气体辅助注射成型的快速冷却新技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体辅助注射成型的快速冷却新技术
Seong-Yeol Han a,∗, Jin-Kwan Kwag b, Cheol-Ju Kim b, Tae-Won Park c,
Yeong-Deug Jeong d
a Graduate School of Precision Mechanical Engineering, Pukyong
NationalUniversity, Busan, South Korea
b NARA M&D Co., Ltd, 50-1, Changwon, Gyeong Nam, South Korea
c Department of Computer Aide
d Di
e and Mold, Changwon Polytechnic College,
Changwon, Gyeong Nam, South Korea
d School of Mechanical Engineering, Pukyong National University, Busan, South Korea
摘要:气体辅助注射成型技术(GAIM)是传统注射成型技术的发展和演变,是一种用以成型中空塑件产品的工艺。气体辅助注射成型技术相对于传统的注射工艺有许多优势,如可以减少原料,减少凹痕和翘曲的产生,降低注射压力等。因此,气体辅助注射成型技术已被广泛用于工业生产成型中空塑件(如把手、电视显示器框架等)的模具。当然,气体辅助注射成型技术存在一些不足之处,如冷却时间长和易产生流动痕,冷却时间长主要是由于模具成型过程中向型腔注入气体导致散热困难,有时甚至会产生后翘曲现象。
为了解决这些问题,我们开发了一种新型的气体辅助注射成型技术——逆向气体辅助注射成型技术(RGIM)。逆向气体辅助注射成型技术主要有两个特殊的单元,一个是过溢料冲区单元,溢料缓冲区主要是用以减少原料。另一个是空气单元,空气单元主要用以模具的快速冷却。通过许多基于数值计算的实验和CAE分析得出了逆向冷却注射成型技术的冷却效率大约比气体辅助注射成型技术的冷却效率提高50%。
关键字:气体辅助注射成型;逆向气体辅助注射成型;空气单元;溢料缓冲区1.气体辅助注射成型技术的背景
由于注射成型能够将原料注射到模具中并经过单一的工艺过程生产大量的塑胶产品,所以注射成型已经成为工业生产塑胶制品的重要工艺[1]。根据Rosato 的统计,大约有32%的塑胶产品是由注射成型工艺生产的[2]。注射成型技术已经广泛用于生产日常塑料用品和一些商业产品。
近年来,由于气体辅助注射成型被广泛用以生产中空的塑料产品,使得气体辅助注射成型技术成为注射成型的一大革命[3,4]。气体辅助注射成型技术已经发展25年了,它最原始的想法是来自于广泛用以生产瓶子和一些相对比较小的中空塑件的吹塑成型工艺。这种利用压缩气体注射成型技术第一次被用于商业化生产是由Friederich发明的,该专利于1978年7月18日在美国发表,专利号为4101617。Friederich的专利解决了利用注射模具生产带有中空塑件的实现难题[5]。
在气体辅助注射成型技术发展的前些年,用来生产薄壁塑件的结构发泡技术引起了工业生产的特别关注。利用结构发泡技术生产的塑件与注射成型技术生产的塑件比具有质量轻、表面光洁度好、缩痕少等优点。在最近这些年,工业生产的注意力已经转向了气体辅助注射成型技术,气体辅助成型技术能提高塑件的质量,缩短生产周期,提高生产率,节约原料和降低合模压力。在注射成型工艺
中气体辅助注射技术的合理应用能生产出具有表面质量好、翘曲变形量小、质量轻等优点的塑件。
气体辅助注射成型可分为短射(short shot)和满射(full shot)两种形式。短射主要可分为三个简单的过程,短射时先向型腔注入部分树脂(一般只充入型腔体积750%
98%),一个短暂的延时后在树脂中心注入压缩气体,靠压缩气
~
体的压力推动树脂充满整个型腔。下一步利用气体的压力保压,直到树脂固化,然后排出气体,获得一空心的塑件[6]。短射适用于厚壁的充模阻力不大的塑件,特别是手把之类的棒状制件,可节省大量的原材料。然而,当气体注入太晚或最初气体压力太低时容易产生明显的表面缺陷和变形[7]。另一种就是满射,满射是指在树脂完全充满型腔后才开始注入气体。在一段预设的延时期后,第一阶段的气体开始注入。当树脂开始冷却时,厚壁处的树脂由于冷却收缩而让出一条流动通道,第二阶段的气体开始注入,气体沿着通道进行二次穿透,可以弥补塑料冷却时的收缩。在树脂内部的气压式一致的,在开模之前,模具内的气体将会被抽空或回收,树脂在喷嘴停止注射并且浇口处的树脂凝固后由于气体的保压作用开始回填。满射主要应用于薄壁的充模阻力较大的塑件。当树脂内部还是熔融态时,气体开始沿着厚壁阻力最小的地方填充,而这些被推动的熔融树脂必定会从型腔流动到其他地方,这个地方称之为完全浪费塑料的溢料缓冲区[5]。
以上两种气体辅助注射成型的形式仍然存在一些缺点,比如当模具内部填充满高压气体时,气体与树脂的接触表面容易变得粗糙,还有喷嘴设计的局限性和模具冷却时间长。在这些缺点中,冷却时间长是影响塑件制造周期的最重要因素。一个空心塑件内部温度的上升主要由于气体的注入引起的,气体的注入导致塑件散热缓慢,这些塑件空心处的热气体相当于热的型芯而导致模具冷却缓慢。因此,气体辅助注射成型的生产周期将被延长。
2.逆向气体辅助注射成型技术(RGIM)
在传统的气体辅助注射成型中,塑件上的畸形缺陷必须去除,注射模的塑料越减越少。为了达到快速冷却,中空塑件的内部相当于热型芯的气体也必须尽快排出。为了满足这些要求,我们研究出一种新的气体辅助注射成型技术——逆向气体辅助注射成型技术,该技术已经在韩国申请了专利,专利号为0286015。逆向气体辅助注射成型包括两个特殊的单元,一个是空气单元,另一个是溢料缓冲区单元。空气单元主要用以气体的注入和排出中空形状中的气体,溢料缓冲区单元主要用以减少原料。图1所示为逆向气体辅助注射成型系统的基本原理。