变形监测方法及计算

合集下载

建筑物变形监测技术方案

建筑物变形监测技术方案

建筑物变形监测技术方案一、前言。

咱们的建筑物就像一个有脾气的大朋友,有时候会这儿歪一点,那儿沉一点,这就是变形啦。

为了让这个大朋友一直稳稳当当的,咱们得搞个变形监测,就像随时给它做个体检一样。

二、监测目的。

1. 安全卫士。

主要就是为了保证建筑物的安全呀。

要是它变形得太厉害,就可能会有危险,就像人要是一直歪着走路,迟早得摔跟头。

咱们通过监测,提前发现问题,好让建筑物这个大朋友不闹脾气。

2. 了解习性。

还有就是了解建筑物的变形规律,知道它在不同的季节、天气或者使用情况下是怎么个变化法儿的。

就像了解一个人的生活习惯一样,什么时候爱睡觉,什么时候爱活动。

三、监测内容。

1. 沉降监测。

这就像是看建筑物有没有“偷偷”往下沉。

在建筑物的关键部位,比如柱子的周围、墙角这些地方,咱们得放一些小标记(沉降观测点)。

然后用专门的水准仪定期去量一量这些点的高度有没有变化。

如果它一直在慢慢变矮,那可就不太妙啦。

2. 水平位移监测。

这个呢,就是看建筑物有没有左右或者前后晃悠。

可以在建筑物周边找一些稳定的点作为参照,然后用全站仪或者其他测量仪器来看看建筑物上的观测点相对于这些参照点有没有位置的移动。

就好比看一个站着的人有没有左右乱晃。

3. 倾斜监测。

倾斜就像是建筑物在歪着头。

咱们可以用专门的倾斜仪,也可以通过测量建筑物不同高度的水平位移差值来判断它是不是倾斜了。

想象一下,如果大楼像比萨斜塔那样歪得太厉害,那可就吓人喽。

四、监测点布置。

1. 沉降观测点。

一般会在建筑物的四角、大柱子旁边、承重墙附近这些重要的地方设置沉降观测点。

而且每个点都要有编号,就像给每个小朋友都起个名字一样,这样方便咱们记录和查找。

2. 水平位移和倾斜观测点。

这些观测点呢,要均匀地分布在建筑物的周围和表面。

比如说在建筑物的外立面的一些突出部位,还有楼顶的边缘这些地方。

布置得合理,才能准确地掌握建筑物的动态。

五、监测周期。

1. 初始阶段。

在建筑物刚建成或者刚开始使用的时候,监测要频繁一些,就像新生儿需要频繁体检一样。

变形监测实施方案

变形监测实施方案

变形监测实施方案一、引言。

变形监测是指对工程结构或地质体进行形变、位移等变化的监测和分析。

在工程建设、地质灾害防治等领域,变形监测具有重要的意义。

本文旨在制定一套科学合理的变形监测实施方案,以确保监测数据的准确性和可靠性,为工程安全和地质灾害防治提供可靠的数据支持。

二、监测对象。

变形监测的对象包括但不限于建筑物、桥梁、隧道、坝体、边坡、地基等工程结构,以及山体、岩体、土体等地质体。

三、监测内容。

1. 变形监测应包括的内容:(1)位移监测,包括水平位移、垂直位移等。

(2)形变监测,包括轴向形变、横向形变等。

(3)应力监测,包括受力构件的应力监测等。

2. 监测方法:(1)传统监测方法,包括测量法、观测法等。

(2)现代监测方法,包括卫星定位技术、遥感技术、激光扫描技术等。

四、监测方案。

1. 监测方案的制定应考虑以下因素:(1)监测目的,明确监测的目的和需求。

(2)监测对象,确定监测对象的类型和特点。

(3)监测内容,明确监测的内容和范围。

(4)监测方法,选择合适的监测方法和技术手段。

(5)监测周期,确定监测的周期和频率。

(6)监测标准,制定监测的标准和要求。

(7)监测方案,综合考虑以上因素,制定科学合理的监测方案。

2. 监测方案的实施步骤:(1)确定监测方案,根据监测对象的特点和监测需求,确定监测方案。

(2)监测仪器设备的选择,选择适合监测对象和监测内容的监测仪器设备。

(3)监测点布设,根据监测方案,合理布设监测点,确保监测数据的全面性和代表性。

(4)监测数据采集,按照监测方案和要求,进行监测数据的采集和记录。

