无位置传感器直流无刷电机原理

合集下载

反电动势法无位置传感器无刷直流电动机控制原理

反电动势法无位置传感器无刷直流电动机控制原理

反电动势法无位置传感器无刷直流电动机控制原理1. 引言大家好,今天咱们来聊聊一个有趣又复杂的话题,那就是无刷直流电动机的控制原理。

听起来可能有点深奥,但别担心,我会尽量把它讲得简单易懂。

你知道吗,这种电动机在生活中可是随处可见,比如咱们的电动车、风扇,还有玩具车,真是名副其实的“万金油”啊!而说到控制这些电动机,反电动势法可谓是个绝妙的选择。

好,我们不啰嗦,赶紧进入正题吧!2. 无刷直流电动机的基础知识2.1 什么是无刷直流电动机?首先,得给大家科普一下,什么是无刷直流电动机。

顾名思义,这种电动机没有传统的刷子。

传统电动机就像一位大厨,得靠刷子来翻炒食材,而无刷电动机就像一台现代化的烤箱,省心又省力。

它的工作原理是通过电磁场的变化来驱动转子运动,这样一来,就能减少摩擦,降低能耗,噪音也小,真是个“安静”的家伙!2.2 反电动势是什么?接下来,我们聊聊反电动势。

这个名字听起来很吓人,其实它就像是一位“调皮的小鬼”,在电动机工作时,会逆着电流的方向产生一种电压。

这种反电动势就像是电动机在努力工作时,给自己制造的一种保护机制。

就好比一个人努力跑步时,突然感到累了,身体会自然而然地减速,反电动势就是这种“减速”效果的体现。

3. 反电动势法的控制原理3.1 如何实现控制?那么,反电动势法到底是怎么控制电动机的呢?其实,这个过程简单得令人惊讶。

控制器会实时监测电动机的反电动势,通过这个信号,判断电动机的转速和位置。

就像一个教练在旁边观察运动员的表现,根据运动员的状态调整训练方案。

这样一来,电动机就能在没有位置传感器的情况下,精准地控制转速,真是一举两得。

3.2 优势与挑战使用反电动势法的好处可多了,首先,省去了位置传感器这个“累赘”,降低了系统的复杂性,成本也随之降低。

其次,由于没有刷子,电动机的寿命大大延长,维护起来也更方便。

不过,挑战也是有的。

比如,启动时电动机的反电动势比较小,控制器可能一时之间“抓瞎”,这时候就需要一些聪明的控制算法来帮忙。

直流无刷电机无位置传感器控制方法

直流无刷电机无位置传感器控制方法

直流无刷电机无位置传感器控制方法摘要:在直流无刷电机的使用过程中,不能很准确的接收换相信号,因此,就导致该电机无法实现对换相良好的控制,为了解决这类问题的出现,本篇文章将对直流无刷电机中无位置传感器进行研究与分析,并且找到有效的控制方法。

具体的方法是利用电机内部的各种装置之间的联系,来建立出一个直观的电机模型,之后通过电机内部反电势力的不断变化来研究反电势对于换相位置的影响,在经过一定的计算从而能够保证换相信号的准确性,最终实现对其良好的控制。

本篇文章通过具体的试验与测试来对控制的方法进行验证,最终得出,通过上述的方法,能够实现对其换相的控制。

关键词:直流无刷电机;传感器;换相位置;控制效果前言随着经济与技术的共同发展,使得各种工业也得到了快速的发展,由于直流无刷电机在使用的过程中效率非常高且其的构成比较简单,使得直流无刷电机在各个领域中都被广泛地应用,其中包括航天、汽车、家电、工具等等。

与以往的有刷的电机来说,直流无刷电机的组成部分少了电刷这一部分,但是直流无刷电机的作用原理却比有刷的更为复杂。

在直流无刷电机的使用过程中,可以适当地将电机的电路进行调整,从而更好地实现对于换相信号的收集,实现对其的控制,并能够有效地缩小该电机的体积。

一、直流无刷电机的主要构造在直流无刷电机的使用过程中,主要是通过内部的传感器来对换相位置进行检测。

传感器的种类非常多样,最常见的一般为电磁式传感器、光电式传感器以及霍尔式传感器这三种类型,根据需求的不同来选择合适的传感器类型。

与其他的传感器相比,霍尔式传感器的使用成本比较低,且具有较强的性能条件,因此,该类型的传感器被使用得更加广泛。

为了保证直流无刷电机使用的效率,需要对其进行有效地控制,从而提高对于换相信号搜集的准确性。

二、背景介绍随着经济与技术的共同发展,使得人们对于电机的需求越来越大,随之对电机也有了更高的标准。

过去,大多数使用的是直流有刷电机,但这种电机存在诸多缺陷,无法满足需求。

自制电调原理说明

自制电调原理说明

无位置传感器直流无刷电机原理位置传感器的直流无刷电机的换向主要靠位置传感器检测转子的位置,确定功率开关器件的导通顺序来实现的,由于安装位置传感器增大了电机的体积,同时安装位置传感器的位置精度要求比较高,带来组装的难度。

研究过程中发现,利用电子线路替代位置传感器检测电机在运行过程中产生的反电动势来确定电机转子的位置,实现换向。

从而出现了无位置传感器的直流无刷电机,其原理框图如图3.1所示。

武汉理工大学硕士学位论文图2-1无位置传感器无刷直流电机原理图无位置传感器无刷直流电机(BLDCM)具有无换向火花、无无线电干扰、寿命长、运行可靠、维护简便等特点,而且不必为一般无刷直流电机所必须的位置传感器带来的对电机体积、成本、制造工艺的较高要求和抗干扰性差问题而担忧,因此应用前景广阔。

由图2-1无刷直流电动机的运行原理图可知,当电机在运行过程中,总有一相绕组没有导通,此时可以在该相绕组的端口检测到该绕组产生反电动势,该反电动势60度的电角度是连续的,由于电机的规格,制造工艺的差别,导致相同电角度的反电动势值是不同,如要通过检测反电动势的数值来确定转子的位置难度极大。

