关系数为9489.0=r 。

由Excel 输出的回归结果如下表:得到的回归方程为:x y 003585.0118129.0ˆ+=回归系数003585.0ˆ1=β表示运送距离每增加1公里,运送时间平均增加0.003585天。

7.4 (1) 散点图如下:Multiple R 0.868643 R Square 0.75454 Adjusted RSquare 0.723858标准误差 18.88722 观测值 10方差分析df SS MS FSignificanceF回归分析 1 8772.584 8772.584 24.59187 0.001108 残差 8 2853.816 356.727 总计 9 11626.4Coefficients 标准误差t Stat P-valueIntercept 430.1892 72.15483 5.962029 0.000337 X Variable 1-4.70062 0.947894 -4.95902 0.001108得到的回归方程为:x y 7.41892.430ˆ-=。

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案

统计学人教版第五版7,8,10,11,13,14章课后题答案第七章 参数估计7.1 (1)79.0405===nx σσ (2)由于1-α=95% α=5% 96.12=αZ所以 估计误差55.140596.12≈⨯=nZ σα7.2 (1)14.24915===nx σσ (2)因为96.12=αZ 所以20.4491596.12≈⨯=nZ σα(3)μ的置信区间为20.41202±=±nZ x σα7.3 由于96.12=αZ 104560=x 85414=σ n=100所以μ的95%置信区间为14.167411045601008541496.11045602±=⨯±=±nZ x σα7.4(1)μ的90%置信区间为97.18110012645.1812±=⨯±=±n s Z x α(2)μ的95%置信区间为35.2811001296.1812±=⨯±=±n s Z x α(3)μ的99%置信区间为096.3811001258.2812±=⨯±=±n s Z x α7.5 (1)89.025605.396.1252±=⨯±=±nZ x σα(2)416.66.1197589.23326.26.1192±=⨯±=±n s Z x α(3)283.0419.332974.0645.1419.32±=⨯±=±n s Z x α7.6 (1)035.25389001550096.189002±=⨯±=±nZ x σα(2)650.16589003550096.189002±=⨯±=±nZ x σα(3)028.139890035500645.189002±=⨯±=±n s Z x α(4)583.196890035500326.289002±=⨯±=±n s Z x α7.7 317.31==∑i x nx ()609.1113612=--=∑=i ix x n s 90%置信区间为441.0317.336609.1645.1317.32±=⨯±=±n s Z x α95%置信区间为526.0317.336609.196.1317.32±=⨯±=±n s Z x α99%置信区间为6908.0317.336609.1576.2317.32±=⨯±=±n s Z x α7.8 101==∑i x nx ()464.311812=--=∑=i ix x n s 所以95%置信区间为()896.2108464.33646.21012±=⨯±=±-n s t x n α7.9 375.91==∑i x n x 由于()131.2)15(025.012==-t t n α ()113.4112=--=∑x x n s i 所以95%置信区间为()191.2375.916113.4131.2375.912±=⨯±=±-n s t x n α7.10 (1)63.05.1493693.196.15.1492±=⨯±=±n s Z x α(2)中心极限定理 7.11 (1)132.10150665011=⨯==∑i x nx ()641.188.131491112=⨯=--=∑x x n s i 455.032.10150641.196.132.1012±=⨯±=±n s Z x α(2)由于9.05045==p 所以 合格率的95%置信区间为()083.09.0501.09.096.19.012±=⨯⨯±=-±n p p Z p α7.12 由于128.161==∑i x n x ()745.3)24(005.012==-t t n α ()8706.0112=--=∑x x n s i所以99%置信区间为653.028.161258706.0745.328.161)1(2±=⨯±=-±n s n t x α 7.13 7396.1)17()1(05.02==-t n t α 556.131==∑i x nx ()800.7112=--=∑x x n s i所以90%置信区间为198.3556.13188.77396.1556.13)1(2±=⨯±=-±n s n t x α 7.14(1)()194.051.04449.051.0576.251.012±=⨯⨯±=-±n p p Z p α(2)()0435.082.030018.082.096.182.012±=⨯⨯±=-±n p p Z p α(3)()024.048.0115052.048.0645.148.012±=⨯⨯±=-±n p p Z p α7.15(1)90%置信区间为()049.023.020077.023.0645.123.012±=⨯⨯±=-±n p p Z p α(2)95%置信区间为()058.023.020077.023.096.123.012±=⨯⨯±=-±n p p Z p α7.16 89.1652001000576.222222222=⨯=⎪⎪⎭⎫ ⎝⎛=⇒=E Z n nZ E σδαα所以n 为166 7.17(1)()13.25302.06.04.0054.2122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为254 (2)()0625.15004.05.05.096.