正项级数收敛的判别方法

合集下载

正项级数收敛的判别法 正项级数收敛性判别法的比较及其应用

正项级数收敛的判别法 正项级数收敛性判别法的比较及其应用

正项级数收敛的判别法正项级数收敛性判别法的比较及其应用正项级数收敛性判别法的比较及其应用摘要:文章主要介绍了正项级数收敛的几种主要的求解方法,通过这九种方法相互进行比较,运用典型的正项级数的例题,从而增加解决正项级数的证明方法。

关键词:正项级数;收敛;典型;方法;比较Abstract: This paper mainly introduces the positive series convergence of several main methods of solving these nine methods, through comparing each other, using typical positive series, thereby increasing positive series methods of proof.Key words: positive series ; convergence; typical ; methods; compare一、引言数学分析作为数学专业的重要基础课程。

级数理论是数学分析的重要组成部分,在实际生活中的运用也较为广泛,如经济问题等。

而正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断。

正项级数收敛性判断的方法虽然较多,但使用起来仍有一定的技巧,根据不同的题目特点分析、判断选择适宜的方法进行判断,能够最大限度的节约时间,提高效率,特别是一些典型问题,运用典型方法,才能事半功倍。

二、预备知识1、正项级数收敛的充要条件部分和数列{S n }有界,即存在某正数M ,对∀n ∈N ,有S n 2、几种不同的判别法(1)比较判别法设∑u n 和∑v n 是两个正项级数,如果存在某正数N ,对一切n>N都有u n ≤v nn =1n =1∞∞那么(i )若级数∑v n 收敛,则级数∑u n 也收敛;(ii )若级数∑u n 发散,则级数∑v n 也发散;n =1n =1n =1∞n =1∞∞∞比较判别法的极限形式:∞∞设∑u n 和∑v n 是两个正项级数。

序列与级数的收敛性判断方法

序列与级数的收敛性判断方法

序列与级数的收敛性判断方法序列与级数是数学中重要的概念,它们在各个领域都有广泛的应用。

在研究序列与级数的性质时,我们常常需要判断它们的收敛性。

本文将介绍一些常用的判断序列与级数收敛性的方法。

一、序列的收敛性判断方法1. 有界性判断法对于一个序列来说,如果存在一个实数M,使得对于所有的正整数n,都有|an|≤M成立,那么称该序列是有界的。

有界序列一定是收敛的,而且收敛到的极限值就是序列的上确界或下确界。

2. 单调性判断法如果一个序列是单调递增的,并且有上界,那么它一定是收敛的。

同样地,如果一个序列是单调递减的,并且有下界,那么它也是收敛的。

这是因为有界单调序列必定存在极限。

3. 夹逼定理夹逼定理是判断序列收敛性的常用方法。

如果一个序列an满足对于所有的正整数n,都有bn≤an≤cn成立,并且序列bn和cn都收敛到同一个极限L,那么序列an也收敛到L。

4. 子序列的收敛性判断法如果一个序列的子序列收敛到某个极限L,那么该序列也收敛到L。

这是因为子序列是原序列的一部分,它们的收敛性是相互联系的。

二、级数的收敛性判断方法1. 正项级数的收敛性判断法如果一个级数的每一项都是非负数,并且序列{Sn}的部分和有上界,即存在一个实数M,使得对于所有的正整数n,都有Sn≤M成立,那么该级数是收敛的。

2. 比较判别法比较判别法是判断级数收敛性的常用方法。

如果一个级数的每一项都是非负数,并且存在另一个级数{bn},使得对于所有的正整数n,都有0≤an≤bn成立,那么如果级数{bn}收敛,那么级数{an}也收敛;如果级数{bn}发散,那么级数{an}也发散。

3. 比值判别法比值判别法是判断级数收敛性的重要方法。

对于一个级数an,如果存在正实数r,使得对于充分大的正整数n,都有|an+1/an|≤r成立,那么:- 如果0≤r<1,那么级数an是绝对收敛的;- 如果r>1,那么级数an是发散的;- 如果r=1,那么比值判别法无法确定级数an的收敛性。

第2节正项级数敛散性的判别

第2节正项级数敛散性的判别

n1
2 3
n
,
由等比级数的敛散性可知:原级数收敛.
例3
1
讨论 P 级数 n1 n p
( p > 0 ) 的敛散性.