因此必须找到该反电动势与转子位置的关系,才能确定转子的位置。

由于BLDCM的气隙磁场、反电势、以及电流波型是非正弦的,因此采用直交轴坐标变化不是很有效的分析方法。

通常直接利用电机本身的相变量来建立数学模型。

假设三相绕组完全对称,磁路不饱和,不计涡流和磁滞损耗,忽略齿槽相应,则三相绕组的电压平衡方程则可以表示为:根据电压方程得电机的等效电路图,如图2.2所示:2.3.2反电势法电机控制的原理无刷直流电机中,受定子绕组产生的合成磁场的作用,转子沿着一定的方向转动。

电机定子上放有电枢绕组,因此,转子一旦旋转,就会在空间形成导体切割磁力线的情况,根据电磁感应定律可知,导体切割磁力线会在导体中产生感应电热。

所以,在转子旋转的时候就会在定子绕组中产生感应电势,即运动电势,一般称为反电动势或反电势哺1。

无感无刷电机控制电路知识点

无感无刷电机控制电路知识点

无感无刷电机控制电路知识点
无感无刷电机控制电路是一种常见的电机控制方案,其特点是具有高效、低噪音和可靠性强等优点。

下面将从控制原理、电路设计和应用场景三个方面进行介绍。

一、控制原理
无感无刷电机控制电路的核心是通过传感器检测电机转子位置,然后按照一定的算法控制电流进行驱动。

与传统的有刷电机相比,无感无刷电机不需要刷子与转子直接接触,大大减少了摩擦和磨损,提高了电机的寿命和稳定性。

二、电路设计
无感无刷电机控制电路通常由功率电路和控制电路两部分组成。

功率电路主要包括电机驱动芯片、功率管和滤波电路等,用于将控制信号转化为电机驱动所需的高电流和高电压。

控制电路主要由微控制器或数字信号处理器组成,负责接收传感器反馈信号、计算电机的转子位置和速度,并实时调整电流输出,控制电机的运行状态。

三、应用场景
无感无刷电机控制电路在众多领域有着广泛的应用。

在家电领域,它常用于空调、洗衣机和冰箱等产品中,可实现高效、节能的运行。

在工业自动化领域,无感无刷电机控制电路广泛应用于机器人、传送带和自动化生产线等设备中,提高了生产效率和精度。

此外,无感无刷电机控制电路还被应用于电动车、无人机等交通工具中,以
提供高效、稳定的动力输出。

总结:无感无刷电机控制电路是一种高效、低噪音、可靠性强的电机控制方案。

通过传感器检测电机转子位置,控制电路实时调整电流输出,实现对电机的精确控制。

该技术在家电、工业自动化和交通工具等领域具有广泛的应用前景。

无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机得工作原理ﻫ普通直流电动机得电枢在转子上,而定子产生固定不动得磁场。

为了使直流电动机旋转,需要通过换向器与电刷不断改变电枢绕组中电流得方向,使两个磁场得方向始终保持相互垂直,从而产生恒定得转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样得结构正好与普通直流电动机相反;然而,即使这样改变还不够,因为定子上得电枢通过直流电后,只能产生不变得磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子得位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右得空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体与驱动器组成,就是一种典型得机电一体化产品。

ﻫ●电动机得定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机得转子上粘有已充磁得永磁体,为了检测电动机转子得极性,在电动机内装有位置传感器。

驱动器由功率电子器件与集成电路等构成,其功能就是:接受电动机得启动、停止、制动信号,以控制电动机得启动、停止与制动;接受位置传感器信号与正反转信号,用来控制逆变桥各功率管得通断,产生连续转矩;接受速度指令与速度反馈信号,用来控制与调整转速;提供保护与显示等等。

无刷直流电动机得原理简图如图一所示:ﻫ主电路就是一个典型得电压型交-直-交电路,逆变器提供等幅等频5-26KH Z调制波得对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°得U、V、W方波,结合正/反转信号产生有效得六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态得依次导通。

一种无位置传感器的直流无刷电机控制系统设计与实现

一种无位置传感器的直流无刷电机控制系统设计与实现

一种无位置传感器的直流无刷电机控制系统设计与实现传统上把具有梯形波反电势的永磁同步电机称为直流无刷电机。

直流无刷电机的转矩控制需要转子位置信息来实现有效的定子电流控制。

而且,对于转速控制,也需要速度信号,使用位置传感器是直流无刷电机矢量控制的基础,但是,位置传感器的存在也给直流无刷电机的应用带来很多的缺陷与不便:首先,位置传感器会增加电机的体积和成本;其次,连线众多的位置传感器会降低电机运行的可靠性,即便是现在应用最多的霍尔传感器,也存在一定程度的磁不敏感区;再次,在某些恶劣的工作环境、例如在密封的空调压缩机中,由于制冷剂的强腐蚀性,常规的位置传感器根本无法使用;最后,传感器的安装精度还会影响电机的运行性能,增加了生产的工艺难度。

无位置传感器控制技术是近30年来无刷直流电机(BLDCM)研究的一个重要方向。

论述了国内外BLDCM无位置传感器控制的研究现状。

着重介绍了目前应用和研究较多的几种常规方法的基本原理、实现途径、应用场合以及优缺点等,并对它们作了综合分析和比较。

无位置传感器控制就是在没有机械式位置传感器的情况下进行的控制。

此时,作为逆变器开关换向导通时序信号的转子位置信号仍然是必不可少的,只不过不再由位置传感器来提供,而应该由新的位置信号检测措施来代替,即以提高电路和控制的复杂性来降低电机结构的复杂性。

目前,BLDCM无位置传感器控制研究的核心是构架转子位置信号检测电路,从软硬件两方面间接获得可靠的转子位置信号,从而触发导通相应的功率器件,驱动电机运转。

到目前为止,在众多的位置信号检测方法中,应用和研究较多的主要有定子电感法、速度无关位置函数法、反电势法、基波电势换向法和状态观测器法等。

1 基于反电势的转子位置检测方案无刷直流电机(Bushless DC Motor,BLDCM)具有无换向火花、运行可靠、维护方便、结构简单等优点,因而在很多场合得到了广泛应用。