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为151(3)()89.26705.045.055.0645.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为268 7.18(1)64.05032==p (2)()46.611.02.08.096.1122222=⨯⨯=-⎪⎪⎭⎫⎝⎛=E Z n ππα 所以n 为62 7.19(1)()()339.661501205.022=-=-χχαn()()930.331501295.0221=-=--χχαn ()()2212222211ααχσχ--≤≤-s n s n所以()()40.272.1293.33492339.66491122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n(2)()()6848.231151205.022=-=-χχαn()()5706.61151295.0221=-=--χχαn()()043.0015.002.05.61470602.06848.23141122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n (3)()()6706.321221205.022=-=-χχαn()()5913.111221295.0221=-=--χχαn ()()725.4185.24315913.112131706.36211122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n 7.20(1)15.71==∑i x n x ()4767.0112=--=∑x x n s i ()()0228.1911012025.022=-=-χχαn ()()7004.211012975.0221=-=--χχαn ()()87.0328.04767.07004.294767.00228.1991122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n(2)()()326.3253.1822.17004.29822.10228.1991122122≤≤⇒⨯≤≤⨯⇒-≤≤--σσχσχααs n s n7.21 2)1()1(212222112-+-+-=n n s n s n s p=442.981910268.9613≈⨯+⨯ (1)21μμ-的90%置信区间为: 212122111)2()(n n s n n t x x p+-+±-α=⨯⨯±442.98729.18.971141+ =9411.78.9± (2)21μμ-的95%置信区间为: 212122111)2()(n n s n n t x x p+-+±-α=⨯⨯±442.9893.028.971141+ =13.698.9± (3)21μμ-的99%置信区间为: ⨯⨯±442.98609.828.971141+=40.1138.9± 7.22(1)2122121221)(n s n s z x x +±-α=36.096.12⨯±=176.12±(2)2)1()1(212222112-+-+-=n n s n s n s p=18209169⨯+⨯=18212122111)2()(n n s n n t x x p+-+±-α=5118.122⨯⨯±=8.932± (3)1)(1)()(222221212122122121-+-+=n n s n n s n s n s ν=17.78 2122121221)(t )(n s n s x x +±-να=6.31.22⨯±=98.32±(4)048.2)28(t 025.0=2)1()1(212222112-+-+-=n n s n s n s p=18.714 212122111)2()(n n s n n t x x p+-+±-α=20110114.71848.022+⨯⨯± =3.432±(5)1)(1)()(222221212122122121-+-+=n n s n n s n s n s ν1919.61)20201016(222++==20.05 086.2)(t =να2122121221)(t )(n s n s x x +±-να=1.61086.22+⨯±=64.332± 7.23(1)47d = 1)(2--=∑n d ds id =48332=917.6(2)n s n t d )1(d -±α=185.447± 7.24 6216.2)1(2=-n t α 11=d ,53197.6=d s d μ的置信区间为:ns n t d )1(d 2-±α=1053197.66216.211⨯±=4152.511±7.25(1)222111221)1()1()(p n p p n p p z p -+-±-α=25076.03.02506.04.0645.11.0⨯+⨯⨯±=0698.01.0± (2)222111221)1()1()(p n p p n p p z p -+-±-α=25076.03.02506.04.096.11.0⨯+⨯⨯±=0831.01.0± 7.26 241609.01=s 076457.02=s)1,1(21--n n F α=)20,20(025.0F =2.464 )20,20(975.0F =0.40576212221222122221αασσ-≤≤F s s F s s 40576.0986.9446.2986.92221≤≤σσ 611.240528.42221≤≤σσ7.27 222)1()(Ez n ππα-==2204.098.002.096.1⨯⨯=47.06 所以 n =487.282222)(E z n σα==2222012096.1⨯=138.30所以 n =139第8章 假设检验二、练习题(说明:为了便于查找书后正态分布表,本答案中,正态分布的分位点均采用了下侧分位点。

