试验统计方法习题答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由25个平均数构成的新总体平均数与方差:
my =
2 sy=
邋f y / 邋f y - (
2
f = 75 / 25 = 3 f y)2 / f f 250 - 752 / 25 = = 1.0 25
å
⑷ my = m = 3
2 s y = s 2 / n = 2 / 2 = 1.0
⑸ 平均数分布的方柱形图作正态分布。
µ = p = 0.75
σ 2 = pq = 0.75 × 0.25 = 0.1875
P72/4 非糯稻:Np=2000×0.75=1500;糯稻:Nq=2000×0.25=500 调查单位为5株的概率分布表(p=0.75,q=0.25,n=400)
受害株数 概率函数P(y) P(0) P(1) P(2) P(3) P(4) P(5)
y = ∑ y / n = (37 + 46 + L + 34) /100 = 3485 /100 = 34.85 S= y 2 − (∑ y ) 2 / n ∑ n −1 37 2 + 462 + L + 342 ) − 34852 /100 = = 3.22 100 − 1
加权法: 加权法:
y = ∑ fy / ∑ f = (2 × 26 + 7 × 29 + L + 1× 47) /100 = 3467 /100 = 34.67 S=
1
2
2.218 2.218 = + = 1.14 4 3
P47/1 (1)总体是指所研究的金针虫 金针虫总体; 金针虫 (2)样本是指从金针虫总体中随机抽取的6个个体 个个体组成的 个个体 样本; (3)变数是指金针虫的头数 头数; 头数 (4)观察值是指变数的6个取值 个取值为6个观察值。 个取值
P47/2 极差=46-26=20;组数=7;组距=20/7=2.8571≈3
⑵ mpˆ = m = 0.5
mnp = nm = 4? 0.5 ˆ
2.0 s np = ˆ
4创0.5 0.5 = 1.0
P97/4
15 = = 3.75 ⑴ σy = 16 n y − 140 = ±2.58 3.75 y < 130.325 或
σ
u0.01 = 2.58 y 2 = 149.675
100个小区水稻产量资料的次数分布表 个小区水稻产量资料的次数分布表
组 限 24.5 —27.5 27.5 —30.5 30.5 —33.5 33.5 —36.5 36.5 —39.5 39.5 —42.5 42.5 —45.5 45.5 —48.5 组中值(y) 组中值( ) 26 29 32 35 38 41 44 47 │ 1 ║ ╫╫ ║ ╫╫ ╫╫ ╫╫ ╫╫ ║║ ╫╫ ╫╫ ╫╫ ╫╫ ╫╫ ╫╫ ╫╫ ╫╫│ ╫╫ ╫╫ ╫╫ ╫╫│ ║║ 划线计数 次数(ƒ) 次数( ) 2 7 24 41 21 4
y1 = 130.325 y > 149.675
15 = = 1.50 ⑵ σy = n 100
σ
u0.05 = 1.96 y 2 = 102.94
y − 100 = ±1.96 y1 = 97.06 1.50 y < 97.06 或 y > 102.94
P97/5
H0 : µ = 2.50 H A : µ ≠ 2.50
2 σ p = pq / n = 0.75 × 0.25 / 5 = 0.0375
样本总和数(次数)的抽样分布:
µnp = np = 5 × 0.75 = 3.75
2 σ np = npq = 5 × 0.75 × 0.25 = 0.9375
P73/6 ⑴ p(u ≥ 1.17) = 1 − p(u = 1.17) = 1 − 0.8790 = 0.1210 ⑵ p(u ≤ 1.17) = 0.8790 ⑶ p(u ≤ −1.17) = 0.1210 ⑷ p(0.42 ≤ u ≤ 1.61) = p(u = 1.61) − p(u = 0.42)
p(u ? 2) = 0.0228 p( y ? 20) 1- p(u = 2) = 1- 0.9772 = 0.0228
⑶ p( u ? u1 ) 0.50
y - 16 ? 0.6745 y1 2
u = 0.6745 14.65 y2 = 17.35 u = 1.96 12.08 y2 = 19.92
= 0.6628 − 0.0537 = 0.6091
⑺ p( u ≥ 1.05) = 1 − [ p(u = 1.05) − p(u = −1.05)]
= 1 − (0.8531 − 0.1469) = 0.2938 p ( u ≥ 1.05) = 2 × p (u = −1.05) = 2 × 0.1469 = 0.2938
= 0.9463 − 0.6628 = 0.2835
⑸ p(−1.61 ≤ u ≤ −0.42) = p(u = −0.42) − p(u = −1.61)
= 0.3372 − 0.0537 = 0.2835
⑹ p(−1.61 ≤ u ≤ 0.42) = p(u = 0.42) − p(u = −1.61)
⑷ p( u ? u1 ) 0.95
y - 16 ? 1.96 y1 2
P73/8
N=5,n=2
⑴ N n = 52 = 25 ⑵ m = (1 + 2 + 3 + 4 + 5) / 5 = 3
