水热合成法ppt课件
合集下载
课件:第五章 水热合成
![课件:第五章 水热合成](https://img.taocdn.com/s3/m/45572bc358fb770bf68a5504.png)
构。其它9种经粉末X射线衍射分析以及吸附性能的研
究,确定为新的分子筛晶相。
• 研究组又在中温中压下开发出了一系列钛酸盐,硼 酸盐和砷酸盐微孔晶体。进一步丰富了中温中压水热 下的无机造孔合成领域。
2. 介孔材料
介孔材料是指孔径位于2~50nm,且具有一 定长程有序性的多孔材料。介孔材料因表面积大、 孔径分布均一及结构有序的特性而被广泛应用于 催化载体、吸附材料及分离介质等领域。1992年 Mobil公司的研究人员首次使用烷基季铵盐型阳 离子表面活性剂作为模板剂成功合成出M41S介 孔材料(MCM-41、MCM-48、MCM-50等),从 而将多孔材料从微孔扩展到介孔。
[BeAl2(SiO2)6]以及彩色的水晶等(掺过渡金属等)。
水热反应通常是以水为溶剂。目前也有用NH3,醇, 为溶剂进行新型无机物的合成。
二.作为反应介质的水的有关性质
1. 在高温高压水热体系中,水的性质将产生下列变化:
(1)蒸气压
变高
(2)密 度
变低
(3)表面张力 变低
(4)粘 度
变低
(5)离子积
5.介电常数
以水为溶剂时,介电常数是一个十分重要的性质。它 随温度升高而下降,随压力增加而升高。
有时温度又是主要的,在通常情况下电解质在水中全 部溶解,然而随着温度的提高,电解质可能趋向于重新 结合。对于大多数物质来说,这种变化在200~500℃之 间发生。
NaBr解离常数k与 T的关系曲线。可以看出:恒温下,k随压强 的增加而上升;恒压下,k随温度升高而下降。
矿石, 铬以可溶性盐铬酸钠形式提取。
4. 水热分解法 例如:自ZrSiO4中,在 NaOH水溶液使其分解而制
取ZrO2。 ZrSiO4→ZrO2↓+Na2SiO3 (条件为NaOH(aq)
水热法合成银纳米线PPT课件
![水热法合成银纳米线PPT课件](https://img.taocdn.com/s3/m/83d42d67a0116c175f0e48fd.png)
图18可以观察到随着反应时间的延长 ,溴化 银的衍 射峰逐 渐减弱 ,银的 衍射峰 逐渐增 强。反 应持续24h后, 溴化银 衍射峰 消失; 说明反 应结束 ,溴化 银全部 被还原 为银。 因为(111)晶 面和(200)晶面 衍射峰 的比值 较大, 可以得 出该银 纳米线 具有较 大的长 径比。
第18页/共20页
第7页/共20页
从图9(a)-(d)中的SEM图片中可以看出 在140 ℃温度 下,随 着反应 时间的 增长, 产物由 尺寸不 均匀的 银纳米 棒和形 貌不规 则的银 纳米颗 粒的混 合物生 长为纯 度教好 、均匀 性好的 银纳米 线。从 图9(d) 中的TE M可以 观察到 银纳米 线的直 径为80nm,长 度分部 在40~10 0um
图9 140 ℃不同反应时间下所得产物的SEM 和TEM 照片 第8页/共20页
图10 140℃反应24h银纳米线的XRD 谱图
该XRD谱图与银的衍射峰完全一致, 表明制 备的银 纳米线 具有面 心立方 结构, 且结晶 度很高 。
第9页/共20页
图11 反应时间为24 h, 不同反应温度下所得产物的SEM 照片 从图中SEM图中可以看出反应温度较 低是无 法得到 银纳米 线,产 物为形 貌不规 则的纳 米颗粒 ,这是 因为反 应温度 较低, 体系活 性低, 开始生 成的纳 米颗粒 无法在 溶解组 装成纳 米线; 反应温 度过高 时所得 产物为 尺寸较 大的不 规则纳 米颗粒 ,因为 反应温 度高, 体系活 性大分 子运动 也比较 剧烈, 使得PVB 难以稳定吸附在晶体(100)晶面上。
1.功能性纳米粒子的制备与分析(一维结构纳米银的合成研究)
图2 纳米银合成的操作流程图
图1 高分子-多元醇合成法制备纳米银装置实验图 第1页/共20页
水热合成法 ppt课件