当 p=1时,
P
级数为调和级数:
1 n1 n
,
它是发散的.
当 0 < p < 1 时,

0
1 n
1 np
,
由比较判别法, P 级数此时是发散的.
故 p 1时, P 级数是发散的.
综上所述:
当 p > 1 时, P 级数收敛. 当 p 1 时, P 级数发散.
4.比较判别法的极限形式
设和为两个正项级数, 且 vn 0 (n 1, 2,;
或从某一项 N0 开始).

lim un n vn
,

(1) 0 时, un 与 vn 具有相同的敛散性.
n1
n1
(2) 0 时, vn 收敛 un 收敛.
综上所述,当 0 < x < a 时, 原级数收敛; 当 x a 时, 原级数发散.
n
an 1 a2n
lim a n n 1 a2n
a 1,
1 n
当a
1时,
lim n
n
an 1 a2n
lim
n
n
a
1
1 a
2n
1 a
1,
故 a 0 且 a 1时, 原级数收敛.
例8
判别
n1
x a
n
的敛散性.
(
x
>
0,
a
>
0
为常数)

正项级数收敛的判别方法

正项级数收敛的判别方法

正项级数收敛的判别方法
正项级数收敛的判别方法有以下几种:
1. 比较判别法:如果对于正项级数∑a_n和正项级数∑b_n,有
a_n≤b_n对于所有的n成立,则若级数∑b_n收敛,则级数∑a_n也收敛;若级数∑a_n发散,则级数∑b_n也发散。

2. 极限判别法:如果对于正项级数∑a_n,有
lim(n→∞)a_n/a_(n+1)=L,其中L为有限值,则当L<1时,级数∑a_n收敛;当L>1时,级数∑a_n发散;当L=1时,级数∑a_n可能收敛也可能发散。

3. 比值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)a_(n+1)/a_n=q,则级数∑a_n收敛;如果
lim(n→∞)a_(n+1)/a_n>1,则级数∑a_n发散。

4. 根值判别法:如果对于正项级数∑a_n,存在正数q<1,使得lim(n→∞)√(a_n)=q,则级数∑a_n收敛;如果lim(n→∞)√(a_n)>1,则级数∑a_n发散。

需要注意的是,这些判别法只对正项级数有效,即级数中的每一项都是非负的。

对于一般的级数,可以考虑正项级数的收敛性质来推导一般级数的收敛性。

数项级数敛散性判别法

数项级数敛散性判别法

数项级数敛散性判别法数项级数是由一系列数值相加而得到的无穷级数。

在数学中,我们经常需要判断一个数项级数的敛散性,即判断它是否会无限逼近一个有限值(收敛)或者永远无法收敛(发散)。

下面将介绍一些常见的判断数项级数敛散性的方法。

1.正项级数判别法(比较判别法):对于一个数项级数∑an,如果对于所有的n,都有an≥0,并且an+1≤an,那么我们可以使用正项级数判别法来判断敛散性。

即如果极限值lim(n→∞)an=0,则级数收敛;如果极限值lim(n→∞)an>0,则级数发散。

2.比值判别法:如果存在一个正数r,使得lim(n→∞)an+1/an=r,那么根据r的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

3.根值判别法:如果存在一个正数r,使得lim(n→∞)√(n)(an) = r,那么根据r 的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

4.绝对收敛与条件收敛:如果一个级数的各项都是正数,并且该级数收敛,那么称该级数是绝对收敛的。

如果一个级数是收敛的,但其对应的绝对值级数是发散的,则称该级数是条件收敛的。

5.莱布尼茨判别法:对于一个交替级数∑((-1)^(n+1)*bn),如果满足以下条件,那么该级数收敛:- bn>0,即各项都是正数;- bn≥bn+1(递减趋势);- lim(n→∞)bn=0。

6.积分判别法:如果能够找到一个函数f(x),使得f(x)在[1,∞)上连续且单调递减,并且∑an与∫f(x)dx之间有关系,那么可以使用积分判别法来判断敛散性。