但是传统的BLDCM需要一个附加的位置传感器来控制转子位置,这给其应用带来了很多不利的影响。

无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。

直流无刷无霍尔电机工作原理

直流无刷无霍尔电机工作原理

直流无刷无霍尔电机工作原理直流无刷无霍尔电机是一种先进的电机类型,其工作原理基于电子换向技术,而不是传统的机械换向方式。

这种电机具有高效率、高可靠性、长寿命和低噪声等优点,因此在许多领域得到了广泛应用。

一、直流无刷无霍尔电机的结构直流无刷无霍尔电机主要由定子、转子和电子换向器三部分组成。

定子通常由铁芯和绕组组成,绕组中通入直流电流以产生磁场。

转子则由永磁体构成,其磁极与定子的绕组相对。

电子换向器是直流无刷无霍尔电机的核心部件,它负责将直流电流从定子转换到转子,实现电机的连续不断地运转。

二、直流无刷无霍尔电机的原理1.电子换向器工作原理电子换向器由功率半导体开关器件构成,通过控制开关器件的通断,实现电流的换向。

当电流从某一开关器件通过时,该器件处于导通状态,电流流向转子;当电流从另一开关器件通过时,该器件处于截止状态,电流流向另一侧绕组。

通过不断控制开关器件的通断,实现电流的连续不断地换向。

1.磁场产生与转矩产生当电流通过定子绕组时,产生磁场。

当转子永磁体进入该磁场时,根据电磁感应原理,转子永磁体产生感应电动势,进而产生感应电流。

这个感应电流与定子磁场相互作用,产生转矩,推动转子转动。

随着转子的转动,转子永磁体与定子绕组之间的相对位置发生变化,导致磁场分布和感应电动势的变化,从而改变转矩的方向。

1.位置检测与控制为了实现电机的连续不断地运转,需要检测转子的位置并控制开关器件的通断。

通常采用光电编码器或霍尔传感器等位置检测装置来检测转子的位置。

根据转子位置信号,控制电路决定开关器件的通断顺序,从而实现电机的连续不断地运转。

三、直流无刷无霍尔电机的优点1.高效率:由于采用电子换向技术,避免了传统机械换向方式中的摩擦损耗和磁滞损耗,提高了电机的效率。

2.高可靠性:由于没有机械摩擦和磨损,电机的寿命大大延长。

同时,由于电子换向器的控制精度高,电机的运行稳定性也得到了提高。

3.低噪声:由于没有机械摩擦和撞击,电机的噪声较低。

直流无刷电机的控制原理

直流无刷电机的控制原理

直流无刷电机的控制原理
直流无刷电机的控制原理是通过电子器件对电机的相电流进行精确控制,使电机转子按照预定的角速度和方向旋转。

控制原理可以分为传感器式和无传感器式两种:
1. 传感器式控制原理:
- 电机内部安装有位置传感器,如霍尔传感器,用于检测转
子位置。

- 控制器根据传感器反馈的转子位置信号,通过运算得出所
需的相电流波形。

- 控制器将相电流波形通过功率放大电路输出给电机,驱动
电机产生力矩,并使转子旋转到预定位置。

2. 无传感器式控制原理(也称为电子换相):
- 无传感器电机在转子上安装有永磁或磁体,用于产生磁场。

- 控制器通过测量电机绕组感应电动势的方式,实时估算转
子位置。

- 控制器根据估计的转子位置,即时计算出相电流波形。

- 控制器将相电流波形通过功率放大电路输出给电机,驱动
电机产生力矩,并使转子旋转到预定位置。

传感器式和无传感器式控制原理都利用了电子器件精确控制相电流,实现对电机速度和方向的控制。

无刷电机控制器通常使用微处理器,通过算法控制相电流波形,从而实现高性能、高效率的电机控制。

无位置传感器直流无刷电机控制的研究

无位置传感器直流无刷电机控制的研究

护程 序 ,旁路 电阻 R 7主要 用来 对 电路 电流 进行 采
作吉简介:庄乾成 (9 7 17 一) ,男,讲 师,硕士研究生 ,研究方向为智能仪器与测控技术 。 [ 8 第3 卷 91 3 第8 期 2 1— ( ) 01 8下

匐 化
图 2 无刷 直 流 电机 驱 动 电路 示 意 图
个 周期 转动 。

1 无刷直流 电动机 工作原理
无 刷 直 流 电动 机 控 制 分 为 全 桥 式 和 半 桥 式 , 而按 电机 绕 组 结 构 分星 型 和三 角形 ,全桥 星型 接 法 的 电动 机 有 转 矩 脉 动 小 ,输 出转 矩 大 特 点 , 因 此 本 设 计 采 用 三 相 全 桥 星 型 电 机 ,如 图 l所 示 ,
为 50 0 mA,具 有 电流 放 大 和过 电流 保 护 功 能 ,同
管 有 6种 触 发 状 态 ,每 次 只 有 两 只 管 子 导通 ,每
隔 1 / 期 (0 6周 6 。)电角度 换 向一 次 ,每 次换 向一
个 功 率 管 ,每 一 个 功 率 管 导 通 10 电 角度 ,所 2。
样 ,阻值 为 4 Q, 转 化为 电压 信 号后 需 经过 放大 8 其

无 刷 直 流 电 动机 通 过 位 置 检 测 电 路 检 测无 刷 直 流
图 1 三 相 பைடு நூலகம் 型 全桥 驱动 电路 模 型
电动 机端 电 压 ,经 微 处 理 器 运 算 后得 到 电机 转 子 的 位 置 信 号 ,再 由驱 动 电 路 按 转子 位 置 信 号 轮 流 导 通 功 率逆 变桥 的六 个 功 率 管 ,以实 现 电机 三 相 绕 组 的通 电 ,三 相 桥 式 星 型 结构 的无 刷 电机 任 意 时 刻 两 相 绕 组 导通 ,第 三 相 处 于 悬 空 状 态 ,功 率