![水热合成法 ppt课件](https://img.taocdn.com/s3/m/9ad6457b81c758f5f61f6791.png)
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
水热合成法
水热合成法 Hydrothermalsynthesis
无机
1
• 在衬底上形成稳定结晶相薄膜
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
水热合成法
水热合成法 Hydrothermalsynthesis
无机
1
水热法合成宝石 ppt课件
![水热法合成宝石 ppt课件](https://img.taocdn.com/s3/m/9ea13d96a8114431b80dd83f.png)
5. 影响宝石晶体生长的因素
溶液的过饱和度 矿化剂的性质与浓度 对流 挡板 生长区温度与温差 压力和充填度 杂质 种晶的取向 营养料
6. 水热法合成宝石晶体
6.1 水热法合成水晶晶体 6.2 水热法合成刚玉类晶体 6.3 水热法合成祖母绿晶体 6.4 水热法合成海蓝宝石晶体
(2) 高压釜(43CrNi2MoV) (3) 矿化剂(NaCO3,NaOH,NaCO3 + NaOH)
填加剂(LiF、LiNO3、Li2CO3); 充填度(80%86%)
工作条件和工艺参数
(4) 种晶(⊥Z轴,//Y轴,X+50,VO.A=700,YZ) (5) 培养料 (熔炼石英,粒度2cm左右,质地均匀) (6) 生长速度(//Z轴 ≈ 0.6-1.2mm/day,受种晶取向、
等温法高压釜
3.2 摆动法
摆动法的装置由A、B两个圆筒组成,其中 A筒放置培养液,B筒放置籽晶,两筒间保持一定的 温度差。定时地摆动A、B两个圆筒以加速它们之间 的对流,利用两筒之间的温差在高压环境下生长出 晶体,此法也曾用于水晶的生长。
3.3 温差法
温差法是在立式高压釜内生产晶体,高压釜内部的 对流挡板将釜腔分成上、下两部分,籽晶挂在生长 区的培育架上,晶体在籽晶上逐步生长;对流挡板 的下部为培养料区(也称溶解区),溶解区内放人适 量的高纯度原料和矿化剂。加热,使高压釜的上、 下部分形成一定的温差。当高压釜温度超过100℃后, 由于热膨胀和大量蒸汽的形成,釜内形成气压。
109Pa的压力,具有可靠的密封系统和防爆装置。 高压釜的直径与高度比有一定的要求,对内径为 100-120mm的高压釜来说,内径与高度比以1:16 为宜。 高度太小或太大都不便控制温度的分布。
水热与溶剂热合成方法的概念水热法ppt课件
![水热与溶剂热合成方法的概念水热法ppt课件](https://img.taocdn.com/s3/m/ef2d715f876fb84ae45c3b3567ec102de2bddff0.png)
15
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
“溶解-结晶”机制
所谓“溶解”是指水热反应初期,前驱物微粒之 间的团聚和联接遭到破坏,从而使微粒自身在水 热介质中溶解,以离子或离子团的形式进入溶 液,进而成核、结晶而形成晶粒;
16
“结晶”是指当水热介质中溶质的浓度高于晶粒 的成核所需要的过饱和度时,体系内发生晶粒的 成核和生长,随着结晶过程的进行,介质中用于 结晶的物料浓度又变得低于前驱物的溶解度,这 使得前驱物的溶解继续进行。如此反复,只要反 应时间足够长,前驱物将完全溶解,生成相应的 晶粒。
13
水热生长体系中的晶粒形成可分为三种类型:
“均匀溶液饱和析出”机制 “溶解-结晶”机制
“原位结晶”机制
14
“均匀溶液饱和析出”机制
由于水热反应温度和体系压力的升高,溶质在 溶液中溶解度降低并达到饱和,以某种化合物结 晶态形式从溶液中析出。当采用金属盐溶液为前 驱物,随着水热反应温度和体系压力的增大,溶 质(金属阳离子的水合物)通过水解和缩聚反应 ,生成相应的配位聚集体(可以是单聚体,也可 以是多聚体)当其浓度达到过饱和时就开始析出 晶核,最终长大成晶粒。