具体判别如下:- 如果∫f(x)dx收敛,那么∑an也收敛;- 如果∫f(x)dx发散,那么∑an也发散。

高数:级数敛散判别法

高数:级数敛散判别法

则称无穷级数收敛;
S un 级数的和

lim
n
Sn
不存在,
则称无穷级数发散 。
n1
rn S Sn
uk
级数的余项。
lim
n
rn
0
无穷级数收敛。
kn1
若un≥0 (n=1, 2, 3, …) , un 正项级数。 Sn是单调增加数列。
n1
正项级数 un 收敛
n1
部分和序列 Sn有界 。
比较判别法
1 n 1
np n1n p dx
n n1
1 xp
dx
1
Sn
1
1 2p
1 3p
1
4p
1
np
1
2nddxx 1 xxpp
231dxxp1pn p11n
dx n1x1p
1 p 1
,
因而 Sn有上界。 由基本定理可知, 当p>1时p级数收敛。
9.2.2 比较判别法
定理2 (比较判别法) 设 un , vn 是两个正项级数, 且
设 un , vn 是两个正项级数, 且存在自然数N,
n1 n1
使当 n>N 时有 un≤kvn (k>0为常数) 成立, 则
(1) 若强级数 vn 收敛 , 则弱级数 un 也收敛 ;
n1
n1
(2) 若弱级数 un 发散 , 则强级数 vn 也发散 。
n1
n1
比较对象

p级数
1 np
,
p>1收敛,p<1发散。
证: 因为
1
nn 1
1 n (n 1)
发散 。
1 1 n 1, 2,

第十章 无穷级数2正项级数的收敛判别法

第十章 无穷级数2正项级数的收敛判别法

(1) 当 0 h 时,若 vn收敛,则 un收敛;
n1
n1
(2) 当 0 h 时,若 vn发散,则 un发散.
n1
n1
例3
讨论下列级数的收敛性:
(1)
2n 1
;
n1 (n 1)(n 2)(n 3)
(2) sin 1 ;
n1
n
(3) (1 cos ), (0 ).
在a, A 上可积,若极限 lim A f ( x)dx 存在,则称函数 A a
f
(x)
在a,
上的无穷积分 a
f
( x)dx 收敛.并将上
述极限值定义为无穷积分的值,即
A
f ( x)dx lim f ( x)dx
a
A a
若无极限,则称无穷积分发散.
定理 6 (积分判别法)
设 un为正项级数.若存在一个单调下降的非负 n1
数学分析II
第十章 无穷级数
§2 正项级数的收敛判别法
生物数学教研室
定义: 当 un 0 (n 1,2,) 时, un称正项级数. n1
<注>: 正项级数的部分和序列Sn是单调递增的.
命题: 正项级数 un收敛 其部分和序列有上界. n1
1. 比较判别法
定理 1 ( 比较判别法 )
设两正项级数 un与 vn的一般项满足
n2
1 n(ln n)
p
发散.

p 1 时,由比较判别法
1 n(ln n) p
1 (n nln n
3),
级数
n2
1 n(ln n)
p
发散.
当 p 1 时,
A 2
1 x(ln x) p

数项级数收敛性判别法

数项级数收敛性判别法

2021/4/21
(3) p 0 时,级数发散.
28
目录
上页
下页
返回
绝对收敛级数与条件收敛级数具有完全不同的性质. *定理8 绝对收敛级数不因改变项的位置而改变其和. *定理9 ( 绝对收敛级数的乘法 ) 设级数 与 都绝对收敛, 其和分别为 则对所有乘积 按任意顺序排列得到的级数 也绝对收敛, 其和为
(1)
n1
n3 2n3 n

(2)
1;
n n1
1 1 n
(3)
n1
1 n
ln
1
1 n

n3
(4) n2en . n1
解:(1)因为
lim
2n3
n
n3 lim
3n2
1,
n 1
n 2n3 n 2
n2

1 收敛,所以级数
n 3 收敛.
n2
n 1
1 n1 2n3 n
(2)因为
2021/4/21
n
n
un
lim n
2
ln n
2 1,因此所给级数发散.
3n
2021/4/21
20
目录
上页
下页
返回
二、交错级数及其审敛法
(Interrogate of staggered series)
则各项符号正负相间的级数
称为交错级数 . 定理6 ( Leibnitz 判别法 ) 若交错级数满足条件:
则级数
.
收敛
2021/4/21
23
目录
上页
下页
返回
三、绝对收敛与条件收敛
(Absolute convergence and conditional convergence)