无刷直流电机的工作原理

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场;为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转;无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来;为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转;无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品;●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似;电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器;驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等;无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波;永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通;每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子跟随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转;正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机;●无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组;由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性;电动机的转矩正比于绕组平均电流;TM=KtlavN M电动机两相组反电势的差比于电动机的角速度;ELL=KeωV所以电动机绕组中的平均电流为:Iav=Vm-ELL/2RaA其中,Vm=δ VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻;由此可以得到直流电动机的电磁转矩:Tm=δ VDC Kt/2Ra-Kt Keω/2RaKt、Ke是电动机的结构常数,ω为电动机的角速度rad/s,所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励支流电动机电枢电压控制相同的控制特性和机械特性;无刷直流电动机的转速设定,取决于速度指令Vc 的高低,如果速度指令最大值为+5V对应的最高转速:Vcmaxón max,那么,+5V 以下任何电平即对应相当的转速n,这就实现了变速设定;当Vc设定以后,无论是负载变化、电源电压变化,还是环境温度变化,当转速低于指令转速时,反馈电压Vfb变小,调制波的占空比δ就会变大,电枢电流变大,使电动机产生的电磁转矩增大而产生加速度,直到电动机的实际转速与指令转速相等为止;反之,如果电动机实际转速比指令转速高时,δ减小,Tm减小;发生减速度,直至实际转速与指令转速相等为止;可以说,无刷直流电动机在允许的电网波动范围内,在允许的过载能力以下,其稳定转速与指令转速相差在1%左右,并可以实现在调速范围内恒转矩运行;由于无刷直流电动机的励磁来源于永磁体,所以不象异步机那样需要从电网吸取励磁电流;由于转子中无交变磁通,其转子上既无铜耗又无铁耗,所以效率比同容量异步电动机高10%左右,一般来说,无刷直流电动机的能力指针ηcosθ比同容量三相异步电动机高12%-20%;●由于无刷直流电动机是以自控式运行的,所以不会像变频调速下重载启动的同步电动机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步;中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼Nd-fe-B材料;因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号;近三十年针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,而无刷直流电动机的电流或电枢的端电压,就是直接控制电动机转矩的物理量;过去,由于稀土永磁体价格比较高等因素,限制了稀土永磁无刷直流电动机的应用领域,但是随着技术的不断创新,其价格已迅速下降,例如,我公司推出推出BS系列无刷直流电动机的售价已与异步电动机和普通变频器价格之和相差无几;稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势;无刷电机是指无电刷和换向器或集电环的电机,有称无换向器电机;早在上世纪诞生电机的时候,产生的实用性电机就是无刷形式,即交流鼠笼式异步电动机,这种电动机得到了广泛的应用;但是,异步电动机有许多无法克服的缺陷,以致电机技术发展缓慢;本世纪中叶诞生了晶体管,因而采用晶体管换向电路代替电刷与换向器的直流无刷电机就应运而生了;这种新型无刷电机称为电子换向式直流电机,它克服了第一代无刷电机的缺陷;实用性新型无刷电机是与电子技术、微电子技术、数字技术、自控技术以及材料科学等发展紧密联系的;它不仅限于交直流领域,还涉及电动、发电的能量转换和信号传感等领域;在电机领域中新型无刷电机的品种是较多的,但性能优良的无刷电机因受到价格的限制,其应用还不十分广泛;下面分别就主要的新型无刷电机进行探索与研究;1 直流无刷电动机直流无刷电动机与一般直流电动机具有相同的工作原理和应用特性,而其组成是不一样的;除了电机本身外,前者还多一个换向电路,电机本身和换向电路紧密结合在一起;许多小功率电动机的电机本身是与换向电路合成一体,从外观上看直流无刷电动机与直流电动机完全一样;直流无刷电动机的电机本身是机电能量转换部分,它除了电机电枢、永磁励磁两部分外,还带有传感器;电机本身是直流无刷电机的核心,它不仅关系到性能指标、噪声振动、可靠性和使用寿命等,还涉及制造费用及产品成本;由于采用永磁磁场,使直流无刷电机摆脱一般直流电机的传统设计和结构,满足各种应用市场的要求,并向着省铜节材、制造简便的方向发展;永磁磁场的发展与永磁材料的应用密切相关,第三代永磁材料的应用,促使直流无刷电机向高效率、小型化、节能方向迈进;为了实现电子换向必须有位置信号来控制电路;早期用机电位置传感器获得位置信号,现已逐步用电子式位置传感器或其它方法得到位置信号,最简便的方法是利用电枢绕组的电势信号作为位置信号;要实现电机转速的控制必须有速度信号;用获得位置信号相近方法取得速度信号,最简单的速度传感器是测频式测速发电机与电子线路相结合;直流无刷电机的换向电路由驱动及控制两部分组成,这两部分是不容易分开的,尤其小功率用电路往往将两者集成化成为单一专用集成电路;在功率较大的电机中,驱动电路和控制电路可各自成为一体;驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路;目前,驱动电路已从线性放大状态转成脉宽调制的开关状态,相应电路组成也从晶体管分立电路转成模块化集成电路;模块化集成电路有功率双极晶体管、功率场效应管和隔离栅场效应双极晶体管等组成形式;虽然,隔离栅场效应双极晶体管价格较贵,但从可靠安全和性能角度看,选用它还是较合适的;控制电路用作控制电机的转速、转向、电流或转矩以及保护电机的过流、过压、过热等;上述参数容易转成模拟信号,用此来控制较简单,但从发展来看,电机的参数应转换成数字量,通过数字式控制电路来控制电机;当前,控制电路有专用集成电路、微处理器和数字信号处理器等三种组成方式;在对电机控制要求不高的场合,专用集成电路组成控制电路是简单实用的方式;采用数字信号处理器组成控制电路是今后发展方向,有关数字信号处理器将在下面交流同步伺服电动机中介绍;目前,在微小功率范畴直流无刷电动机是发展较快的新型电机;由于各个应用领域需要各自独特的直流无刷电动机,所以直流无刷电动机的类型较多;大体上有计算机外存储器以及VCD、DVD、CD主轴驱动用扁平式无铁心电机结构,小型通风机用外转子电机结构,家电用多极磁场结