统计基础课件习题的答案第七章-文档资料

统计基础课件习题的答案第七章-文档资料
ˆ )2 ( y y S xy n2
S yx
y
2
a y b xy nm
估计标准误差越小,估计值的代表性越强, 用回归方程估计或预测的结果越准确。
可线性化的曲线回归
1.指数曲线模型
ˆ abx y
转化为直线回归模型
ˆ A Bx Y
2.幂函数曲线模型
ˆ ax b y
3.根据相关的方向划分,分为正相关和负相关。 正相关是指当自变量的值增加或减少时,因变量 的值也随之增加或减少。 负相关是指当自变量的值增加或减少时,因变量 的值反而减少或增加。
4.根据自变量的多少划分,分为单相关和复相关。
单相关又称一元相关,自变量的个数只有一个。 复相关又称多元相关,自变量有两个或两个以上。
四、相关关系的判断
1.定性分析。在进行相关分析之前,首先对客观现象之间是否存在相关 关系,以及有何种相关关系做出判断,这是定性分析。 2.简单相关表和相关图。相关表是将总体中各单位的原始资料或整理资 料不经任何分组,只将一个变量的变量值按由小到大顺序列表排列, 另一个变量值与其一一对应,并按相应的变量值顺序排列形成的统计 表。 相关图也叫散点图或相关点图,相关图上的横座标代表自变量x, 纵座标代表因变量y。把观察所得的有关资料,依次以相关点标在图上 ,从相关点在图象上的分布及趋势,可以掌握变量之间的相关关系的 状况。 3.分组相关表。是把原始的相关资料加以分组,排列在一张表格上,用 以观察现象之间相关关系的表格。依分组标志的多少分为单变量分组 相关表和双变量分组相关表两种。单变量分组相关表是按一个变量进 行分组,求出各组内另一个变量的次数和取值的平均数,列表表示变 量之间关系的方法。双变量分组相关表是对自变量和因变量都进行分 组而编制的相关表。

统计学相关-概率论与数理统计第七章参考答案

统计学相关-概率论与数理统计第七章参考答案

2 00.05 , n Nhomakorabea9

2
(n
1)
2 0.95
(8)
2.733
拒绝域为: 2 2.733
又由题知: s2 0.00862
2 0
0.012
2
(n 1)s 2
2 0
8 0.0086 2 0.012
5.9186
2.733
2 未落入拒绝域,故接受 H 0 ,认为 0.01
10、(1)检验假设: H 0 : 3315 , H1 : 3315 这是 2 未知关于 的左边检验
拒绝 H 0 ,即认为 3315 (2) 检验假设: H 0 : 525 , H1 : 525 这是 未知,关于 2 的右边检验,则
检验统计量为: 2 (n 1)s 2
2 0
0.05 , n
30

2
(n
1)
2 0.05
(29)
42.557
拒绝域为: 2 42.557
又由题知: s2 4882
0.05 , n1 9 , n2 4 , t0.05 (n1 n2 2) t0.05 (11) 1.7959
拒绝域为: t
xy
sw
11 94
t 0.05
(11)
1.7959
由题,A 班、B 班考试成绩的样本均值和样本方差分别为:
x 80 , s12 110.25
y 65 , s22 174
s 27.28
0 200
t X 0 210.2 200 1.1217 1.8331
s / n 27.28 / 9
接受 H 0 ,即认为 200 。
6、检验假设: H 0 : 2 5000 , H1 : 2 5000 解:这是 未知,关于 2 的双边检验

(完整word版)大学统计学第七章练习题及答案

(完整word版)大学统计学第七章练习题及答案

第7章 参数估计练习题7.1 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。

(1) 样本均值的抽样标准差x σ等于多少? (2) 在95%的置信水平下,边际误差是多少?解:⑴已知25,40,5===x n σ 样本均值的抽样标准差79.0410405≈===nx σσ ⑵已知5=σ,40=n ,25=x ,410=x σ,%951=-α 96.1025.02==∴Z Z α边际误差55.1410*96.12≈==nZ E σα7.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1) 假定总体标准差为15元,求样本均值的抽样标准误差; (2) 在95%的置信水平下,求边际误差;(3) 如果样本均值为120元,求总体均值μ的95%的置信区间。