• 用这种方法可以合成水晶、刚玉(红宝石、蓝宝石)、绿柱
石(祖母绿、海蓝宝石)、及其它多种硅酸盐和钨酸盐等上 百种晶体。
绿柱石(铍铝硅酸盐矿物) 石榴子石(A3B2[SiO4]3 7
水热法(hydrothermal)(高压溶液法)
8
溶剂热合成方法的发展
1985年,Bindy首次在“Nature”杂志上发表文章报道了高
31
热处理反应
利用水热条件处理一般晶体
而得到具有特定性晶体的反 应。
利用水热条件下物质热
力学和动力学稳定性差 异进行的反应。
转晶反应
课件:水热法
![课件:水热法](https://img.taocdn.com/s3/m/488e979602768e9950e7386c.png)
的无色绿柱石或祖母 绿生成板状晶体。 挂于高压釜中部。 温度:6000C 工作压力:830×105Pa 生长速度:每天0.1-0.8mm。 高压釜内衬铂金(或黄金)衬里;
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
水热法生长祖母绿的鉴别
(1)折射率、双折射率和相对密度:水热法合成祖母 绿与天然祖母绿相同。
(2)查尔斯滤色镜:通常显强红色,但也有些变色效 应较弱,如俄罗斯的呈弱红色。
水热法合成祖母绿
水热法生长红色绿柱石的鉴别 吸收光谱
合成红色绿柱石为钴(Co²+)谱与天然红色绿 柱石明显不同,即530-590nm之间几个模糊到清晰 的吸收带。而天然红色绿柱石是Mn致色,为 450nm以下和540-580nm之间的宽的吸收。
强红色荧光,滤色镜下强红色 黑色底衬下,强光照射会出现红色
如何鉴别? 4. 水热法生长宝石晶体的鉴定特征? 5. 影响水热法生长宝石晶体的因素是什么?
水热法
水热法是利用高温高压的水溶液溶解矿物质, 控制高压釜内溶液的温差产生对流和形成过 饱和状态,使溶解在溶液中的矿物质在种晶 上析出,生长成较大的晶体。 自然界热液成矿就是在一定的温度和压力下, 成矿热液中成矿物质从溶液中析出的过程。 水热法合成宝石就是模拟自然界热液成矿过 程中晶体的生长。
⑤ 面包屑状包裹体:在暗域下呈白色,形态上 与面包屑相似的包裹体,较小而且通常数量不 多。 ⑥ 尘埃状包裹体和种晶残余:尘埃状包裹体成 片地分布在无色种晶片与橙红色部分的交界面 上。
§5 水热法生长祖母绿晶体与鉴别
1960年澳大利亚人约翰.莱奇特纳首次获得 成功,后被林德公司购买了销售权
1969-1970年达高峰期,年产量2万克拉 我国1987年开始研究,1989年获得成功,
色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 因此,水热法合成的宝石品种有:
第三章水热法.ppt
![第三章水热法.ppt](https://img.taocdn.com/s3/m/a84e25a49e31433239689394.png)
页面 9
与水热法相比,溶剂热法具有以下优点:
✓在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或 水中氧的污染;
✓非水溶剂的采用使得溶剂热法可选择原料的范围大大扩大, 比如氟化物,氮化物,硫化合物等均可作为溶剂热反应的原 材料;同时,非水溶剂在亚临界或超临界状态下独特的物理 化学性质极大地扩大了所能制备的目标产物的范围;
2020/6/15
页面 8
➢另外,物相的形成,粒径的大小、形态也能够 有效控制,而且产物的分散性好。
➢更重要的是通过溶剂热合成出的纳米粉末,能 够有效的避免表面羟基的存在,使得产物能稳定 存在。
➢作为反应物的盐的结晶水和反应生成的水,相 对于大大过量的有机溶剂,水的量小得可以忽略。
2020/6/15
• 复 合 氧 化 物 : BaFe12O19 、 BaZrO3 、 CaSiO3 、 PbTiO3、LaFeO3、LaCrO3、NaZrP3O12等;