构及内装式结构,电动自行车用多极、外转子结构等等;上述直流无刷电动机的电机本身和电路均成一体,使用十分方便,它的产量也非常大;为了满足大批量、低成本的市场需要,直流无刷电动机的生产必须要形成规模经济;因此,直流无刷电动机是一种高投入、高产出的行业;同时,我们应该考虑到市场也在不断地发展,如家用空调用电机正由3A转向3D,需要大量的中小功率的直流无刷直流电动机,研究和开发中小功率的直流无刷电动机也成当务之急;无刷直流电机BLDCM是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机;一般地,无刷电机的驱动电流有两种,一种是梯形波一般是“方波”,另一种是正弦波;有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种;无刷直流电机为了减少转动惯量,通常采用“细长”的结构;无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右;由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下;这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力;直流无刷电机的优越性直流电机具有响应快速、较大的起动转矩、从零转速至额定转速具备可提供额定转矩的性能,但直流电机的优点也正是它的缺点,因为直流电机要产生额定负载下恒定转矩的性能,则电枢磁场与转子磁场须恒维持90°,这就要藉由碳刷及整流子;碳刷及整流子在电机转动时会产生火花、碳粉因此除了会造成组件损坏之外,使用场合也受到限制;交流电机没有碳刷及整流子,免维护、坚固、应用广,但特性上若要达到相当于直流电机的性能须用复杂控制技术才能达到;现今半导体发展迅速功率组件切换频率加快许多,提升驱动电机的性能;微处理机速度亦越来越快,可实现将交流电机控制置于一旋转的两轴直交坐标系统中,适当控制交流电机在两轴电流分量,达到类似直流电机控制并有与直流电机相当的性能;此外已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小;像模拟/数字转换器Analog-to-digital converter,ADC、脉冲宽度调制pulse wide modulator,PWM…等;直流无刷电机即是以电子方式控制交流电机换相,得到类似直流电机特性又没有直流电机机构上缺失的一种应用;直流无刷电机的控制结构直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数P影响:N=120.f / P;在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速;直流无刷电机即是将同步电机加上电子式控制驱动器,控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式;也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速;直流无刷驱动器包括电源部及控制部如图 1 :电源部提供三相电源给电机,控制部则依需求转换输入电源频率;电源部可以直接以直流电输入一般为24V或以交流电输入110V/220 V,如果输入是交流电就得先经转换器converter转成直流;不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器inverter转成3相电压来驱动电机;换流器inverter一般由6个功率晶体管Q1~Q6分为上臂Q1、Q3、Q5/下臂Q2、Q4、Q6连接电机作为控制流经电机线圈的开关;控制部则提供PWM脉冲宽度调制决定功率晶体管开关频度及换流器inverter换相的时机;直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器hall-sensor,做为速度之闭回路控制,同时也做为相序控制的依据;但这只是用来做为速度控制并不能拿来做为定位控制;图一直流无刷电机的控制原理要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启或关闭换流器inverter中功率晶体管的顺序,如下图二 inverter中之AH、BH、CH 这些称为上臂功率晶体管及AL、BL、CL这些称为下臂功率晶体管,使电流依序流经电机线圈产生顺向或逆向旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动;当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管或只开下臂功率晶体管;要电机转子反向则功率晶体管开启顺序相反;基本上功率晶体管的开法可举例如下:AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL一组,但绝不能开成AH、AL或BH、BL或CH、CL;此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂或下臂尚未完全关闭,下臂或上臂就已开启,结果就造成上、下臂短路而使功率晶体管烧毁;图二当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令Command与hall-sensor信号变化的速度加以比对或由软件运算再来决定由下一组AH、BL或AH、CL或BH、CL或……开关导通,以及导通时间长短;速度不够则开长,速度过头则减短,此部份工作就由PWM来完成;PWM是决定电机转速快或慢的方式,如何产生这样的PWM才是要达到较精准速度控制的核心;高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性;至于低转速的速度控制尤其是低速起动则因为回传的hall-sensor信号变化变得更慢,怎样撷取信号方式、处理时机以及根据电机特性适当配置控制参数值就显得非常重要;或者速度回传改变以encoder变化为参考,使信号分辨率增加以期得到更佳的控制;电机能够运转顺畅而且响应良好,P.I.D.控制的恰当与否也无法忽视;之前提到直流无刷电机是闭回路控制,因此回授信号就等于是告诉控制部现在电机转速距离目标速度还差多少,这就是误差Error;知道了误差自然就要补偿,方式有传统的工程控制如P.I.D.控制;但控制的状态及环境其实是复杂多变的,若要控制的坚固耐用则要考虑的因素恐怕不是传统的工程控制能完全掌握,所以模糊控制、专家系统及神经网络也将被纳入成为智能型P.I.D.控制的重要理论;P.I.D控制简介一般P.I.D控制如下dutycycle=dutycyclep + dutycyclei + dutycycled图三P.控制比例控制:输出与输入误差讯号成正比关系,即将误差固定比例修正,但系统会有稳态误差;I .控制积分控制:当系统进入稳态有稳态误差时,将误差取时间的积分,即便误差很小也能随时间增加而加大,使稳态误差减小直到为零;D.控制微分控制:当系统在克服误差时,其变化总是落后于误差变化,表示系统存在较大惯性组件或且有滞后组件;微分即是预测误差变化的趋势以便提前作用避免被控量严重冲过头;电机驱动器的保护措施对于驱动器还要有保护措施,当负载过大或不当使用时会造成大电流而将功率晶体管烧毁;为了保护因电流超过规格而破坏驱动器,一般会以加大功率晶体管耐电流或加电流sensor做为保护;其次当电机负载不小的时候,在停止转动时由电机端回送至驱动器的能量及过电压都将危及驱动器,这可配合过电压保护电路加上回生能量消散电路来防治;其它尚有hall-sensor正常与否判定也会影响PWM控制的正确性,这可由控制部判断并适时警告即可;DC无刷电机系列控制疑难杂症处理案例·欲以电流值的大小来判断目前电机的负载状况是否有过载的迹象,该如何测量将电源线的其中一条拔起后,将电表请先调至安培档的一端接至驱动器的电源CONNECTOR其中一接脚,另一端则接至电源插座的另一接脚如下图四,如此即可测量出在现阶段的负载下所必须耗费的电流值,之后再依此电流值来对照电机的电流/扭力对照表,如此即可得知目前的负载状况是正常或是否有过载的情形发生;。