解.已知。

根据查表得2/αz =1。

96 (1)标准误差:14.24915===nX σσ(2).已知2/αz =1.96所以边际误差=2/αz *=ns 1.96*4915=4.2(3)置信区间:)(2.124,8.11596.149151202=*±=±ns Z x α7.3 从一个总体中随机抽取100=n 的随机样本,得到104560=x ,假定总体标准差85414=σ,构建总体均值μ的95%的置信区间。

96.12=∂Z144.1674110085414*96.12==⋅∂nZ σ856.87818144.16741104560.2=-=-∂nZ x σ144.121301144.16741104560.2=+=+∂nZ x σ置信区间:(87818.856,121301.144)7.4 从总体中抽取一个100=n 的简单随机样本,得到81=x ,12=s 。

(1) 构建μ的90%的置信区间。

(2) 构建μ的95%的置信区间。

(3) 构建μ的99%的置信区间。

《统计学》-第7章-习题答案

《统计学》-第7章-习题答案

第七章思考与练习参考答案1 •答:函数关系是两变量之间的确定性关系,即当一个变量取一定数值时,另一个变量有确定值与之相对应;而相关关系表示的是两变量之间的一种不确定性关系,具体表示为当一个变量取一定数值时,与之相对应的另一变量的数值虽然不确定,但它仍按某种规律在定的范围内变化。

2•答:相关和回归都是研究现象及变量之间相互关系的方法。

相关分析研究变量之间相关的方向和相关的程度,但不能确定变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况;回归分析则可以找到研究变量之间相互关系的具体形式,并可变量之间的数量联系进行测定,确定一个回归方程,并根据这个回归方程从已知量推测未知量。

3•答:单相关系数是度量两个变量之间线性相关程度的指标,其计算公式为:总体相关系数二样本相关系数,「一】。

复相关系数是多元线性回归分析中度量因变量与其它多个自变量之间的线性相关程度的指标,它是方程的判定系数R2的正的平方根。

偏相关系数是多元线性回归分析中度量在其它变量不变的情况下两个变量之间真实相关程度的指标,它反映了在消除其他变量影响的条件下两个变量之间的线性相关程度。

4.答:回归模型假定总体上因变量Y与自变量X之间存在着近似的线性函数关系,可表示为Y^ 11X t u t,这就是总体回归函数,其中u t是随机误差项,可以反映未考虑的其他各种因素对Y的影响。

根据样本数据拟合的方程,就是样本回归函数,以一元线性回归模型的样本回归函数为例可表示为:Y?=耳+弭x t。

总体回归函数事实上是未知的,需要利用样本的信息对其进行估计,样本回归函数是对总体回归函数的近似反映。

两者的区别主要包括:第一,总体回归直线是未知的,它只有一条;而样本回归直线则是根据样本数据拟合的,每抽取一组样本,便可以拟合一条样本回归直线。

第二,总体回归函数中的-0和-1是未知的参数,表现为常数;而样本回归直线中的'?Q和?i是随机变量,其具体数值随所抽取的样本观测值不同而变动。

统计学第四版第七章答案

统计学第四版第七章答案

第四章抽样分布与参数估计7.2某快餐店想要估计每位顾客午餐的平均花费金额。

在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1)假定总体标准差为15元,求样本均值的抽样标准误差。

15=2.143xn49(2)在95%的置信水平下,求边际误差。

xt x,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=z2 因此,x txz2xz0.025x=1.96×2.143=4.2(3)如果样本均值为120元,求总体均值的95%的置信区间。

置信区间为:x,x=1204.2,1204.2=(115.8,124.2)xx7.4从总体中抽取一个n=100的简单随机样本,得到x=81,s=12。

要求:大样本,样本均值服从正态分布:xN,2n或xN,2sn置信区间为:ssxz2,xz2nn,sn=12100=1.2(1)构建的90%的置信区间。

z=2 z=1.645,置信区间为:811.6451.2,811.6451.2=(79.03,82.97)0.5(2)构建的95%的置信区间。

z=z0.025=1.96,置信区间为:811.961.2,811.961.2=(78.65,83.35)2(3)构建的99%的置信区间。

z=z0.005=2.576,置信区间为:812.5761.2,812.5761.2=(77.91,84.09)27.7某大学为了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置信水平分别为90%,95%和99%。