2020/6/15
页面 5
• 羟基化合物、羟基金属粉:Ca10(PO4)6(OH)2、羟 基铁、羟基镍;
• 复合材料粉体:ZrO2-C、ZrO2-CaSiO3、TiO2-C、 TiO2-Al2O3等。
2020/6/15
页面 14
超临界流体拥有一般溶剂所不具备的很多重要 特性。SCF的密度、溶剂化能力、粘度、介电常 数、扩散系数等物理化学性质随温度和压力的变 化十分敏感,即在不改变化学组成的情况下,其 性质可由压力来连续调节。能被用作SCF溶剂的 物质很多,如二氧化碳、水、一氧化氮、乙烷、 庚烷、氨等。超临界流体相图,如图2.2。
2020/6/15
页面 7
➢相应的,它不但使反应物(通常是固体)的溶 解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
水热合成法演示课件
![水热合成法演示课件](https://img.taocdn.com/s3/m/c1a125b4bd64783e09122ba5.png)
水热合成法 Hydrothermalsynthesis
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8Hale Waihona Puke 五、水热合成法的具体应用• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
无机 1
1
原理
2
分类
目录
3
过程
5
具体应用
4
与核壳结构 的关系
2
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
3
一、原理:水热合成是什么?
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
TEM image and ED pattern of CdS / ZnO nanoparticles
8Hale Waihona Puke 五、水热合成法的具体应用• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
9
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
12附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
《水热与溶剂热合成》课件
![《水热与溶剂热合成》课件](https://img.taocdn.com/s3/m/4731640d32687e21af45b307e87101f69e31fb98.png)
在化学中的应用
01
02
03
合成有机分子
水热与溶剂热合成可用于 合成有机分子,如药物分 子、染料分子等。
合成无机纳米材料
利用水热与溶剂热合成技 术,可以制备各种无机纳 米材料,如金属纳米粒子 、氧化物纳米粒子等。
合成功能性配合物
通过水热与溶剂热合成, 可以制备具有特殊功能的 配合物,如荧光配合物、 电致变色配合物等。
。
反应机制与动力学研究
02
深入了解水热与溶剂热合成的反应机制和动力学过程,为优化
反应条件提供理论支持。
新型合成方法的开发
03
结合其他合成方法,如微波合成、超声合成等,开发出更高效
、环保的水热与溶剂热合成方法。
新的应用领域探索
新材料的合成
利用水热与溶剂热合成方法探索合成具有特殊性能和功能的新材 料。
溶剂热合成是指在密封的压力容器中,以有机溶剂为反应介 质,在一定的温度和压力条件下进行的化学反应过程。
详细描述
溶剂热合成利用高温高压的有机溶剂作为反应介质,使物质 在高温高压下发生化学反应,从而合成所需的物质。溶剂热 合成具有反应温度高、压力大、反应条件温和、产物纯净等 优点。
水热与溶剂热合成的基本原理
水热合成的定义
总结词
水热合成是指在密封的压力容器中,以水为溶剂,在一定的温度和压力条件下 进行的化学反应过程。
详细描述