(5)监测数据处理,对采集到的监测数据进行处理和分析,得出监测结果。

(6)监测报告编制,根据监测结果,编制监测报告,提出监测分析和建议。

五、监测质量控制。

1. 监测质量控制的要求:(1)仪器设备的准确性和稳定性。

(2)监测数据的准确性和可靠性。

(3)监测过程的规范性和科学性。

2. 监测质量控制的措施:(1)严格按照监测方案和要求进行监测。

7-第七章-工程的变形监测和数据处理

7-第七章-工程的变形监测和数据处理

➢典型动态变形模型
对于变形影响因子呈跳跃变化(突变)、线性变化 ((渐变)和周期变化(周变)所引起的变形体的典 型变形可用下图的(a)、(b)、(c)来分别表示。
(a)突变模型对应的动态变形模型为
y(t)
H [1
exp(
t
t0 T
)]
图中 x0、xE为始末时刻变形因子的值, y0、yE 为始末时刻的变 形量,H、T 为传递常数和时间常数, Tp为变化周期,Tv 为时 间延迟。
主要内容
➢ 什么是变形监测? ➢ 为什么要进行变形监测? ➢ 变形监测有哪些内容和特点 ?
重点
➢ 变形监测网和变形监测方案设计 ➢ 变形观测数据处理 ➢ 成果表达和解释
思考题
以典型工程为例,说明变形监测的内容 和特点?
工程变形监测有哪些方法?发展趋势如 何?
§7. 5 变形监测资料整理、成果表达和解释
二、成果表达
变形监测的成果表达主要包括用文字、表格 和图形等形式进行表达,也可采用现代科技 如多媒体技术、仿真技术、虚拟现实技术进 行表达。
§7. 5 变形监测资料整理、成果表达和解释
三、成果解释
对变形的解释与变形体的性质和监测目的有关,需 要解答以下的问题:
§7.4 变形观测数据处理
二、变形监测点的数据处理 ➢其他方法 时间序列分析法 频谱分析法 模糊人工神经网络法 小波分析法
§7. 5 变形监测资料整理、成果表达和解释
一、资料整理
➢资料整理的主要内容包括
✓收集资料 ✓审核资料 ✓填表和绘图 ✓编写整理成果说明
➢资料分析的常用方法有
✓作图分析 ✓统计分析 ✓对比分析 ✓建模分析
一、变形监测的定义、作用和内容
➢变形监测的特点

公路工程变形监测方案

公路工程变形监测方案

公路工程变形监测方案1. 背景介绍公路工程是现代交通运输体系中至关重要的一部分,其建设和维护对于社会经济的发展和人民生活的改善都具有重要意义。

然而,由于公路工程受到地质、气候等自然因素的影响,以及车辆、人流等外部因素的作用,公路工程在使用过程中往往会出现一些变形问题,如路面起砂、裂缝、坑洼等,严重影响了道路的通行安全和舒适性。

因此,对公路工程的变形进行有效监测和预警,是保障道路安全和延长其使用寿命的重要措施。

2. 变形监测的目的和意义公路工程变形监测的目的是及时发现和记录公路工程的变形情况,为工程的维护和修建提供科学依据。

通过对公路工程变形的监测,可以及时采取预防和修复措施,避免变形问题加剧,从而保障道路的使用安全和舒适性。

同时,变形监测还可以为公路工程的设计、改建和维护提供重要的数据支持,为公路工程的规划和管理提供科学依据。

3. 变形监测的方法和技术公路工程的变形监测主要采用现场调查和监测技术相结合的方法。

其中,现场调查主要是通过巡视、检测工具和仪器等手段对公路工程进行实地观测和检测,主要包括路面平整度、水平和垂直偏差、裂缝和坑洼等变形情况。

而监测技术主要包括遥感技术、地面监测技术和无人机监测技术等,这些技术可以对公路工程的变形情况进行全方位的、实时的监测和记录。

在遥感技术方面,可以通过卫星影像和航空影像对公路工程的变形进行监测,这种方法可以实现对大范围区域的监测,且成本较低。

在地面监测技术方面,可以使用3S技术(即遥感、地理信息系统和全球定位系统)对公路工程进行变形监测,这种方法可以实现对特定区域和目标的精细化监测。

而无人机监测技术则是一种新兴的监测方法,通过无人机搭载遥感设备对公路工程进行变形监测,可以实现对地形、地貌、变形等情况的高分辨率监测,具有灵活性强、成本低、实时性好等优点。