13-2_数项级数的收敛判别法

13-2_数项级数的收敛判别法

练习1 判别级数
1 的敛散性 (a>0为常数)
n1 n2 a 2
1
解:因为 lim n
n2 a2 1
1
(即=1为常数)
n
1

是调和级数,它是发散的
n1 n
1
故原级数 n1 n2 a 2
发散.
E-mail: xuxin@
练习2 判别级数 ( 1 cos x )
n1
n
1
n 3n
n1
31n收敛,
故原级数收敛.
E-mail: xuxin@
例6
判定级数
ln(1
1 )的敛散性.
n1
n2
解:Q
lim
n
ln(1 1
1 n2
)
1,级数
n1
1 n2
收敛,
n2
由定理(2)知级数
n1
ln(1
1 n2
)收敛.
E-mail: xuxin@
n1
E-mail: xuxin@
推论2 设un为正项级数,如果存在p 1, n1
使得un
1 np
(n
1, 2,),则级数
n1
un收敛;
如果un
1 n
(n
1, 2,),
则级数发散.
例4 判断下列级数的敛散性
1
(1)
n1 (2n 1) 2n
n 1
(2) n1 n2 1
n1
E-mail: xuxin@
例 1 考察级数
1
n1 1 2n
1
1
2
1
1 22
L
1
1 2
n
L
的收敛性.

级数判别法

级数判别法

级数判别法基本定理:正项级数收敛的充要条件是:∑∞=1n n a的部分和数列}{n S 有界。

1、 比较判别法:设∑∞=1n n a 和∑∞=1n n b是两个正项级数,且存在0>N ,使当N n >时,有不等式n n b a ≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。

○2:∑∑∞=∞=⇒101n n n n ba 发散发散。

2、 比较判别法极限形式:设∑∞=1n na 和∑∞=1n nb 是两个正项级数,且λ=+∞→n nn b a lim,则:○1:当+∞<<λ0时,∑∞=1n na 和∑∞=1n n b具有相同的敛散性。

○2:当0=λ时,∑∞=1n n b 收敛∑∞=⇒1n na 收敛。

○3:当+∞=λ时,∑∞=1n n b 发散∑∞=⇒1n na 发散。

3、 比较判别法II :设有两正项级数∑∑∞=∞=101n nn n b a 和,)0,0(≠≠n n b a 满足:nn n n b b a a 11++≤,则:○1:∑∞=1n n b收敛∑∞=⇒1n na 收敛。

○2:∑∞=1n na发散∑∞=⇒1n n b发散。

4、 比值判别法(达朗贝尔):设∑∞=1n n a为正项级数,则:1°若当n 充分大时有:11<≤+q a a n n ,则级数∑∞=1n n a 必收敛。

2°若当n 充分大时有:11≥+n n a a ,则级数∑∞=1n n a 必发散。

5、 达朗贝尔判别法的极限形式:设∑∞=1n n a为正项级数,且2111lim limλλ==+∞→+∞→n n n n n n a a,a a ,+∞≤2,1λ,则:1°:当11<λ时,级数∑∞=1n n a 收敛。

2°:当12>λ时,级数∑∞=1n n a 发散。

6、 根值判别法(Cauchy ):设∑∞=1n n a为正项级数,则:1°:若当n 充分大时,有1<≤q a nn ,则级数∑∞=1n na 必收敛。

关于正项级数收敛性的判别法

关于正项级数收敛性的判别法

关于正项级数收敛性的判别法On convergence of series with positive terms摘要正项级数作为级数理论中最基本的一类级数,它的敛散性的判定是级数理论的核心问题。

正项级数的敛散性判别方法有很多,本文对正项级数敛散性的各种判别法的特点与联系作了简单、系统的归纳与剖析。

正项级数不仅有一般级数收敛性的判别法,也有许多常用的和一些新的收敛性的判定方法,如比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法和对数判别法等,但运用起来有一定的技巧,需要根据对不同级数通项的特点进行分析,选择适宜的方法进行判定,这样才能够最大限度的节约时间,提高效率,特别是对于一些典型问题,运用典型方法,更能事半功倍。