水热合成利用高温高压的水环境作为反应介质,使物质在高温高压下发生化学 反应,从而合成所需的物质。水热合成具有反应温度高、压力大、反应条件温 和、产物纯净等优点。
溶剂热合成的定义
总结词
04
对未来学习的建议
建议1
深入学习相关理论,掌握基本 概念和原理
水热合成PPT课件
![水热合成PPT课件](https://img.taocdn.com/s3/m/5f88c3b3783e0912a3162a7d.png)
2021
24
矿化剂(Mineralizer)
矿化剂通常是一类在反应介质中的溶解度随温度 的升高而持续增大的化合物,如一些低熔点的盐、 酸或碱。
矿化剂可以提高溶质在水热溶液里的溶解度,可 改变其溶解度温度系数;
温度系数符号改变除了与所加入的矿化剂种类有 关,还与溶液里矿化剂的浓度有关。
2021
沸石分子筛
另章讨论
其它晶体材料
1982午4月: 日本横滨,第一届国际水热反应专题讨论会
研究重点:新化合物的合成.新合成方法的开 拓和新合成理论的建立。
2021
4
与溶液化学的差别:
合成反应在高温和高压下进行,侧重于研究 水热合成条件下物质的反应性、合成规律以 及合成产物的结构与性质。
与固相合成研究的差别: “反应性”不同
2021
30
成核与晶体生长
在液相或液固界面上少量的反应试剂产生 微小的不稳定的核,更多的物质自发地沉 积在这些核上而生成微晶;
水热与溶剂热生长的晶体不完全是离子的 (如BaSO4或AgCl等),它通过部分共价 键的三维缩聚作用而形成。
2021
31
成核与晶体生长
可生长核即晶体生长自发进行的核的出现,是溶液 或混合溶液波动的结果。
例如:制备含有OH-、F-、S2-等挥发性物质的 陶瓷材料。
也可同时进行化学反应和烧结反应。 如:氧化铬、单斜氧化锗、氧化铝-氧化铬
复合体的制备。
(10) 水热热压反应 在水热热压条件下,材料固化与复合材料的
生成反应。
如:放射性废料处理、特殊材料的固化成型、特种
复合材料的制备。
2021
13
按反应温度进行分类,
2021
8
水热合成法 PPT
![水热合成法 PPT](https://img.taocdn.com/s3/m/5a10404efc4ffe473368abc8.png)
水热合成法分类
1)水热氧化:高温高压水、水溶液等 溶剂与金属或合金可直接反应生长性 的化合物。 例如:M+[0]——MxOy
2)水热沉淀:某些化合物在通常条件 下无法或很难生成沉淀,而在水热条 件下却生成新的化合物沉淀。 例如: KF+MnCI2——KMnF2
3)水热合成:可允许在很宽的范围内 改变参数,使两种或两种以上的化合 物起反应,合成新的化合物。例如: FeTiO3+K0H——K20•nTiO2
水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
5.2 水热法制备BaTiO3薄膜
利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
料搅拌。 (3)装釜、封釜、置入烘箱。 (4)确定反应温度、时间、状
态进行反应。 (5) 取 釜 、冷 却( 空气冷或水 精选
四、水热合成法与核壳结构
• 水热法合成 CdS /ZnO核壳结构纳米微粒 • 具体合成过程:以半胱氨酸镉配合物为前驱体 , 采用水热法合成 CdS纳米微
粒 , 再以 ZnO 对其进行表面修饰 , 形成具有核/壳结构的 CdS /ZnO 半导体纳 米微粒。CdS纳米微粒表面经 ZnO 修饰后 , 其带边发射大大增强。透射电镜 显示 , 110℃下反应 4 h所得的 CdS / ZnO 颗粒尺寸约为 20 nm, 电子衍射表明 其结构为六方相。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
精选
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
精选
谢谢!