无刷直流电机的工作原理

无刷直流电机的工作原理

普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将去,而,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使,这样才干使定子磁场随着转子的位置在不断地变化,使定子磁场和转子永磁磁场始终保持摆布的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、住手、制动信号,以控制电动机的启动、住手和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S 交替交换,使位置传感器产生相位差120°的U、V 、W 方波,结合正/反转信号产生有效的六状态编码信号:101 、100 、110、010、011、001,通过逻辑组建处理产生T1-T4 导通、T1-T6 导通、T3-T6 导通、T3-T2 导通、T5-T2 导通、T5-T4 导通,也就是说将直流母线电压挨次加在A+B-、A+C- 、B+C- 、B+A-、C+A- 、C+B-上,这样转子每转过一对N-S 极,T1-T6 功率管即按固定组合成六种状态的挨次导通。

每种状态下,仅有两相绕组通电,挨次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电度角,转子尾随定子磁场转动相当于60°电度角空间位置,转子在新位置上,使位置传感器U、V、W 按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电度角,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。

基于STM32无位置传感器无刷直流电机控制器设计

基于STM32无位置传感器无刷直流电机控制器设计

基于STM32无位置传感器无刷直流电机控制器设计一、本文概述本文主要探讨了基于STM32无位置传感器无刷直流电机控制器的设计。

随着现代科技的不断进步,电机控制技术也在日益成熟。

无刷直流电机(Brushless DC Motor, BLDC)作为一种高效、低噪音的电机类型,被广泛应用于各种工业和消费电子产品中。

然而,传统的无刷直流电机控制器通常需要位置传感器来监测电机的运行状态,这不仅增加了系统的复杂性和成本,还可能因为传感器的故障或误差影响电机的控制效果。

针对这一问题,本文提出了一种基于STM32的无位置传感器无刷直流电机控制器设计方案。

该方案利用STM32微控制器强大的处理能力和灵活的编程接口,结合先进的电机控制算法,实现了对无刷直流电机的无位置传感器控制。

文章首先介绍了无刷直流电机的基本原理和控制方法,然后详细阐述了基于STM32的无位置传感器控制器的硬件和软件设计,包括电机驱动电路、电流采样电路、控制算法等关键部分。

通过实验验证了所设计的无位置传感器无刷直流电机控制器的有效性和可靠性,为无刷直流电机的无位置传感器控制提供了一种新的解决方案。

本文的研究不仅有助于推动无刷直流电机控制技术的发展,还可为相关领域的研究人员和工程师提供有益的参考和借鉴。

通过深入研究和不断优化无位置传感器无刷直流电机控制器的设计,有望进一步提高电机的控制精度和效率,降低系统成本和维护难度,推动无刷直流电机在更多领域的应用。

二、无刷直流电机基本原理无刷直流电机(Brushless Direct Current,简称BLDC)是一种采用电子换向器替代传统机械换向器的直流电机。

它利用电子换向技术,实现了电机的高效、低噪音、长寿命运行。

无刷直流电机通常由永磁体、定子、转子和电子控制器四部分组成。

无刷直流电机的基本工作原理是电磁感应和换向控制。

当电机定子上的线圈通电时,会产生一个旋转磁场。

这个旋转磁场会与转子上的永磁体相互作用,从而使转子产生旋转力矩。

无刷直流电机工作原理

无刷直流电机工作原理

无刷直流电机工作原理无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令.和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

由于无刷直流电动机是以自控式运行的,所以不会象变频调速下重载启动的同步电机那样在转子上另加启动绕组,也不会在负载突变时产生振荡和失步。

中小容量的无刷直流电动机的永磁体,现在多采用高磁能积的稀土钕铁硼(Nd-Fe-B)材料。

因此,稀土永磁无刷电动机的体积比同容量三相异步电动机缩小了一个机座号。

近三十年来针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。

电枢绕组直流电机的电磁感应的关键部件之一为导电的绕组,因为重要,故称为电枢绕组。

电枢绕组是直流电机的电路部分,亦是实现机电能量转换的枢纽。

电枢绕组的构成,应能产生足够的感应电动势,并.允许通过一定多电枢电流,从而产生所需的电磁转矩和电磁功率。

此外,还要节省有色金属和绝缘材料,结构简单,运行可靠。

大的分类为环形和鼓形;环形绕组只曾在原始电机用过,由于容易理解故讲原理时也用此类绕组;现代直流电机均用鼓形绕组,它又分为叠绕组、波绕组和蛙形绕组。

鼓形绕组比环形绕组制造容易,又节省导线,运行较可靠,经济性好,故现在均用鼓形绕组。

无刷直流电机的基本原理意法半导体的ST72141是专门用在无刷直流电机(BLDC)控制的单片机。

内部包含意法半导体自有的反电动势检测专利技术,专门用于电机控制的片内外设,大大减少了电机控制系统的成本,简化了电机控制系统的设计。

无刷直流电机的无位置传感器控制

无刷直流电机的无位置传感器控制

无位置传感器控制技术是无刷直流电机研究的热点之一,国内外相关研究已经取得阶段性成果。

在无刷直流电机工作过程中,各相绕组轮流交替导通,绕组表现为断续通电。

在绕组不通电时,由于绕组线圈的蓄能释放,会产生感应电动势,该感应电动势的波形在绕组两端有可能被检测出来。

利用感应电动势的一些特点,可有取代转子上的位置传感器功能,来得到需要的换相信息。

由此,就出现了无位置传感器的无刷直流电动机。

尽管无位置传感器控制方式使得转子位置检测的精确度有所降低,但由于取消了位置传感器,电机的结构更加简单,安装更加方便,成本降低,可靠性进一步提高,在对体积和可靠性有要求的领域以及不适合安装位置传感器的场合,无位置传感器无刷直流电机应用广泛。