解:(1)样本均值x=3.32,样本标准差s=1.61;(2)抽样平均误差:s重复抽样:x==1.61/6=0.268nn不重复抽样:x=NnsNnn1nN1N=7.37500363675001=0.268×0.995=0.268×0.998=0.267 (3)置信水平下的概率度:1=0.9,t= z=2 z=1.645 7.51=0.95,t= z=2 z=1.96 0.61=0.99,t= z=2 z=2.576 7.8(4)边际误差(极限误差):xtxzx21=0.9,x txz x=2 z3.4x重复抽样:x zx=z0.05x=1.645×0.268=0.4412不重复抽样:x zx= 2 z=1.645×0.267=0.4394.5x1=0.95,xtxz2x= z2.2x重复抽样:x zx= 2 z=1.96×0.268=0.5254.8x不重复抽样:x zx=z0.025x=1.96×0.267=0.52321=0.99,x txz x=z0.005x2重复抽样:x zx= 2 z=2.576×0.268=0.690.5x不重复抽样:xz2x= z=2.576×0.267=0.6880.5x(5)置信区间:x,xxx1=0.9,重复抽样:x,x=3.320.441,3.320.441=(2.88,3.76)xx不重复抽样:x,x=3.320.439,3.320.439=(2.88,3.76)xx 1=0.95,重复抽样:x,x=3.320.525,3.320.525=(2.79,3.85)xx 不重复抽样:x,x=3.320.441,3.320.441=(2.80,3.84)xx 1=0.99,重复抽样:x,x=3.320.69,3.320.69=(2.63,4.01)xx 不重复抽样:x,x=3.320.688,3.320.688=(2.63,4.01)xx7.4某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是: 103148691211751015916132假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。

统计学第七章、第八章课后题答案之欧阳引擎创编

统计学第七章、第八章课后题答案之欧阳引擎创编

统计学复习笔记第七章欧阳引擎(2021.01.01)第八章一、思考题1.解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。

估计量也是随机变量。

如样本均值,样本比例、样本方差等。

根据一个具体的样本计算出来的估计量的数值称为估计值。

2.简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。

(2)有效性:是指估计量的方差尽可能小。

对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。

(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。

3.怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。

置信区间的论述是由区间和置信度两部分组成。

有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。

因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。

在公布调查结果时给出被调查人数是负责任的表现。

这样则可以由此推算出置信度(由后面给出的公式),反之亦然。

4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。

也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。

不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。

5. 简述样本量与置信水平、总体方差、估计误差的关系。

1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的其中: 2222α222)(E z n σα=n z E σα2=样本量越小。

概率论与数理统计第七章课后习题及参考答案

概率论与数理统计第七章课后习题及参考答案

5.设总体 X 的概率密度为
f
(x,
)
(
1) x
,0
x
1,
0, 其他.
其中 1是未知参数, X1 , X 2 ,…, X n 是来自 X 的一个样本.试求参数
2
的矩估计和极大似然估计.现有样本观测值 0.1 ,0.2 ,0.9 ,0.8 ,0.7 及 0.7 ,
求参数 的矩估计值和极大似然估计值.
1 2 2 c 2 2 ( 1 c) 2 ,
n
n
取 c 1 即可. n
14.设总体 X 的均值为 ,方差为 2 ,从总体中抽取样本 X1 , X 2 , X 3 ,证明
(
x,
,
2
)
1
1
1
e 2 2
(ln x )2
,
x
0,
2 x
0,
x 0.
其中 , 0 为未知参数, X1 , X 2 ,…, X n 是取自该总体的一
个样本,求参数 , 2 的极大似然估计.
解: xi 时,似然函数为
L(, 2 )
(
1 2 )n
1 x1x2 xn
exp{
dL
d
n exp{
n i 1
( xi
)}
0,
所以 L( ) 是 的单调增函数,从而对满足条件 xi 的任意 ,有
n
n
L( ) exp{ i1 (xi )} exp{ i1 (xi m1iinn{xi})} ,
即 L( ) 在 m1iinn{xi} 时取最大值, 故 的极大似然估计值为ˆ m1iinn{xi} . 7.(1) 设总体 X 具有分布律
ˆ1 X1 ;
ˆ2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学统计学第七章练习题及答案第7章 参数估计练习题7.1 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。