4. 变形监测的指标和标准公路工程的变形监测需要依据一定的指标和标准进行,主要包括变形程度、变形形态、变形速率、变形区域等指标和标准。

混凝土变形监测方法

混凝土变形监测方法

混凝土变形监测方法混凝土是现代建筑中最常用的材料之一。

然而,由于时间的推移和自然环境的影响,混凝土结构可能会出现变形。

这种变形可能会给建筑结构带来严重的影响,甚至会导致结构的破坏。

因此,对混凝土结构进行变形监测非常重要。

混凝土变形监测方法可以分为以下几种:1. 光纤传感器监测法光纤传感器监测法是一种新型的混凝土变形监测技术。

该技术利用光纤传感器将混凝土结构中捕获的变形信号转换为光学信号进行监测。

这种方法具有高精度、高灵敏度和长期可靠性的优点。

光纤传感器监测法可以监测混凝土结构的各种变形,如温度变化、湿度变化、应变变化等。

2. 振动传感器监测法振动传感器监测法是一种利用振动传感器监测混凝土结构变形的方法。

该方法通过监测混凝土结构的振动特征来判断结构是否发生变形。

由于振动传感器监测法具有响应速度快、灵敏度高、安装方便等优点,因此在实际应用中得到了广泛的应用。

3. 激光扫描监测法激光扫描监测法是一种利用激光扫描仪对混凝土结构进行变形监测的方法。

该方法通过扫描混凝土结构表面的点云数据来计算结构的变形情况。

激光扫描监测法具有非接触、高精度、高效率等优点,因此在大型混凝土结构监测中得到了广泛的应用。

4. 等距监测法等距监测法是利用传感器在混凝土结构上定点监测变形情况的方法。

该方法可以通过在混凝土结构上安装一定数量的传感器,对结构的变形情况进行监测。

等距监测法具有安装方便、监测结果直观等优点,但需要较多的人力和物力投入。

综上所述,混凝土变形监测方法各有优缺点,应根据具体情况选择合适的监测方法。

在实际应用中,可以采用多种方法相结合,以提高监测的精度和可靠性。

建设工程建筑变形测量监测方案

建设工程建筑变形测量监测方案

建设工程建筑变形测量监测方案早上九点,阳光透过窗帘的缝隙洒在办公桌上,我开始构思这份“建设工程建筑变形测量监测方案”。

这样的方案我已经写了十年,每一次都是全新的挑战,但也充满了熟悉的节奏感。

一、项目背景及目标这个项目位于繁华的市区,一栋高达50层的大厦,它的建设牵动着无数人的心。

我们的目标很简单,确保在整个建设过程中,建筑物的变形在可控范围内,避免因变形过大导致的安全问题。

二、监测内容1.建筑物的垂直度:这是最基础的监测内容,我们要确保大厦垂直于地面,不倾斜。

2.结构位移:随着施工的进行,建筑物的结构可能会发生微小的位移,我们需要实时掌握这些数据。

3.基础沉降:这是关键中的关键,基础沉降过大,整个建筑物的安全性都会受到影响。

4.地面裂缝:地面裂缝的出现往往预示着更大的安全隐患,我们要密切关注。

三、监测方法1.采用全站仪进行垂直度和结构位移的测量,这是一种高效、精确的测量方法。

2.使用水准仪和测量进行基础沉降和地面裂缝的监测,它们能提供连续、实时的数据。

3.搭建一个数据采集和处理系统,将所有监测数据实时传输到电脑,方便我们分析和处理。

四、监测频率1.在施工初期,每周进行一次全面监测,确保建筑物的变形在可控范围内。

2.在施工中期,每两周进行一次全面监测,此时建筑物的变形趋势已经比较明显。

3.在施工后期,每月进行一次全面监测,直至工程结束。

五、数据处理与分析1.收集到的数据会先经过初步的筛选和清洗,去除无效和异常数据。

2.对有效数据进行统计分析,绘制出变形曲线图,直观地展示建筑物的变形情况。

3.根据变形曲线图,预测建筑物的变形趋势,为后续的施工提供参考。

六、预警与应对措施1.当监测数据超过预警阈值时,立即启动预警机制,通知相关部门和人员。

2.针对不同类型的变形,采取相应的应对措施。

如垂直度偏差过大,及时调整施工方案;基础沉降过大,加强地基处理等。

3.定期对监测系统进行检查和维护,确保其正常运行。

七、成果提交1.在工程结束后,整理所有监测数据和分析报告,形成一份完整的“建设工程建筑变形测量监测报告”。

测绘工程中的工程变形监测与分析

测绘工程中的工程变形监测与分析

测绘工程中的工程变形监测与分析在当今的工程建设领域,确保工程的安全和稳定是至关重要的。

而工程变形监测作为一种有效的手段,能够及时发现和评估工程结构的变形情况,为工程的设计、施工和运营提供重要的依据。

本文将对测绘工程中的工程变形监测与分析进行详细探讨。

一、工程变形监测的重要性工程变形可能会导致严重的后果,如建筑物倾斜、桥梁垮塌、道路损坏等,不仅会造成巨大的经济损失,还可能威胁到人们的生命安全。

通过对工程进行变形监测,可以及时掌握其变形趋势和规律,采取相应的措施加以预防和控制,从而保障工程的安全和正常使用。

例如,在高层建筑的建设过程中,如果没有进行有效的变形监测,可能会因为地基不均匀沉降而导致建筑物倾斜或开裂。

同样,在大型桥梁的运营期间,对桥梁的变形进行监测可以及时发现结构的损伤和老化,为桥梁的维护和加固提供依据,延长桥梁的使用寿命。

二、工程变形监测的内容工程变形监测的内容通常包括水平位移监测、垂直位移监测、倾斜监测、裂缝监测等。

水平位移监测是测量工程结构在水平方向上的移动情况。

常用的方法有全站仪测量、GPS 测量等。

全站仪测量精度高,但测量范围相对较小;GPS 测量则可以实现大范围、全天候的监测,但精度相对较低。

垂直位移监测主要用于测量工程结构在垂直方向上的升降变化。

水准测量是常用的垂直位移监测方法,通过建立水准测量网,定期测量监测点的高程,从而计算出垂直位移量。

倾斜监测用于测量工程结构的倾斜程度。

可以采用全站仪测量倾斜角、水准仪测量高差等方法。

裂缝监测则是对工程结构表面出现的裂缝进行观测,包括裂缝的长度、宽度、深度等参数的测量。

三、工程变形监测的方法1、常规地面测量方法这是一种传统的监测方法,包括水准测量、全站仪测量等。

水准测量适用于垂直位移监测,通过建立高精度的水准测量网,定期测量监测点的高程变化。

全站仪则可以同时测量水平位移和垂直位移,具有较高的精度和灵活性。

