基于Sugeno型模糊神经网络和互补滑模控制器的双直线电机伺服系统同步控制
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Jin Hongyan Zhao Ximei (School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China)
Abstract A control method combined with Sugeno type fuzzy neural network (SFNN) synchronous compensator and complementary sliding mode controller (CSMC) is proposed for position synchronization control problems of dual linear motors servo system in a high precision direct drive gantry position stage. The permanent magnet linear synchronous motor (PMLSM) dynamic model with uncertainties such as parameter variations, external disturbances and friction forces was established, and CSMC is designed by the combination of generalized sliding surface and complementary sliding surface. CSMC can efficiently suppress the influence of uncertainties and weaken the chattering phenomenon in the traditional sliding mode controller (SMC), reduce the tracking errors of the system and achieve high precision position tracking. Meanwhile, SFNN synchronous controller is used to solve the dynamic parameter unmatched problems between two linear motors and the coupling phenomenon. SFNN can make error compensation for each axis, so that it can reduce the position synchronization error and guarantee synchronization control of the system. The experimental results show that the control method can significantly reduce the tracking error and synchronization error of the system, and further improve
2019 年 7 月 第 34 卷第 13 期
电工技术学报
TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY
DOI:10.19595/j.cnki.1000-6753.tces源自文库180839
Vol.34 No.13 Jul. 2019
基于 Sugeno 型模糊神经网络和互补滑模 控制器的双直线电机伺服系统同步控制
关键词:双直线电机伺服系统 Sugeno 型模糊神经网络 互补滑模控制器 不确定性 同 步控制
中图分类号:TP273
Dual Linear Motors Servo System Synchronization Control Based on Sugeno Type Fuzzy Neural Network and Complementary Sliding Mode Controller
辽宁省自然科学基金计划重点项目(20170540677)和辽宁省教育厅科学技术研究项目(LQGD2017025)资助。 收稿日期 2018-05-15 改稿日期 2018-09-04
第 34 卷第 13 期 金鸿雁等 基于 Sugeno 型模糊神经网络和互补滑模控制器的双直线电机伺服系统同步控制 2727
金鸿雁 赵希梅
(沈阳工业大学电气工程学院 沈阳 110870)
摘要 针对高精密直驱龙门定位平台的双直线电机伺服系统的位置同步控制问题,提出一种 Sugeno 型模糊神经网络(SFNN)同步补偿器和互补滑模控制器(CSMC)相结合的控制方法。建立 了含有参数变化、外部扰动和摩擦力等不确定性的永磁直线同步电机(PMLSM)动态模型,采用广 义滑模面和互补滑模面相结合的方式来设计 CSMC。CSMC 可有效抑制参数变化、外部扰动和摩擦 力等不确定性的影响,削弱传统滑模控制器(SMC)存在的抖振现象,减小系统的跟踪误差,实现 高精度位置跟踪。同时,利用 SFNN 同步补偿器解决双直线电机间动态参数不匹配问题及耦合现 象,SFNN 同步补偿器可对每个轴进行误差补偿,从而减小位置同步误差,保证系统实现同步控制。 实验结果表明,该控制方法可明显减小系统的跟踪误差和同步误差,进而改善轮廓加工精度。
the accuracy of contour processing. Keywords:Dual linear motors servo system, Sugeno type fuzzy neural network (SFNN), complementary
sliding mode controller (CSMC), uncertainties, synchronization control
Abstract A control method combined with Sugeno type fuzzy neural network (SFNN) synchronous compensator and complementary sliding mode controller (CSMC) is proposed for position synchronization control problems of dual linear motors servo system in a high precision direct drive gantry position stage. The permanent magnet linear synchronous motor (PMLSM) dynamic model with uncertainties such as parameter variations, external disturbances and friction forces was established, and CSMC is designed by the combination of generalized sliding surface and complementary sliding surface. CSMC can efficiently suppress the influence of uncertainties and weaken the chattering phenomenon in the traditional sliding mode controller (SMC), reduce the tracking errors of the system and achieve high precision position tracking. Meanwhile, SFNN synchronous controller is used to solve the dynamic parameter unmatched problems between two linear motors and the coupling phenomenon. SFNN can make error compensation for each axis, so that it can reduce the position synchronization error and guarantee synchronization control of the system. The experimental results show that the control method can significantly reduce the tracking error and synchronization error of the system, and further improve
2019 年 7 月 第 34 卷第 13 期
电工技术学报
TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY
DOI:10.19595/j.cnki.1000-6753.tces源自文库180839
Vol.34 No.13 Jul. 2019
基于 Sugeno 型模糊神经网络和互补滑模 控制器的双直线电机伺服系统同步控制
关键词:双直线电机伺服系统 Sugeno 型模糊神经网络 互补滑模控制器 不确定性 同 步控制
中图分类号:TP273
Dual Linear Motors Servo System Synchronization Control Based on Sugeno Type Fuzzy Neural Network and Complementary Sliding Mode Controller
辽宁省自然科学基金计划重点项目(20170540677)和辽宁省教育厅科学技术研究项目(LQGD2017025)资助。 收稿日期 2018-05-15 改稿日期 2018-09-04
第 34 卷第 13 期 金鸿雁等 基于 Sugeno 型模糊神经网络和互补滑模控制器的双直线电机伺服系统同步控制 2727
金鸿雁 赵希梅
(沈阳工业大学电气工程学院 沈阳 110870)
摘要 针对高精密直驱龙门定位平台的双直线电机伺服系统的位置同步控制问题,提出一种 Sugeno 型模糊神经网络(SFNN)同步补偿器和互补滑模控制器(CSMC)相结合的控制方法。建立 了含有参数变化、外部扰动和摩擦力等不确定性的永磁直线同步电机(PMLSM)动态模型,采用广 义滑模面和互补滑模面相结合的方式来设计 CSMC。CSMC 可有效抑制参数变化、外部扰动和摩擦 力等不确定性的影响,削弱传统滑模控制器(SMC)存在的抖振现象,减小系统的跟踪误差,实现 高精度位置跟踪。同时,利用 SFNN 同步补偿器解决双直线电机间动态参数不匹配问题及耦合现 象,SFNN 同步补偿器可对每个轴进行误差补偿,从而减小位置同步误差,保证系统实现同步控制。 实验结果表明,该控制方法可明显减小系统的跟踪误差和同步误差,进而改善轮廓加工精度。
the accuracy of contour processing. Keywords:Dual linear motors servo system, Sugeno type fuzzy neural network (SFNN), complementary
sliding mode controller (CSMC), uncertainties, synchronization control