无位置传感器控制方式下的无刷直流电机具有可靠性高、抗干扰能力强等优点,同时在一定程度上克服了位置传感器安装不准确引起的换相转矩波动。

无位置传感器技术是从控制的硬件和软件两方面着手,以增加控制的复杂性换取电机结构复杂性的降低。

以采用120o电角度两两导通换相方式的三相桥式Y接无刷直流电机为例,讨论基于现代控制理论和智能算法的无刷直流电机无位置传感器控制方法。

转子位置间接检测法目前无刷直流电机中主要采用电磁式、光电式、磁敏式等多种形式的位置传感器,但位置传感器的存在限制了无刷直流电机在某些特定场合的应用,主要体现在:1、位置传感器可使电机系统的体积增大;2、位置传感器使电机与控制系统之间导线增多,使系统易受外界干扰影响;3、位置传感器在高温、高压和湿度较大等恶劣工况下运行时灵敏度变差,系统运行可靠性降低4、位置传感器对安装精度要求较高,机械安装偏差引起的换相不准确直接影响电机的运行性能。

无位置传感器控制技术越来越受到重视,并得到了迅速发展。

依据检测原理的不同,无刷直流电机无位置传感器控制方法主要包括反电势法、磁链法、电感法及人工智能法等。

反电势法反电势法(感应电动势过零点检测法)目前是技术最成熟、应用最广泛的一种位置检测方法。

直流无刷电机工作原理

直流无刷电机工作原理

无刷直流电机1 永磁无刷直流电动机的工作原理有刷直流电动机由于电刷的换向,使得由永久磁钢产生的磁场与电枢绕组通电后产生的磁场在电机运行过程中始终保持垂直从而产生最大转矩,使电机运转。

无刷直流电机的运行原理和有刷直流电机基本相同,即在一个具有恒定磁通密度分布的磁极下,保证电枢绕组中通入的电流总量恒定,以产生恒定的转矩,且转矩只与电枢电流的大小有关。

无刷直流电机的运行还需依靠转子位置传感器检测出转子的位置信号,通过换相驱动电路驱动与电枢绕组连接的各功率开关管的导通与关断,从而控制定子绕组的通电,在定子上产生旋转磁场,拖动转子旋转。

随着转子的转动,位置传感器不断地送出信号,以改变电枢的通电状态,使得在同一磁极下的导体中的电流方向不变。

因此,就可产生恒定的转矩使无刷直流电机运转起来。

由无刷直流电动机的组成来看,它实际上是一个由电动机本体、电子开关线路及转子磁钢位置传感器组成的闭环系统。

电动机本体有星形连接方式和角形连接方式,电子开关线路的逆变器可采用半桥电路或全桥电路,因此,不同的选择会使电动机产生不同的性能并且成本也不同。

下面对此作一个对比。

(l) 绕组利用率 与普通直流电动机不同,无刷直流电动机的绕组是断续通电的。

适当地提高绕组通电利用率可以使同时通电导体数增加,使电阻下降,提高效率。

从这个角度来看,定子绕组三相比四相好,四相比五相好,电子开关线路逆变器采用全桥控制比半桥控制好。

(2) 转矩的波动 无刷直流电动机的输出转矩脉动比普通直流电动机大,因此希望尽量减小转矩脉动。

一般相数越多,转矩的脉动越小。

全桥驱动比半桥驱动转矩的脉动小。

(3) 电路成本 相数越多,驱动电路所使用的开关管越多,成本越高。

全桥驱动比半桥驱动所使用的开关管多一倍,因此成本要高。

多相电动机的结构复杂,成本也高。

综合上述分析,目前以三相星形全桥驱动方式应用最多。

以下就以三相星形全桥驱动的无刷直流电动机为例,用图2-2分析其工作原理。

无刷直流电动机无传感器控制方法

无刷直流电动机无传感器控制方法

*无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1 引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。

无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。

采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。

目前对于无传感器无刷电机的控制多采用单纯依靠DSP 软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。

同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。

为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。

对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。

2 系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。

图1 系统总体结构硬件框图功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。

在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。

该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无位置传感器直流无刷电机原理
位置传感器的直流无刷电机的换向主要靠位置传感器检测转子的位置,确
定功率开关器件的导通顺序来实现的,由于安装位置传感器增大了电机的体积,
同时安装位置传感器的位置精度要求比较高,带来组装的难度。

研究过程中发现,利用电子线路替代位置传感器检测电机在运行过程中产
生的反电动势来确定电机转子的位置,实现换向。

从而出现了无位置传感器的
直流无刷电机,其原理框图如图3.1所示。

武汉理工大学硕士学位论文
图2-1无位置传感器无刷直流电机原理图
无位置传感器无刷直流电机(BLDCM)具有无换向火花、无无线电干扰、寿
命长、运行可靠、维护简便等特点,而且不必为一般无刷直流电机所必须的位
置传感器带来的对电机体积、成本、制造工艺的较高要求和抗干扰性差问题而
担忧,因此应用前景广阔。

由图2-1无刷直流电动机的运行原理图可知,当电机在运行
过程中,总有
一相绕组没有导通,此时可以在该相绕组的端口检测到该绕组产生反电动势,
该反电动势60度的电角度是连续的,由于电机的规格,制造工艺的差别,导致
相同电角度的反电动势值是不同,如要通过检测反电动势的数值来确定转子的
位置难度极大。

因此必须找到该反电动势与转子位置的关系,才能确定转子的
位置。

由于BLDCM的气隙磁场、反电势、以及电流波型是非正弦的,因此采用
直交轴坐标变化不是很有效的分析方法。

通常直接利用电机本身的相变量来建
立数学模型。

假设三相绕组完全对称,磁路不饱和,不计涡流和磁滞损耗,忽
略齿槽相应,则三相绕组的电压平衡方程则可以表示为:根据电压方程得电机的等效电路图,如图2.2所示:
2.3.2反电势法电机控制的原理
无刷直流电机中,受定子绕组产生的合成磁场的作用,转子沿着一定的方
向转动。

电机定子上放有电枢绕组,因此,转子一旦旋转,就会在空间形成导
体切割磁力线的情况,根据电磁感应定律可知,导体切割磁力线会在导体中产
生感应电热。

所以,在转子旋转的时候就会在定子绕组中产生感应电势,即运
动电势,一般称为反电动势或反电势哺1。

·
对于稀土永磁无刷直流电机,其气隙磁场波形可以为方波,也可以是梯形
波或正弦波,与永磁体形状、电机磁路结构和磁钢充磁等有关,由此把无刷直
流电机分为方波电机和正弦波电机。