2、摄影测量方法利用摄影技术获取工程结构的影像,通过对影像的处理和分析,获取变形信息。

加固工程变形监测方案

加固工程变形监测方案

加固工程变形监测方案1. 引言在基础设施建设领域,加固工程是一项非常重要的工作。

加固工程的目的是为了提高建筑物或桥梁等结构的承载能力,或修复已存在的结构缺陷,保障人们的生命财产安全。

而在加固工程的实施过程中,变形监测是一项至关重要的环节。

通过对结构变形情况的监测,可以及时发现结构变形的情况,从而采取相应的措施进行修正,保证工程的稳定性和安全性。

本文旨在探讨加固工程变形监测方案,从加固工程的变形情况监测方法、设备选择、监测数据处理等方面展开讨论,为加固工程变形监测提供可行的方案。

2.加固工程变形监测方法加固工程变形监测方法可以分为静态监测和动态监测两类。

静态监测是指对结构变形情况进行定期或不定期的测量,以获取结构的变形数据;而动态监测则是指在结构受到外力作用时,对其动态响应进行监测。

2.1 静态监测方法静态监测方法主要包括测量法、光学法、电子法和声学法等。

(1)测量法测量法是指通过使用各种测量仪器对结构的位移、倾斜、应力等参数进行监测。

常用的测量仪器包括位移计、倾斜仪、应变片等。

这些测量仪器可以直接测量结构的各种变形情况,为结构的变形情况提供准确的数据支持。

(2)光学法光学法是指利用光学原理对结构的变形情况进行监测。

常用的光学监测方法包括全站仪法、激光扫描法等。

这些方法可以对结构的变形情况进行高精度的测量,特别是在对大型结构的监测方面具有很大的优势。

(3)电子法电子法是指利用电子设备对结构的变形情况进行监测。

常用的电子监测方法包括应变测试法、静电监测法等。

这些方法可以实现对结构变形情况的实时监测,为工程的安全运行提供可靠的数据支持。

(4)声学法声学法是指利用声学原理对结构的变形情况进行监测。

常用的声学监测方法包括超声波监测法、声发射监测法等。

这些方法可以在不破坏结构的情况下对其变形情况进行监测,为工程的健康状态提供重要的数据支持。

2.2 动态监测方法动态监测方法主要包括振动监测法、应变测试法等。

(1)振动监测法振动监测法是指通过振动传感器对结构的动态响应进行监测。

地铁工程变形监测方案

地铁工程变形监测方案

地铁工程变形监测方案一、项目概述地铁工程建设是城市交通发展的重要组成部分,也是大型公共基础设施建设的关键项目。

在地铁建设和运营过程中,地铁隧道、车站和地下结构的变形监测是一项十分重要的工作。

通过对地铁工程的变形进行定期监测和分析,可以及时发现和处理潜在的安全隐患,保障地铁工程运营的安全和稳定。

本文将就地铁工程变形监测的方案进行详细介绍,包括监测的对象、监测的内容、监测的方法和技术手段等方面,旨在为地铁工程建设和运营提供科学、可靠的变形监测方案。

二、监测对象地铁工程的变形监测对象主要包括地铁隧道、车站和地下结构。

地铁隧道是地铁线路的主要组成部分,其稳定性直接关系到地铁运行的安全和顺畅。

地铁车站是地铁线路的重要节点,其安全稳定性对地铁的客流量和运营效率有着重要的影响。

地下结构主要包括隧道周边的地基土体和基础设施,其变形状态直接关系到地铁工程的整体安全。

三、监测内容地铁工程的变形监测内容主要包括地表沉降、隧道变形、地下水位变化、地铁结构振动等多个方面。

其中,地表沉降是地铁工程建设过程中常见的问题,其变形监测能够及时发现并处理地表沉降造成的安全隐患。

隧道变形是地铁工程变形监测的重点内容,主要包括隧道的收敛变形、开挖变形、压裂变形等多种形式。

地下水位变化是地铁工程变形监测的重要内容之一,其变形监测能够及时发现并处理地下水位引发的地铁工程漏水等安全隐患。

地铁结构振动是地铁运营期间的变形监测内容,主要包括地铁列车行驶和乘客运营等因素引发的地铁结构振动。

四、监测方法地铁工程变形监测的方法主要包括传统监测方法和新兴监测技术两种。

传统监测方法主要包括地表测点监测、隧道地表沉降观测、地下水位监测等。

新兴监测技术主要包括遥感监测、激光测量、地面雷达等技术手段,这些技术手段能够较好地实现地铁工程变形的实时监测和分析。

五、监测技术手段地铁工程变形监测的技术手段主要包括监测系统、传感器设备、数据处理软件等多个方面。

监测系统是地铁工程变形监测的基础设施,其能够通过监测点布设和数据采集实现对不同变形内容的监测。

变形监测

变形监测

中 国 矿 业 大 学
测量原理
探头内的感应电路在探头接近感应环时,将引起蜂鸣器报警 ,并使指示器上指针偏转。当指针达到蜂值,即探头中心正好对 准感应环时,利用电缆和标尺上的刻度,便可测得探头中心所在 的深度。根据一定时间间隔内前后两次的测量结果,可计算出不 同深度(感应环所在位置)岩层的垂直位移以及每一段内岩层的 竖向伸长或压缩量。为获得绝对的位移值,至少应有一个感应环 (如孔底附近)埋在稳定岩石中,或者有一个感应环(如孔口附 近)用其它方法测得绝对位移值。
3.1 岩体内部下沉测量(钻孔伸长仪)
安装好的下沉测量系统如图所示。
1-基准架;2-读数装置、卷缆轮;3-水泥浆;
4-充填砂浆;5-用粘结剂和胶带密封的感应环; 6-感应环;7-倾斜仪套管接头;8-倾斜仪套管; 9-注浆阀门;10-重锤;11-探头; 12-用粘结 剂和胶带密封的软管接头;13-用尼龙丝或胶带夹 固定的软管接头; 14-固定在刚性管上的软管末端。
点云数据
特征线提取 两次特征线比较
最终变形数据
中 国 矿 业 大 学
实例:焦炉和烟囱变形监测的扫描数据
1号焦炉点云数据 2号焦炉点云数据
点云数据截面截取 中 国 矿 业 大 学
截取后的点云数据和特征 线数据
3 岩体内部观测系统
岩层内部观测站测点一般布设在岩层内部的钻孔中,用于研究 岩层内部的移动和变形规律。
指标
扫描距离 距离测量精度 单点定位精度
数值
最远350m 7mm@100m 6mm@50m,12mm@100m
激光波长
扫描范围
脉冲532 nm
360° x 60° 连续扫描
中 国 矿 业 大 学
2.3三维激光扫描技术的特点