(1) 样本均值的抽样标准差x σ等于多少? (2) 在95%的置信水平下,边际误差是多少?解:⑴已知25,40,5===x n σ 样本均值的抽样标准差79.0410405≈===nx σσ ⑵已知5=σ,40=n ,25=x ,410=x σ,%951=-α 96.1025.02==∴Z Z α边际误差55.1410*96.1≈==nZ E σα7.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。

(1) 假定总体标准差为15元,求样本均值的抽样标准误差; (2) 在95%的置信水平下,求边际误差;(3) 如果样本均值为120元,求总体均值μ的95%的置信区间。

解.已知.根据查表得2/αz =1.96 (1)标准误差:14.24915===nX σσ(2).已知2/αz =1.96所以边际误差=2/αz *=ns 1.96*4915=4.2(3)置信区间:)(2.124,8.11596.149151202=*±=±ns Z x α7.3 从一个总体中随机抽取100=n 的随机样本,得到104560=x ,假定总体标准差85414=σ,构建总体均值μ的95%的置信区间。

96.12=∂Z144.1674110085414*96.12==⋅∂nZ σ856.87818144.16741104560.2=-=-∂nZ x σ144.121301144.16741104560.2=+=+∂nZ x σ置信区间:(87818.856,121301.144)7.4 从总体中抽取一个100=n 的简单随机样本,得到81=x ,12=s 。

(1) 构建μ的90%的置信区间。

(2) 构建μ的95%的置信区间。

(3) 构建μ的99%的置信区间。

解;由题意知100=n , 81=x ,12=s .(1)置信水平为%901=-α,则645.12=αZ .由公式ns z x ⨯±2α974.18110012645.181±=⨯±=即(),974.82,026.79974.181=±则的的%90μ置信区间为79.026~82.974 (2)置信水平为%951=-α, 96.12=αz由公式得ns z x ⨯±2α=81352.2811001296.1±=⨯± 即81352.2±=(78.648,83.352), 则μ的95%的置信区间为78.648~83.352(3)置信水平为%991=-α,则576.22=αZ .由公式±x ns z ⨯2α=096.38110012576.281±=⨯±=即81 3.1±则的的%99μ置信区间为7.5 利用下面的信息,构建总体均值的置信区间。

(1)25=x ,5.3=σ,60=n ,置信水平为95%。

(2)6.119=x ,89.23=s ,75=n ,置信水平为98%。

(3)419.3=x ,974.0=s ,32=n ,置信水平为90%。

⑴,60,5.3,25===n X σ置信水平为95% 解:,96.12=αZ89.0605.396.12=⨯=nZ σα置信下限:-X 11.2489.0252=-=nZ σα置信上限:+X 89.2589.0252=+=nZ σα),置信区间为(89.2511.24∴⑵。

,置信水平为,%9875n 89.23s ,6.119===X 解:33.22=αZ43.67589.2333.22=⨯=ns Z α置信下限:-X 17.11343.66.1192=-=n s Z α置信上限:+X 03.12643.66.1192=+=ns Z α),置信区间为(03.12617.113∴⑶x =3.419,s=0.974,n=32,置信水平为90%根据t=0.1,查t 分布表可得645.1)31(05.0=Z .283.0)(2/=∂ns Z所以该总体的置信区间为x ±2/∂Z ()ns =3.419±0.283即3.419±0.283=(3.136 ,3.702) 所以该总体的置信区间为3.136~3.702.7.6 利用下面的信息,构建总体均值μ的置信区间。

(1) 总体服从正态分布,且已知500=σ,15=n ,8900=x ,置信水平为95%。

(2) 总体不服从正态分布,且已知500=σ,35=n ,8900=x ,置信水平为95%。

(3) 总体不服从正态分布,σ未知,35=n ,8900=x ,500=s ,置信水平为90%。

(4) 总体不服从正态分布,σ未知,35=n ,8900=x ,500=s ,置信水平为99%。

(1)解:已知500=σ,15=n ,8900=x ,1-95=α%,96.12=αz)9153,8647(1550096.189002=⨯±=±nz x σα所以总体均值μ的置信区间为(8647,9153)(2)解:已知500=σ,35=n ,8900=x ,1-95=α%,96.12=αz)9066,8734(3550096.189002=⨯±=±nz x σα所以总体均值μ的置信区间为(8734,9066)(3)解:已知35=n ,8900=x ,s=500,由于总体方差未知,但为大样本,可用样本方差来代替总体方差 ∵置信水平1—α=90% ∴645.12=αz∴置信区间为)9039,8761(35500645.1812=⨯±=±ns z x α所以总体均值μ的置信区间为(8761,9039)(4)解:已知35=n ,8900=x ,500=s ,由于总体方差未知,但为大样本,可用样本方差来代替总体方差Θ置信水平1—α=99% ∴58.22=αz∴置信区间为)9118,8682(3550058.289002=⨯±=±ns z x α所以总体均值μ的置信区间为(8682,9118)7.7 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到的数据见Book7.7(单位:h )。