对于径向充磁结构,稀土永磁体直接面对
均匀气隙,由于稀土永磁体的取向性好,所以可以方便的获得具有较好方波形
状的气隙磁场,对于方波气隙磁场的电机,当定子绕组采用集中整距绕组,即
每极每槽数q=l时,定子绕组中感应的电势为梯形波,如图加
对于两相导通星形连接、三相6状态控制的永磁无刷直流电机,方波气隙
磁密度在空间的宽度应大于120。

电角度,在定子绕组中感应的梯形波反电势的平
顶宽也应大于120。

电角度。

方波无刷直流电机一般采用方波电流驱动,即与120。

导通型逆变器相匹配,由逆变器向方波电机提供三相对称的、宽度为120。

电角度
的方波电流。

方波电流应与反电势相位一致或位于梯形波反电势的平顶宽度范
围内,这样才满足“最佳换相逻辑’’,如图3-4所示。

本文研究的“反电势法"
无位置传感器控制方法主要面向的就是这种具有方波气隙磁密分布、梯形波反
电势无刷直流电机。

下面介绍“反电势法"控制的原理。

e486
图2.4绕组反电势与电流波形
当BLDCM的某相绕组反电势过零时,转子直轴与该相绕组轴线恰好重合,
因此只要检测到各相绕组反电势的过零点,就可获知转子的若干个关键位置,
再根据这些关键的转子位置信号,做相应的处理后控制BLDCM换相,实现
BLDCM连续运转,这就是“反电势法"BLDCM控制。

从图24中可以看出。

t=30。

电角度为A相反电势过零点时刻,控制电路检测到这一时刻,延时30。


角度,到30。

电角度时切换到A相导通,A相导通120。

电角度后,至!U180。

电角度
时关断A相,切换到B相导通。

依此类推,就可以实现电机的连续运转,并且
满足“最佳换相逻辑"。

无刷直流电机绕组反电势的过零点严格的反映转子磁极位置,因此,只要
能够准确的检测到绕组反电势的过零点信号,就可以判断出转子的关键位置,
经过30。

电角度延时处理后,就可以作为绕组的换相时刻,再根据功率管的导通
顺序触发相应的功率管,就能够实现无刷直流电机的换相操作,保证电机按固
定的方向连续旋转。

图2.5给出了反电势波形与逆变器功率管导通顺序逻辑关
系,这样可以保证电机换相满足“最佳换相逻辑一,减小转
矩脉动。

2.3.3反电势特性分析
为了确定电机转速和反电势大小的关系,同时给后面“三段式’’起动技术提
供理论依据,这里来推导BLDCM反电势的计算公式,分析无刷直流电机和反
电势特性。

为了便于分析,公式推导过程中忽略功率管动作的过渡过程和电枢绕组的电
感。

单根导体在气隙磁场中感应的电势为t
e1鼠LV (1—7)
式中,
B——气隙磁感应强度;
I-一导体有效长度;
v_导体相对磁场的线速度。

y;等疗。

2pr=n(m/s)(1-8) 60 60
式中,
n——电机转数(r/mi n)o 卜电枢内径;
r——极距;r极对数。

设电枢绕组每相串联匝数为%,则每相绕组的感应电势为:%一2ewo(V) (1—9)
将(1.8)式代入(1-7)式得:
P;B,L2pr-啬O(V)(1-10)
方波气隙磁感应强度对应的每极磁通为:
九;B6afzL(Wb) (1-11)
武汉理工大学硕士学位论文
式中a;为计算极弧数,则有:
P-2p九意‘V) (1-12)
将式1-12代入式1-9得每相绕组感应电势:
日。

面P%九一(V)(1-13)
则线电势,即电枢感应电势为:
E l2E,。

面zp%丸一一e九一(V)(1-14)
式中等杉——电势常数。

无刷直流电机的反电势计算公式和一般直流电机相同,反电势大小与每极
磁通量及转速有关。

如保持每极磁通量不变,无刷直流电机的反电势便和转速
成正比;反之,如保持转速不变,无刷直流电机的反电势将和每极磁通量成正
比。

从公式(1.14)中也可以看出,.当电机静止或转速很低时,反电势为零或很小,
无法利用绕组反电势获得转子位置信号,电机无法起动。

因此“反电势法"无
刷直流电机控制必须采用其他方法来使是电机起动,这将在
下面作详细介绍。

2.3.4无位置传感器直流无刷电机的启动
启动功能在无位置传感器无刷电机中相当重要。

因为在静止或低速状态下
反电势值为0或很小,无法用反电势法来判定转子的位置,所以在启动状态不
能使用反电动势过零的方法。

启动方法分为硬件方式和软件方式两种。

硬件方式因需要额外的电路,不
适合于电路要求简单的航模控制领域。

因此,本文在设计时采用软件三段式的
方法来实现电机的启动。

首先是转子定位,通过导通上下桥臂各一个MOSFET,通电一段时间后就
完成了初始定位。

然后从该位置开始,给电机加载电压,然后检测过零点,如
果检测道过零点就提前切换功率管的导通状态,如果检测不到就延时一段时间,
再按照前面说明的换向表依次导通各个功率管,每个状态保持的时间根据加速
情况决定,逐步的缩短每个状态的保持时间,提高逆变器的输出频率,保证电
机在不失步的前提下提高转子的转速。

因为反电势过零检测法构成的控制系统是一个从开环进入到闭环的控制系
武汉理工大学硕士学位论文
统,它具有自调节、自稳定的能力,无论在过电压还是欠电压情况下切换到闭
环系统,对于控制系统来说只相当于一个电压扰动,控制系统能够根据电压变
化调节转速,使电机稳定运行。

因此,只要外加控制加速到一定速度,能够准
确的检测到反电势过零点信号,电机都能够平稳切换。

这样就能够避免电机在
起动初期会产生大电流,减少了对主电路的冲击,延长了功率管的寿命。

相关文档
最新文档