变形监测方案

变形监测方案

变形监测方案近年来,随着建筑物、桥梁和其他工程结构的不断发展,对变形监测的需求也日益增加。

变形监测可以帮助工程师评估结构的稳定性和安全性,并在需要时采取必要的维修或加固措施。

为了设计一个有效的变形监测方案,工程师需要考虑多个因素,包括监测传感器的选择、数据采集和分析方法以及监测周期等。

一、传感器选择在变形监测方案中,传感器的选择至关重要。

传感器应具备高精度和高灵敏度的特点,能够准确测量结构的各种变形参数,如位移、应变、变形速度等。

目前市场上常见的变形监测传感器包括激光位移传感器、应变计、形变计等。

应根据具体实际情况选择适合的传感器,并考虑传感器的可靠性、易用性和经济性。

二、数据采集和分析变形监测不仅需要实时监测结构的变形情况,还需要对数据进行采集和分析。

数据采集可以通过有线或无线方式进行,具体采集方式应根据监测目标的位置和结构特点来确定。

同时,数据采集周期也很重要,应根据工程结构的特点和使用情况,合理确定数据采集的时间间隔。

采集到的数据需要进行处理和分析,以便获取有用的监测信息。

工程师可以采用数据统计和可视化分析等方法,快速识别结构的变形特点,并作出相应的判断和决策。

三、监测周期结构的变形监测通常需要长期持续的观测,以便及时发现和解决可能的问题。

因此,监测周期的确定也是设计变形监测方案时需要考虑的因素之一。

监测周期的选择应基于结构的类型和用途,以及预期的变形情况。

例如,对于高层建筑或大型桥梁等重要结构,监测周期可以设置为每年或每季度进行一次。

而对于一般住宅或小型工程结构,则可以适当延长监测周期,如每两年或每三年进行一次。

四、应急响应和维护措施即使设计了合理的变形监测方案,也不能完全排除不可预见的意外事件。

一旦发生结构变形超过安全范围的情况,工程师需要及时采取应急响应和维护措施,以保证结构的安全性。

如需进行加固或维修,应制定详细的方案,并按照相关的工程标准和规范进行操作。

同时,监测数据也可以为应急响应提供依据,帮助工程师准确评估结构的损伤程度和维修策略。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

基坑变形监测计算程序(64~85次)

基坑变形监测计算程序(64~85次)

监测次数(次)
74
75
76
77
78
79
80
81
82
83
84
85

量:
云南城市建设工程咨询有限公司

量:

算:

对:

云南城市建设工程咨询有限公司
仅供参考!编者对计算错误不承担责任!
基坑位移量变化趋势(测点)
本期垂直位移
1.0 0.9 0.8 0.7
累计垂直位移
累计平面位移
本期竖向位移
累计竖向位移
位移量(mm) 【13033375702】
0.6
0.5
0.4 0.3 0.2 0.1 0.0 64 65 66 67 计 68 算: 69 70 71 校 72 对: 73
平面位移 垂直位移 平行位移 竖向位移 平面位移 垂直位移 平行位移 竖向位移


说明:本期位移是相对于测点期初位置的位移,累计位移是相对于测点原始位置的位移。平面位移是测点在水平面上的位移,正值表示指向基坑内;垂直位移是测点的平面位移在垂直 于基坑边的位移分量,正值表示指向基坑内;平行位移是测点的平面位移在平行于基坑边的位移分量,正值表示指向B端点;竖向位移是测点在竖直方向的位移,正值表示向下。
警戒值(mm):位移量:
沉降量:
基 坑 位 移 量 计 算
A点(m)
XA YA
工程名称 监测部位 日 期
间隔 累计 测 时间 时间 次
B点(m) XB YB
测点到直线AB的距离 本期位移量(mm)
测点(m) X0 Y0 A端点到过测点与AB垂线的距离 累计位移量(mm)
高程 H0(m)
X
Y
H
63 64

建筑物变形监测方案

建筑物变形监测方案

建筑物变形监测方案建筑物的变形监测是一项重要的工作,可以帮助我们了解建筑物的变形情况,及时发现并解决建筑物的结构问题,确保建筑物的安全可靠。

本文将针对建筑物变形监测方案进行详细阐述。

首先,建筑物变形监测需选择合适的监测方法。

目前常用的建筑物变形监测方法主要有全站仪测量法、激光测距法、GPS测量法、遥感测绘法等。

需要根据建筑物的具体情况选择合适的监测方法。

比如,对于高层建筑物,可以使用全站仪测量法,其具有高精度的优点;而对于广域建筑物,可以使用GPS测量法,其具有范围广、实时性强的优点。

其次,建筑物变形监测需确定合适的监测网点。

监测网点应根据建筑物的结构形式和变形特点来确定,一般要在建筑物的边缘、节点、重点部位等位置设置监测点。

同时,还需考虑监测点的数量和布置方式,一般来说,监测点的数量应根据实际需要来确定,且布置要均匀,以获得更准确的变形监测数据。

再次,建筑物变形监测需进行数据采集和处理分析。

数据采集可以通过定期对监测点进行测量来实现,采集的数据可包括建筑物的位移、变形速率等信息。

采集到的数据需要进行处理和分析,可以使用专业的建筑物变形监测软件进行数据处理,以获得准确的结果。

同时,根据分析结果可以判断建筑物的变形情况,及时发现并解决建筑物的结构问题。

最后,建筑物变形监测需定期进行监测报告的编制。

监测报告是对建筑物变形监测工作的总结和分析,要包括建筑物的变形情况、变形原因、变形趋势、结论和建议等内容。

监测报告可以帮助相关人员了解建筑物的变形情况,及时采取相应的措施保障建筑物的安全。

综上所述,建筑物变形监测方案应选择合适的监测方法,确定合适的监测网点,进行数据采集和处理分析,并定期进行监测报告的编制。

这样可以提高建筑物变形监测的准确性和有效性,确保建筑物的安全可靠。

变形监测方案

变形监测方案

变形监测方案第1篇变形监测方案一、概述本方案旨在对某特定区域或结构进行精确、高效的变形监测,以确保其安全性及功能性。

通过采用先进的技术手段和严谨的数据分析方法,实时掌握监测对象的变形情况,及时预警潜在风险,为决策提供科学依据。

二、监测目标1. 准确测量监测对象的变形量,包括水平位移、垂直位移、倾斜等;2. 实时掌握监测对象的变形速率,分析变形趋势;3. 及时发现监测对象的异常变形,预警潜在风险;4. 为政府部门、企业及相关单位提供科学、可靠的监测数据。