精选
欢迎大家提问
TEM image and ED pattern of CdS / Z
• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
精选
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
精选
水热合成法分类
• 1)水热氧化:高温高压水、 水溶液等溶剂与金属或合金 可直接反应生长性的化合 物。 例如:M+[0]——MxOy
KF+MnCI2——KMnF2
• 5)水热分解:某些化合物在
• 3)水热合成:可允许在很宽
水热条件下分解成新的化合
的范围内改变参数,使两种 精选 物,进行分离而得单一化合
三、具体过程
• 基本设备:水热合成反应釜 • 具体流程: (1)选择反应前驱物,确定反
应前驱物的计量比。 (2)摸索前驱物加入顺序,混
• 水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
精选
5.2 水热法制备BaTiO3薄膜
• 利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
水热合成法 Hydrothermalsynthesis
无机
精选
1
原理
2
分类
目录
3
过程
精选
5
具体应用
4
与核壳结构 的关系
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
精选
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
一、原理:水热合成是什么?
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
精选
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
精选附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
• 4)水热还原:一些金属类氧 化物、氢氧化物、碳酸盐或 复盐用水调浆,无需或只需 极少量试剂,控制适当温度
• 2)水热沉淀:某些化合物在 通常条件下无法或很难生成 沉淀,而在水热条件下却生 成新的化合物沉淀。 例如:
合氧分压等条件,即可制得 超细金属粉体。例如: MexOy+Hz——xMe+yHzO 其中Me为银、铜等
态进行反应。 (5) 取 釜 、冷 却( 空气冷或水 精选
四、水热合成法与核壳结构
• 水热法合成 CdS /ZnO核壳结构纳米微粒 • 具体合成过程:以半胱氨酸镉配合物为前驱体 , 采用水热法合成 CdS纳米微
粒 , 再以 ZnO 对其进行表面修饰 , 形成具有核/壳结构的 CdS /ZnO 半导体纳 米微粒。CdS纳米微粒表面经 ZnO 修饰后 , 其带边发射大大增强。透射电镜 显示 , 110℃下反应 4 h所得的 CdS / ZnO 颗粒尺寸约为 20 nm, 电子衍射表明 其结构为六方相。
• 水热合成是指:温度为100~1000℃、压力为1MPa~1GPa条件下利用水溶液 中物质化学反应所进行的合成。在亚临界和超临界水热条件下,由于反应处于 分子水平,反应性提高,因而水热反应可以替代某些高温固相反应。
• 利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,并且重结 晶而进行无机合成与材料处理的一种有效方法。
• 反应过程的驱动力是最后可溶的前驱体或中间产物与最终产物之间的溶解度差, 即反应向吉布斯焓减小的方向进行。
精选
二、水热生长体系中的晶粒形成可分为三种类型:
➢ “均匀溶液饱和析出”机制:由于水热反应温度和体系压力的升高,溶质在溶 液中溶解度降低并达到饱和,以某种化合物结晶态形式从溶液中析出。
➢ “溶解-结晶”机制:“溶解”是指水热反应初期,前驱物微粒之间的团聚和 联接遭到破坏,从而使微粒自身在水热介质中溶解,以离子或离子团的形式进 入溶液,进而成核、结晶而形成晶粒; 苗鸿雁; 罗宏杰; 姚熹; ) • TiO2和BaTiO3纳米晶的水热合成及其光电性能的研究( 中南大学, 王丽丽) • 水热合成法及其应用(惠春)
精选
谢谢!