关键词:级数;正项级数;收敛;发散。

AbstractDetermining whether or not a series is convergent in the series theory is the core issue. There are many ways to determine if a positive series is convergent. This thesis makes full analysis for the convergence determination methods for positive series. There are many common and some new convergence determination methods, such as comparison criterion, Cauchy criterion, d'Alembert criterion, Log Criterion and Rabe Criterion and other methods. But using which of these methods needs certain skills, needs to analyze the general items of the series. A lot of time can be saved if an appropriate method is used. Key words: Series;positive series; convergence; divergence.目录摘要................................................................................................................................................................. I I ABSTRACT.. (III)目录 (IV)引言 (1)1 基础知识 (2)1.1无穷级数的定义 (2)1.2无穷级数的部分和 (2)1.3无穷级数收敛的定义 (2)2 正项级数敛散性的常用判别法 (3)2.1柯西收敛原理[1] (3)2.2基本定理 (3)2.3比较判别法 (3)2.4达朗贝尔判别法 (4)2.5柯西判别法 (4)2.6积分判别法 (5)2.7阿贝尔判别法 (5)2.8狄利克雷判别法 (5)3 正项级数敛散性的一些新的判别法 (6)3.1定理1(比较判别法的推广) (6)3.2定理2(等价判别法) (6)3.3定理3(拉贝判别法)[3] (7)3.4定理4(高斯判别法)[5] (8)3.5定理5(库默尔判别法)[3] (8)3.6定理6(对数判别法)[4] (9)3.7定理7(隔项比值判别法)[3] (10)3.8定理8(厄尔马可夫判别法)[4] (10)3.9定理9(推广厄尔马可夫判别法)[4] (10)4 正项级数敛散性判别法的比较 (12)5 应用举例 (16)6 总结与展望 (20)参考文献 (21)致谢 (22)引言在数学分析中,数项级数是全部级数理论的基础,主要包括正项级数和交错级数,而正项级数在各种数项级数中是最基本的,同时也是十分重要的一类级数。

7.2 正项级数敛散性的判别-1

7.2 正项级数敛散性的判别-1

n! ∑ n 的敛散性 例3. 判别级数 n=1 4 n! ( n + 1)! un+1 n + 1 解: un = n , un+1 = , = n+1 un 4 4 4 un+1 n+1 ∞ n! lim = lim = ∞ 故级数 ∑ 发散. 发散 n n→ ∞ u n→ ∞ 4 n =1 4 n ∞ n! 的敛散性(典型例题 典型例题) 例4. 判别级数 ∑ n 的敛散性(典型例题) n =1 n n! ( n + 1)! , un+1 = ( n ) n 解:u n = n , un+1 = un n+1 n ( n + 1) n+1 un+1 1 lim = lim = 1 / e <1 n n→ ∞ u n→ ∞ (1 + 1 / n ) n ∞ n! 由比值判别法可知: 收敛. 由比值判别法可知:级数 ∑ n 收敛 n =1 n

y
1 y= p x
x 1 1 1 n dx + p + ... + p < ∫1 p 0 1 2 3 ... n − 1 n p 2 3 n x ∞ 1 dx x 1− p n 1 n ⇒ ∑ p 收敛 S n < 1 + ∫1 p = 1 + |1 < 1 + n =1 n 1− p 1− p x
1 我们称级数 ∑ p 为 p 级数 n =1 n
到目前为止,我们已知两类敛散性确定的级数: 到目前为止,我们已知两类敛散性确定的级数:

q 1 )几何级数 ∑ aq n=1 q ∞ 1 p 2 ) P − 级数 ∑ p n=1n p
∞ n −1

级数收敛的判定方法与级数的应用

级数收敛的判定方法与级数的应用

级数收敛的判定方法与级数的应用首先让我们了解一下级数的概念。

一个级数是由一列有序的数相加而成的表达式。

一般来说,级数的通项可以表示为an,其中n表示项的位置。

级数的求和通常用Sn来表示,即Sn=a1+a2+a3+...+an。

我们要讨论的第一个级数收敛的判定方法是正项级数判别法。

对于一个级数∑an,如果所有的an都是非负的,并且序列{Sn}递增有上界,则级数收敛。

这是因为Sn递增有上界意味着Sn存在有限的极限值,我们将其表示为S。

我们可以证明Sn与Sn+1之间的差异可以表示为Sn+1−Sn=an+1≥0这个结论表明序列{Sn}是单调增的,并且上界是S。

由此得出了正项级数的收敛结论。

接下来是比较判别法。

对于两个级数∑an和∑bn,如果存在一个正整数N,对于所有的n>N,都有an≤bn,且∑bn收敛,则∑an也收敛;如果∑bn发散,则∑an也发散。

这个判别法的思路是通过比较两个级数的通项,从而得出关于它们收敛性的结论。

另外一个常用的判定方法是Cauchy收敛准则。

对于一个数列{an},如果对于任意给定的正数ε,存在一个正整数N,使得当m>n>N时,有∣∣∣∑am−∑an∣∣∣<ε,那么级数∑an收敛。

这个准则是以数学家奥古斯特·科西(Augustin-Louis Cauchy)的名字命名的。

还有一个判定方法是d'Alembert判别法,也叫比值判别法。

对于一个级数∑an,如果存在正整数N,使得对于所有的n>N,有∣∣∣an+1an∣∣∣<r<1则级数收敛。

同样的,如果∣∣∣an+1an∣∣∣>1,则级数发散。

这个方法是根据级数的比值收敛性质来进行判定的。

级数的应用广泛。

比如在数学中,级数在微积分和实分析中起到了至关重要的作用。

级数的概念是微积分中积分和微分的基础,也是我们理解一些重要的数学概念如数列极限、函数积分、数学分析等的重要基础。

正项级数的判别法

正项级数的判别法


思考题
设正项级数 un 收敛, 能否推得 un 收敛?
2 n1 n1
反之是否成立?
思考题解答
由正项级数 un 收敛,可以推得 un 收敛,
2 n 1 n1
un lim lim un 0 n u n n
由比较审敛法知 un 收敛.
2
1时级数发散; 1 时失效.
1 例如, 设级数 n , n1 n

1 1 un n n 0 ( n ) 级数收敛. n n
n
小 结
正 项 级 数
1. 若 Sn S , 则级数收敛;


2. 当 n , un 0, 则级数发散;
3.按基本性质; 4.充要条件 5.比较法 6.比值法 7.根值法Leabharlann lim a2 nn
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例 4 判别下列级数的收敛性:
1 (1) ; n 1 n!


n! 1 (2) n ; (3) . n 1 10 n 1 ( 2n 1) 2n 1 un1 ( n 1)! 1 (1) 0 ( n ), 1 un n1 n! 1 故级数 收敛. n 1 n!
1 (1) sin ; n n 1


二、比值判别法
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
则 1时级数收敛; 1 时级数发散; 1 时失效.

证明 当为有限数时, 对 0,

常数项级数的收敛性及其判别法

常数项级数的收敛性及其判别法
则 (1) 当 0 l 时 , 二级数有相同的敛散性 ; (2) 当 l 0 时,若




vn 收敛 ,则 un 收敛 ; n 1
n 1


(3) 当 l 时 , 若
v n 发散 ,则 un 发散 ;
n 1 n 1


9/32
例 4 判定下列级数的敛散性:
n 1
思想是: 任意项级数
正项级数
u
n 1

n

n 1

un
34/32
定理
. 若级数 | un | 收敛, 则 级 数 un必 定 收 敛

n 1


n 1
证 设级数 | un | 收敛. | un | un | un |
n 1
0 un | un | 2 | un |,
3.当 1时比值审敛法失效;
1 例 级数 发散, n 1 n

级数
n 1

n
( 1) 1 收敛, 2
17/32
例. 判别下列级数的收敛性:
1 (1) ; n 1 n!


n! 1 (2) n ; (3) . n 1 10 n 1 ( 2n 1) 2n 1 un1 ( n 1)! 1 (1) 0 ( n ), 1 un n1 n! 1 故级数 收敛. n 1 n!
7/32
例 3. 证明级数
n 1