三、监测方法1. 地面测量法:采用全站仪、水准仪等设备,对监测对象的水平位移、垂直位移进行定期测量;2. 空间测量法:利用GNSS技术,对监测对象的水平位移进行实时测量;3. 倾斜测量法:采用倾斜仪等设备,对监测对象的倾斜角度进行定期测量;4. 远程监测法:利用摄像头、无人机等设备,对监测对象进行远程监控,实时掌握其变形情况。

四、监测设备与参数1. 全站仪:用于测量监测对象的水平位移、垂直位移;- 精度要求:±(2mm+2ppm);- 测量范围:≥5km;2. 水准仪:用于测量监测对象的垂直位移;- 精度要求:±0.5mm;- 测量范围:≥3km;3. GNSS接收机:用于实时测量监测对象的水平位移;- 精度要求:±(10mm+1ppm);- 测量范围:全球范围;4. 倾斜仪:用于测量监测对象的倾斜角度;- 精度要求:±0.01°;- 测量范围:±45°;5. 摄像头/无人机:用于远程监控监测对象。

五、监测数据处理与分析1. 对采集到的数据进行预处理,包括数据清洗、数据校准等;2. 采用加权平均法、最小二乘法等方法,对监测数据进行处理,计算监测对象的变形量;3. 分析监测对象的变形趋势,评估其稳定性;4. 结合历史数据和实时数据,预测监测对象的未来变形情况;5. 当监测对象的变形量超过预警阈值时,及时发布预警信息。

基坑变形监测方案

基坑变形监测方案
3.监理单位:负责监督监测工作的实施,审核监测报告,督促施工单位采取相应措施。
4.设计单位:负责对监测数据进行审查,根据监测结果调整设计及施工方案。
九、其他
1.本方案未尽事宜,依据相关规范、设计文件及施工合同执行。
2.本方案经各方签字盖章后生效,修改、补充须书面同意。
3.各方应严格按照本方案要求,切实履行职责,确保基坑工程安全。
五、监测点布置
1.地表沉降监测点:沿基坑周边及影响范围内布置。
2.围护结构顶部水平位移监测点:布置在围护结构的关键部位。
3.围护结构深层水平位移监测点:布置在围护结构的关键深度位置。
4.支撑轴力监测点:根据支撑的分布情况合理布置。
5.地下水位监测点:布置在基坑周边及关键区域。
6.相邻建筑物及地下管线变形监测点:根据其位置及影响范围进行布置。
(4)支撑轴力监测;
(5)地下水位监测;
(6)相邻建筑物及地下管线变形监测。
四、监测方法及设备
1.地表沉降监测:采用水准仪、全站仪等设备,按照二等水准测量要求进行。
2.围护结构顶部水平位移监测:采用全站仪,按照三等导线测量要求进行。
3.围护结构深层水平位移监测:采用测斜仪进行。
4.支撑轴力监测:采用应变计或轴力计进行。
第2篇
基坑变形监测方案
一、前言
基坑工程作为建筑工程中的重要组成部分,其稳定性直接关系到整个工程的安全。为保障施工过程中基坑的稳定性,预防安全事故的发生,特制定本基坑变形监测方案。本方案依据《建筑基坑工程监测技术规范》等相关国家标准和规范,结合项目具体情况进行编制。
二、监测目标
1.实时掌握基坑在施工过程中的变形动态,确保施工安全。
1.监测成果包括:监测数据、分析报告、预警记录等。

