2.1 圆周角定理 课件(人教A选修4-1)(2)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回
[悟一法] 在圆中,直径是一条特殊的弦,其所对的圆周角是 直角,所对的弧是半圆,利用此性质既可以计算角、线
段又可以证明线线垂直、平行等位置关系,还可以证明
比例式相等.
返回
[通一类] 3.如图,△ABC中,∠C=90°,AB=
10,AC=6,以AC为直径的圆与斜边 交于点P,求BP长.
解:连接 CP,∵AC 为圆的直径, ∴∠CPA=90° ,即 CP⊥AB. 又∵∠ACB=90° , ∴由射影定理可知 AC2=AP· AB. AC2 36 ∴AP= = =3.6. AB 10 ∴BP=AB-AP=10-3.6=6.4.
=AD,DM=MC即可.
返回
证明:在 MA 上取点 D,使 MD=MC. ∵△ABC 为正三角形, ∴∠1=∠2=60° . ∴△MDC 是等边三角形. ∴CD=MC. 在△ADC 与△BMC 中
∠3=∠4, AC=BC, ∠ADC=∠BMC=120° ,
∴△ADC≌△BMC. ∴AD=BM. ∴MA=MD+DA=MC+MB.
返回
[悟一法]
(1)在圆中,只要有弧,就存在着所对的圆周
角.同弧所对的圆周角相等,而相等的角为几何命题的
推理提供了条件,要注意此种意识的应用. (2)证明一条线段等于两条线段之和,可将其分为 两段,其中一段等于已知线段,再去证明另一段也等于 已知线段.
返回
[通一类] 2.如图,G是以BC为直径的圆上一点,
解:连接 BC,∵AB 为⊙O 的直径, ∴∠ACB=90° . ∵∠BAC=30° ,AB=2 cm, AB ∴BC= =1 (cm). 2 ∵∠ABD=120° , ∴∠DBC=120° -60° =60° . ∵CD⊥BD, ∴∠BCD=90° -60° =30° . BC ∴BD= =0.5 (cm). 2
返回
[小问题·大思维] 1.圆心角的大小与圆的半径有关系吗? 提示:圆心角的度数等于它所对弧的度数,与圆的半径 没有关系. 2.相等的圆周角所对的弧也相等吗? 提示:不一定.只有在同圆或等圆中,相等的圆周角所
对的弧才相等.
Βιβλιοθήκη Baidu
返回
返回
[研一题]
[例1]
锐角三角形ABC内接于⊙O,∠ABC=60°,
∠BAC=40°,作OE⊥AB交劣弧 于点E,连接EC, AB 求∠OEC. 分析:本题考查圆周角定理与圆心角定理的应用. 解决本题需要先求∠OEC所对的弧的度数,然后根据圆心
角定理得∠OEC的度数.
返回
解:连接 OC. ∵∠ABC=60° ,∠BAC=40° , ∴∠ACB=80° .
AB ∵OE⊥AB,∴E 为 的中点.
返回
返回
[读教材·填要点] 1.圆周角定理 圆上一条弧所对的圆周角等于它所对的圆心角的 一半.
2.圆心角定理 圆心角的度数 等于 它所对弧的度数.
返回
3.圆周角定理的推论
(1)推论1:同弧或等弧所对的圆周角 相等 ;同圆或等 圆中,相等的圆周角所对的弧 也相等 . (2)推论2:半圆(或直径)所对的圆周角是 直角 ;90° 直径 的圆周角所对的弦是 .
∴∠1=∠2.∴AE=BE. 又∵∠1+∠BFA=90° , ∠2+∠DAF=90° , ∴∠BFA=∠DAF, ∴AE=EF,∴BE=EF.
返回
[研一题]
[例3] 如图,AB是⊙O的直径,
AB=2 cm,点C在圆周上,且∠BAC
=30°,∠ABD=120°,CD⊥BD于
D.求BD的长.
分析:本题考查“直径所对的圆周角为直角”的应 用.解答本题可连接BC,然后利用直角三角形的有关知识 解决. 返回
∴ BE 和 BC 的度数均为 80° .
∴∠EOC=80° +80° =160° . ∴∠OEC=10° .
返回
[悟一法] 圆周角定理可以理解成一条弧所对的圆心角是它所 对的圆周角的二倍;圆周角的度数等于它所对弧的度数 的一半.
返回
[通一类] 1.已知AD是△ABC的高,AE是△ABC的外接圆的直径, 求证:∠BAE=∠DAC. 证明:连接BE,因为AE为直径,
关系在证明中的应用. 返回
证明:连结OD,因为BD=DC,
O为AB的中点,
所以OD∥AC,于是∠ODB=
∠C.
因为OB=OD,所以∠ODB= ∠B.于是∠B=∠C. 因为点A,E,B,D都在圆O上,且D,E为圆O上 位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周
角,故∠E=∠B.所以∠E=∠C.
返回
本课时考点常与相似三角形、平行线分线段成比 例定理等问题相结合考查,2012年江苏高考以证明
题的形式重点考查圆周角定理、圆心角定理及三角形
边角关系.
返回
[考题印证] (2012·江苏高考)如图,AB是圆O的 直径,D,E为圆O上位于AB异侧的两
点,连结BD并延长至点C,使BD=DC,
连结AC,AE,DE. 求证:∠E=∠C. [命题立意] 本题主要考查圆周角定理和三角形的边角
返回
点击下图进入“创新演练”
返回
A是劣弧BG 的中点,AD⊥BC,D为
垂 足,连接AC、BG,其中BG交AD、
AC于点E、F.
求证:BE=EF.
证明:连接 AB, ∵BC 为直径, ∴∠BAC=90° . ∴∠2+∠DAC=90° .
返回
∵∠C+∠DAC=90° , ∴∠2=∠C.
AG ∵ BA = ,∴∠1=∠C.
所以∠ABE=90°.
因为AD是△ABC的高, 所以∠ADC=90°. 所以∠ADC=∠ABE. 因为∠E=∠C,
所以∠BAE=180°-∠ABE-∠E,
∠DAC=180°-∠ADC-∠C. 所以∠BAE=∠DAC. 返回
[研一题] [例2] 已知三角形ABC是圆内接正三角形,M是
B上的一点.
求证:MA=MB+MC. 分析:本题考查圆周角定理及全等三角形的应用. 解答本题可先将MA分成MD和AD两段,然后证明MB
相关文档
最新文档