求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。

解:已知:3167.3=x 6093.1=s n=36 1.当置信水平为90%时,645.12=∂z ,4532.03167.3366093.1645.13167.32±=±=±∂ns z x所以置信区间为(2.88,3.76)2.当置信水平为95%时,96.12=∂z ,所以置信区间为(2.80,3.84)3.当置信水平为99%时,58.22=∂z ,7305.03167.3366093.158.23167.32±=±=±∂ns z x所以置信区间为(2.63,4.01)5445.03167.3366093.196.13167.32±=±=±∂ns z x7.8 从一个正态总体中随机抽取样本量为8的样本,各样本值见Book7.8。

求总体均值95%的置信区间。

已知:总体服从正态分布,但σ未知,n=8为小样本,05.0=α,365.2)18(205.0=-t根据样本数据计算得:46.3,10==s x 总体均值μ的95%的置信区间为: 89.210846.3365.2102±=⨯±=±ns t x α,即(7.11,12.89)。

7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km )数据见Book7.9。

求职工上班从家里到单位平均距离95%的置信区间。

已知:总体服从正态分布,但σ未知,n=16为小样本,α=0.05,131.2)116(2/05.0=-t根据样本数据计算可得:375.9=x ,s=4.113 从家里到单位平均距离得95%的置信区间为:191.2375.914113.4131.2375.92/±=⨯±=±ns t x α,即(7.18,11.57)。

7.10 从一批零件中随机抽取36个,测得其平均长度为149.5cm ,标准差为1.93cm 。

(1) 试确定该种零件平均长度95%的置信区间。

(2) 在上面的估计中,你使用了统计中的哪一个重要定理?请简要解释这一定理。

解:已知,103=σn=36, x =149.5,置信水平为1-α=95%,查标准正态分布表得2/αZ =1.96. 根据公式得: x ±2/αZ nσ=149.5±1.9636103⨯即149.5±1.9636103⨯=(148.9,150.1)答:该零件平均长度95%的置信区间为148.9~150.1(3) 在上面的估计中,你使用了统计中的哪一个重要定理?请简要解释这一定理。

答:中心极限定理论证。

如果总体变量存在有限的平均数和方差,那么,不论这个总体的分布如何,随着样本容量的增加,样本均值的分布便趋近正态分布。

在现实生活中,一个随机变量服从正态分布未必很多,但是多个随即变量和的分布趋于正态分布则是普遍存在的。

样本均值也是一种随机变量和的分布,因此在样本容量充分大的条件下,样本均值也趋近正态分布,这位抽样误差的概率估计理论提供了理论基础。

7.11 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为100g 。

现从某天生产的一批产品中按重复抽样随机抽取50包进行检查,测得每包重量(单位:g )见Book7.11。

已知食品重量服从正态分布,要求:(1) 确定该种食品平均重量的95%的置信区间。

(2) 如果规定食品重量低于100g 属于不合格,确定该批食品合格率的95%的置信区间。

(1)已知:总体服从正态分布,但σ未知。

n=50为大样本。

α=0.05,2/05.0Z =1.96 根据样本计算可知 X =101.32 s=1.63 该种食品平均重量的95%的置信区间为45.032.10150/63.1*96.132.101/2/±=±=Z ±X n s α 即(100.87,101.77)(2)由样本数据可知,样本合格率:9.050/45==p 。

该批食品合格率的95%的置信区间为: 2/αZ ±p n p p )1(-=0.950)9.01(9.096.1-±=0.9±0.08,即(0.82,0.98) 答:该批食品合格率的95%的置信区间为:(0.82,0.98)7.12 假设总体服从正态分布,利用Book7.12的数据构建总体均值μ的99%的置信区间。

相关文档
最新文档