建筑工程中的变形监测与预警

建筑工程中的变形监测与预警

建筑工程中的变形监测与预警建筑物是人们生产、学习、生活的场所,其安全性和稳定性都至关重要。

然而,由于各种自然和人为因素的影响,建筑物在使用过程中会出现一定的变形。

因此,对于建筑工程中的变形监测与预警进行科学合理的研究,具有非常重要的现实意义。

一、变形监测的定义和必要性变形监测指的是对建筑物在使用过程中可能发生的形变量进行实时或定期检测,并对数据进行分析、处理和评估的一系列工作。

建筑工程中的各种变形类型比较多,如位移、沉降、变形、裂缝等。

因此,建筑物变形监测是为了尽早发现、预测和解决建筑物变形问题,确保其在使用过程中的安全性和稳定性。

变形监测在建筑工程中的必要性是不容忽视的。

一方面,监测可以及时了解建筑物的实际情况,提高建筑物耐久性和安全性,减少灾害事故的发生。

另一方面,监测数据可以为建筑物的后期改造、加固、维修提供准确的依据,减少对业主、施工单位和设计单位的争议和纠纷。

二、建筑物变形监测的方法建筑物的变形监测方法通常可划分为静态监测和动态监测两种。

静态监测是指通过在建筑物表面或结构体内设置传感器、测量仪器等实时掌握建筑物的形变量的变化。

静态监测是目前广泛应用的一种监测方法,这种方法的特点是准确、数据传递简单。

动态监测是指通过仪器等手段实时或定期地对建筑物进行振动、波动等的监测。

这种方法对于对建筑物在强震、雷击等自然灾害下的响应和反应进行评估和预警具有非常重要的作用。

三、变形监测的数据处理和分析方法变形监测所得到的数据必须经过一系列的处理和分析,以得出结论和判断。

数据处理和分析方法的基本步骤包括数据收集、数据处理、数据分析和结论判断。

它们具体的内容包括如下几个方面:1. 数据收集:收集数据,存储数据和分析数据是变形监测的核心。

数据的获取方式通常包括激光测距、光学测量和电子测量。

2. 数据处理:建筑物变形监测所得到的数据必须要进行处理和过滤。

例如,对于线性变形的数据,我们可以采用一些数据平滑或拟合方法来消除其荷载效应和温度效应。

结构施工过程中的几何构造变形监测与预警

结构施工过程中的几何构造变形监测与预警

结构施工过程中的几何构造变形监测与预警结构施工过程中的几何构造变形监测与预警对于保障工程质量和安全至关重要。

通过准确而及时的监测与预警,能够在结构变形超出允许范围之前采取合适的措施进行修正,避免发生事故,保障工程施工质量和人员安全。

本文将介绍几何构造变形的监测方法和预警机制,并以实际案例为例,探讨其在结构施工中的应用。

一、几何构造变形监测方法1. 综合测量法综合测量法是最常用的几何构造变形监测方法之一。

通过使用测量仪器,如全站仪、水平仪等,对结构的各个部位进行定位测量,并将测得的数据进行分析和比对,以获得结构变形情况。

这种方法具有测量精度高、数据可靠等优点,可以及时监测结构的几何构造变形情况。

2. 网络形变监测法网络形变监测法是一种基于传感技术的几何构造变形监测方法。

通过在结构表面或内部布设传感器,如应变计、位移传感器等,实时感知结构的形变情况,并将数据传输到监测系统进行分析和处理。

这种方法能够对结构的微小变形进行监测,并能够及时预警潜在安全隐患。

3. 影像监测法影像监测法是一种通过摄像机或无人机等设备获取结构图像,并利用图像处理算法对结构变形进行分析和识别的监测方法。

这种方法具有监测范围广、成本低廉等优点,可以实时、非接触地获得结构的变形信息,为几何构造变形监测提供了一种新的思路和方法。

二、几何构造变形预警机制为了能够及时预警结构变形超出允许范围,保障工程质量和安全,需要建立几何构造变形的预警机制。

预警机制主要包括预警指标的设定、预警标准的制定以及预警信息的传递等环节。

1. 预警指标的设定预警指标是对结构变形状态的判别标准,通过设定合适的预警指标能够判断结构是否存在异常变形,从而及时采取措施进行修正。

预警指标的设定需要参考相关规范和工程经验,综合考虑结构的具体情况和施工要求。

2. 预警标准的制定预警标准是对预警指标的具体数值设定,通过将预警指标与设定的标准进行比较,能够及时判断结构变形是否达到预警状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观测内容
岩基上的混凝土坝 压缩土上的混凝土坝
土坝施工期间 土坝运营期间
沉陷量/mm
1 2 10 5
水平位移/mm
1 2 5~10 3~5
二、观测的周期
定量: t1 t2 t
X1 X2 X X 2 X1
内外方位元素变化,像点坐标测得为 x , z.
x x a0 a1x a2z z z b0 b1x b2z
对于控制点 x= 1 X z= 1 Z
M
M
参考点 x=0,z=0
可解算系数 ai , bi ,
n个控制点列误差方程
(x1 x1 ) V1 a0 a1x1 a2 z1 (x2 x2 ) V2 a0 a1x2 a2 z2
变形监测方法及计算
[教学目的]:使学生了解和掌握变形观测技术 方法及变形观测方案的设计.
[教学重点]:1.变形观测方法 2.变形观测方案的设计.
[教学方法]:讲授
§1.1 变形监测技术
一、变形监测的定义及意义
变形监测 是对被监视的对象(变形体)进行测量以确定其 空间位置随时间的变化特征。 为变形分析和预报提供基础数据。
变形体:工程建筑物、技术设备以及其他自然或人工对象。
如:古塔与电视塔、桥梁与隧道、船闸与大坝、 大型天线、车船与飞机、油罐与贮矿仓、 崩滑体与泥石流、采空区与高边坡、 城市与灌溉沉降区.
变形观测意义:
对于工程建筑物:为改善建筑物理参数、地基强 度参数提供依据,防止工程破坏事故,提高抗灾 能力。
差异沉降量是两次高差之差,而高差又是两点高程之差,
则任一测点高程中误差为
mH

m差×
1× 2
1 2
=1.2mm
又如:某建筑物高24m,允许倾斜值为:δ=0.004Hg=96mm
设倾斜是平移和沉降共同作用,影响相等,则允许的平移
值为 平移 = 1
=68mm
2
则:
m平移
=
1 10

平移
=6.8mm
(三)摄影测量方法
1.应用: 地面摄影测量方法越来越广泛用于大型工程建筑物的变形
观测。
大型的工程建筑物:混凝土大坝、档土墙、高层建筑物等。
空中摄影测量也有用于较大范围的地面变形测量。
如:测定由于地下采矿而引起的地表移动. 由于火山喷发而致的环境变化
2.优点:
……
①可同时测定变形体的任何变形
②提供完全和瞬时的三维空间信息
1、沉降测量:液体静力水准测量法
b1
a1 H1
A
b2
a2
H2
B
hAB
hAB H1 H2 (a1 b1) (a2 b2 ) a1 a2 (b1 b2 ) ①
hA B