精选
欢迎大家提问
TEM image and ED pattern of CdS / Z
• 1.制备超细(纳米)粉末 • 2.制备薄膜 • 3.其他应用
精选
5.1 制备超细(纳米)粉末
• 制备金属氧化物超微粉因金属铁在潮湿空气中氧化非常慢,但是把这个氧化反 应置于水热条件下,氧化速度非常快,要得到几十到100nm左右的Fe304;,只要把 金属铁在98MPa,40℃的水热条件下反应1小时即可。
➢ “原位结晶”机制:当选用常温常压下不可溶的固体粉末,凝胶或沉淀为前驱 物时,如果前驱物和晶相的溶解度相差不是很大时,或者“溶解-结晶”的动 力学速度过慢,则前驱物可以经过脱去羟基(或脱水),原子原位重排而转变 为结晶态。
精选
水热合成法分类
• 1)水热氧化:高温高压水、 水溶液等溶剂与金属或合金 可直接反应生长性的化合 物。 例如:M+[0]——MxOy
KF+MnCI2——KMnF2
• 5)水热分解:某些化合物在
• 3)水热合成:可允许在很宽
水热条件下分解成新的化合
的范围内改变参数,使两种 精选 物,进行分离而得单一化合
三、具体过程
• 基本设备:水热合成反应釜 • 具体流程: (1)选择反应前驱物,确定反
应前驱物的计量比。 (2)摸索前驱物加入顺序,混
• 水热法制备纳米二氧化锡微粉:纳米SnO2具有很大的比表面积,是一种很好 的气皿和湿皿材料。水热法制备纳米氧化物微粉有很多优点,如产物直接为晶 体,无需经过焙烧净化过程,因而可以减少其它方法难以避免的颗粒团聚,同 时粒度比较均匀,形态比较规则。
精选
5.2 水热法制备BaTiO3薄膜
• 利用Sol-gel法等其他湿化学方法来制备多晶薄膜,灼烧工艺过程则是必不可少 的,在这一过程中易造成薄膜开裂、脱落等缺陷。水热法目前主要用于制备多 晶薄膜,其原因在于它不需要高温灼烧处理来实现由无定形向结晶态的转变。
水热合成法 Hydrothermalsynthesis
无机
精选
1
原理
2
分类
目录
3
过程
精选
5
具体应用
4
与核壳结构 的关系
沉淀法
水解法
制备微粉
喷雾法 氧化还原法
冻结干燥法
精选
要得到化合物微粉,加热处理必 不可少。 而高温易造成缺陷,不能保持组 分的均匀性。
水热合成法 提纯与合成双重 作用!
一、原理:水热合成是什么?
• 制备具体过程:以抛光的钛金属片衬底或沉积钛的玻璃衬底作为阳极,Pt 金属 片作为阴极,以Ba(OH)2 水溶液为前驱物,通过两电极,经100~200 ℃的水热处 理,得到了表面无宏观缺陷,呈金属光泽的BaTiO3 薄膜。
• 在衬底上形成稳定结晶相薄膜
精选
5.3 其他应用
煤的液体化、气体化:在水热条件下,煤可以液化、气体化,产生油性状,所以 如果煤在水热条件下处理实现工业化,煤的运输,煤的有效利用,因烧煤而造成的 环境污染,将会得到较大的改变。
制作硬化体:用水热合成法能制作各种各样无机化合物硬化体,应用于建筑材 料、耐火材料。
处理环境污染物质:一些有害物质(PCB,ABC噬粉)在常温常压下不易分解, 而在高温高压下就很容易分解。
精选附:资料来源• 百科 • 水热法合成 CdS /ZnO核壳结构纳米微粒 (孙聆东 付雪峰 钱 程 廖春生 严纯
• 4)水热还原:一些金属类氧 化物、氢氧化物、碳酸盐或 复盐用水调浆,无需或只需 极少量试剂,控制适当温度
• 2)水热沉淀:某些化合物在 通常条件下无法或很难生成 沉淀,而在水热条件下却生 成新的化合物沉淀。 例如:
合氧分压等条件,即可制得 超细金属粉体。例如: MexOy+Hz——xMe+yHzO 其中Me为银、铜等