1 是发散的. n( n 1)
证明
1 1 , n( n 1) n 1
1 而级数 发散, n 1 n 1

第二讲正项级数收敛判别法(一)解剖

第二讲正项级数收敛判别法(一)解剖

nn1
n1
n1 (n2 1) 2
(A)收敛
(B)发散
#2014021901
例4 判别敛散性
1
x
(2)
n1
n 0
1
x2
dx
(A)收敛
(B)发散
#2014021902
例4 判别敛散性
nn1
x 1
(1)
n1
n1 (n2 1) 2
(2)
n
0 1 n1
x2
dx
证:(1)0
u n
nn1
n1
(n2 1) 2
也发散 .
说明:
1. 比较判别法仅适用于正项级数 ;
2. 不等式条件可以从某一个N后都满足就行;
3.常用的参考级数




aq
n
n0
常用的不等式
a2 b2 2ab, a,b R
sin x x, x 0 ex 1 x, x 0
x ln(1 x) x, x 0 1 x
例2.
讨论
p
收敛。 发散。
例6.
判别级数 sin
n1
1 n
的敛散性
.
#2014021903
(A)收敛
(B)发散
例6.
判别级数 sin
n1
1 n
的敛散性
.
解: lim n sin 1 lim n 1 1
sin
1 n

1 n
n
n n n
根据比较审敛法的极限形式知
sin
n1
1 n
发散
.
例7.
判别级数 ln1
(n N)
(1) 当0 < l <∞时, 同时收敛或同时发散 ;

正项级数收敛性的一般判别原则

正项级数收敛性的一般判别原则

正项级数收敛性的一般判别原则若级数各项的符号都相同,则称为同号级数。

而对于同号级数,只须研究各项都由正数组成的级数——正项级数。

因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性。

定理12.2.1 正项级数∑∞=1n nu收敛⇔部分和数列{}n S 有界。

证明:由于对n ∀,0>n u ,故{}n S 是递增的,因此,有∑∞=1n nu收敛⇔{}n S 收敛⇔{}n S 有界。

定理12-2-2(比较原则) 设∑∞=1n nu和∑∞=1n nv均为正项级数,如果存在某个正数N ,使得对N n >∀都有n n v u ≤, 则 (1)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;(2)若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散。

证明:由定义及定理12-2-1即可得。

例1、考察∑∞=+-1211n n n 的收敛性。

解:由于当2≥n 时,有222)1(1)1(1111-≤-=-≤+-n n n n n n n ,因正项级数∑∞=-22)1(1n n 收敛,故∑∞=+-1211n n n 收敛。

推论(比较判别法的极限形式) 设∑∞=1n nu和∑∞=1n nv是两个正项级数,若l v u nnn =∞→lim ,则 (1) 当+∞<<l 0时,级数∑∞=1n nu、∑∞=1n nv同时收敛或同时发散;(2)当0=l 且级数∑∞=1n nv收敛时,级数∑∞=1n nu也收敛;(3)当+∞=l 且∑∞=1n nv发散时,级数∑∞=1n nu也发散。

证明:由比较原则即可得。

例2、讨论级数 ∑-nn21的收敛性。

解:利用级数∑n 21的收敛性,由推论可知级数∑-n n 21收敛。

例3、 由级数∑n 1的发散性,可知级数∑n1sin 是发散的。

7.2 正项级数及其审法敛

7.2 正项级数及其审法敛

收敛。
2)
n.
n1 2 n5
因为
0
n
2 n5
n n5
1 n2
n 1,2,,
1
而级数
n2
n 1
是收敛的 p 级数 p 2 1,
由比较审敛法知级数
n
收敛。
n1 2 n5
例2 判断下列级数的敛散性:
1) sin 1;
n 1
n
2)
2n 1 .
n1 n5 2
解: 1) sin 1;
所以由比较审敛法知正项级数
n n
n1 2n 1
也收敛。
课堂练习:
判断级数 n! 的敛散性,并说明理由。 nn n 1
小结: 1.正项级数的比较审敛法; 2.正项级数的比值审敛法;
作业: P150. 1(2);2(2);3(2).
因为单调有界数列必有极限所以收敛二正项级数的比较审敛法定理比较审敛法一是两个正项级数且若级数收敛则级数若级数发散则级数上述定理可以简单地这样记忆
§7.2 正项级数及其审敛法
对于一个无穷级数,通常需要考虑解决两个问题: 1. 如何判别级数是否收敛? 2. 如果收敛,怎样求和?
第二个问题通常比第一个问题要难得多,本节将介绍 如何判别正项级数是否收敛的方法,即审敛法。
大收小收,小发大发
定义. 形如
1 1 1 1 1
np
n 1
2p 3p
np
1
的级数称为 p 级数. p=1 时 n1 n 称为调和级数。
p 级数的敛散性有如下定理:
定理 当
p
1时,p
级数
n 1
1 np
收敛;

p 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档