H1

H

2

(a2
b2)
(a1
b1)

a2

a1
(b2
b1)

一般:
变形目的是安全监测:观测误差 <(1/10~1/20)允许变形值
变形目的是研究变形过程:以最高的精度进行变形观测
如:某建筑物为框架结构,基础土层为高压缩土,相邻两沉
降观测点的距离 l 8m,两点差异沉降量的允许值为
δ=0.003l=0.003×8=24mm
两点差异沉降量的观测中误差取为 m差异=1/10δ=2.4mm
2.空间后交—前交法
z z0

f
a13( X A a12 ( X A

X S ) a23(YA X S ) a22 (YA
YS ) a33(ZA YS ) a32 (ZA
ZS) ZS )
3.严密解法 4.直接线性变换法
( x1

x10 )
Vx1

x1 X A
变形监测方案的制定包括以下几个方面: ①变形观测的精度 ②变形观测的周期 ③变形观测的内容 ④变形观测的方法(监测网布置、观
测点布置……) ⑤变形观测的成本
一、变形观测的精度确定
典型精度1mm或相对精度为10-6, 制定变形观测的精度取决于变形的大小、速率、仪器和
方法所能达到的实际精度,以及观测目的等。
坐标仪量测的坐标值 像片坐标
x L1X L2Y L3Z L4 L9 X L10Y L11Z 1
z L5 X L6Y L7Z L8 L9 X L10Y L11Z 1
像方空间坐标
§1.2 变形监测方案
变形监测方案的制定影响到:观测的成本 成果的精度和可靠性
a
Z M z
S
X
精度:
mX X
( mY Y
)2
( mx x
)2
(mf f
)2

M
mx
设 x x a0 a1x a2z
mZ

Z z
mz

M
mz
参考点使用:设内外方位元素不变,第2次
z z b0 b1x b2z
摄影时像点坐标为x’,z’;
l ab sin
S
a A
P l
b
B
ml

abm
S
cos
S
④激光经纬仪准直和波带板激光准直法
l S BB
L
A
L
S
l
B
激光点光源、波带板装置、光电探测器
B
⑤引张线法
1 2… … n
A
B
三测回平均值中误差0.03mm
二维水平位移: ①极坐标法
②导线法
③前方交会法
④单三角形
l
2、应变测量:设两点间距离为 l ,第二周期测量时距离变化了l
那么 l l 为两点间平均线应变.当 l 与变形

体尺寸比很小时,则 l l 看成为点应变.

离 变 化
测 l 有机械法:用因瓦丝、石英棒等作为长度的标准.长
度的变化用机械—电子传感器测量;

精度:几十个微米

干涉法:激光干涉法可测到几百米,甚至几千米.

XA

x1 YA
YA

x1 Z A
ZA
左 像
( z1

z10 )
Vz1

z1 X A

XA

z1 YA
YA

z1 Z A
ZA

( x2
x20 ) Vx2

x2 X A
XA

x2 YA
YA

x2 Z A
ZA
右 像
( z2
z20 ) Vz2
my

m S

n(n 2)[n(n 2) 2] 48(n 1)
尼龙绳准直的精度受①观测仪器误差②读数误差影响③气流的影响
钢丝准直:引张线,直径1mm,10~50kg拉力拉紧钢丝. 装置:端点,观测点,钢丝和保护管. 设置浮托装置
A
B
三测回观测平均值精度:0.1 ~ 0.3mm
垂直测量:
(xn xn ) Vn a0 a1xn a2 zn
地面立体摄影测量的解析处理方法有:
1.空间前方交会法
x x0

f
a11( X A X S ) a21(YA YS ) a31(ZA ZS ) a12 ( X A X S ) a22 (YA YS ) a32 (ZA ZS )
ab
如果逐次观测三个点的偏离值,每次推进一个点,两个点重叠起连
接作用,这样可按连接支导线计算导线各中间点相对于闭合边的偏离值。
尼龙绳准直测量的精度分析
m2
m2V

1 4
m2V

1 4
m2V
1.5m2V
m
1.22mV
m2

2m S


2.44mV S

连接支导线中点(最弱点)的准直精度可用下式估算:
缺点:外业工作量大,作业时间长,不易实现连续监测和测量过程自动化.
沉降:几何水准测量(H) 位移:一维水平位移(X或Y)
二维水平位移(X Y) 倾斜:i 挠度
一维水平位移:
①测小角法
P
l S
A
l
S
B
ml

m

S
l l l0
②活动觇牌法 ③控制线法
l 0 l l l0
方向性强,直接准直 如:激光经纬仪准直
激光准直
单色性好,衍射准直 如:波带极激光准直
尼龙丝准直:尼龙丝直径0.3mm,施加1.5kg拉力
系统包括:尼龙丝拉紧装置和一个对中的读数显微镜
原理:
a
b
V1
V2
V3


V2

V1

V3 a
V1 b

a
1

2

180 (a b)
观测范围 1°
如应用于设备基础平台的倾斜观测。
r
3.差动电容式电子水准器
12
C1 C2
Z1 x Z2
3
形成差动电容装置
R载
高频交流电压 C1C2构成桥路两臂
Z1Z2为阻抗
R载为负载电阻
工作原理:当玻璃管水准器倾斜时,气泡向旁边偏离x, 使C1C2中介质的介电常数发生变化,引起桥路两臂的电抗发生 变化,因而桥路失去平衡,可用测量装置将其记录下来。这种 电子水准器可固定地安置在建筑物或设备的适当位置,就能自 动地进行倾斜观测。适用于作动态观测,m倾斜=0.2,范围200.
相关文档
最新文档