s2= s = y2 - ( 邋 N s2 = 2.0 = 1.414 y)2 / N 55 - 152 / 5 = = 2.0 5
S2 CV2 = ×100% = 3.399/ 20 ×100% = 16.99% y2
P47/7 10株小麦的分蘖数为:3,6,2,5,3,3,4, 3,4,3。 n=10,y3=2,y7=4,y2-1=y1=3,y2–1=6–1=5 P47/8
y = (3 + 6 + L + 3) /10 = 36 /10 = 3.6
P47/3 ⑴
45 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8
100个小区水稻产量资料的方柱形图
⑵
45 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8
100个小区水稻产量资料的多边形图 100个小区水稻产量资料的多边形图
P47/4 直接法: 直接法:
p (1 ≤ y ≤ 9) = 0.9
⑵ p[(2 ≤ y ≤ 4)或(6 ≤ y ≤ 8)]
= p (2 ≤ y ≤ 4) + p (6 ≤ y ≤ 8) = 0.3 + 0.3 = 0.6 8 2 ⑶ p[(2 ≤ y ≤ 4)与(3 ≤ y ≤ 7)] = × = 0.2 10 8 5 2 p (奇数) × p (被3整除) = × = 0.2 10 5
n 100 fd ′2 − (∑ fd ′) 2 / n n −1 123 − (−11) 2 /100 ×i = × 3 = 3.33 100 − 1
∑
P47/6
R BS24: 1 = 22 − 18 = 4 y1 = ∑ y1 / n1 = (19 + 21 + L + 19) /10 = 20 S1 = y12 − (∑ y1 ) 2 / n1 ∑ n1 − 1 4014 − 2002 /10 = = 1.247 10 − 1
0.40 5.84 35.16 105.48 158.20 94.92 400.00
C52 × 0.752 × 0.253
3 C5 × 0.753 × 0.252
C54 × 0.754 × 0.251
5 C5 × 0.755 × 0.250
样本平均数(成数)的抽样分布:
µ p = p = 0.75
P73/9 ⑴ µ=p
σ 2 = pq
2 σ p = σ 2 / n = pq / n
⑵ µp = µ = p ⑶ µn p = nµ = np
σ n2 p = nσ 2 = npq
Biblioteka Baidu
P73/10 ⑴ m=
s =
结果为:0,1,0,0,1,1,0,1,1,0
å å
y / n = (0 + 1 + L + 0) /10 = 0.5 ( y - m) 2 N = sp= ˆ (0 - 0.5) 2 + (1- 0.5) 2 + L + (0 - 0.5) 2 = 0.5 10 pq / n = 0.5? 0.5 / 4 npq = 0.25
Cny p y q n − y
C50 × 0.750 × 0.255
1 C5 × 0.751 × 0.254
p( y)
0.0010 0.0146 0.0879 0.2637 0.3955 0.2373
F ( y)
0.0010 0.0156 0.1035 0.3672 0.7627 1.0000
np ( y )
P72/3
⑴ 在回交后代200株中,
WxWx × wxwx
Wxwx × wxwx
64 744 4↓ 8
1 2 1 2
↓
杂合体非糯稻与纯合体 糯稻出现的概率各为1/2, 即杂合体非糯稻与纯合 体 糯 稻 各 有 100株。
Wxwx
wxwx
⑵ F1自交得F2代的分离作3:1遗传比率,即非糯稻为 0.75,糯稻为0.25,这一分布属离散型随机变数的概 二项式分布。 率分布——二项式分布 二项式分布
否定无效假设,接受备择假设。 否定无效假设,接受备择假设。
P97/6
H 0 : µ1 ≤ µ2 n1 = 4 n2 = 3
2 e
H A : µ1 > µ2 y1 = 7.60
α = 0.05
y 2 = 5.27 SS1 = 6.50 SS 2 = 4.59
SS1 + SS 2 6.50 + 4.59 S = = = 2.218 (4 − 1) + (3 − 1) ν 1 +ν 2 Sy −y
S1 CV1 = × 100% = 1.247 / 20 × 100% = 6.24% y1
金皇后: 金皇后:2 = 26 −15 = 11 y2 = ∑ y2 / n2 = (16 + 21+L+19) /10 = 20 R
S2 =
2 y2 − (∑ y2 )2 / n2 ∑
n2 −1
4104 − 2002 /10 = = 3.399 10 −1
⑶
52个样本平均数分布的次数分布表 次数(ƒ) y 1.0 1 1.5 2 2.0 3 2.5 4 3.0 5 3.5 4 4.0 3 4.5 2 5.0 1
5 5 4.5 4 4 3.5 3 3 2.5 2 2 1.5 1 1 0.5 0 1 2 3 4 5 6 7 8 9 1 2 3 4
52个样本平均数分布的次数分布图
⑻ p( u ≤ 1.05) = 0.8531 − 0.1469 = 0.7062 ⑼ p( u ≥ u1 ) = 0.05 ⑽ p(u ≥ u1 ) = 0.025
u1 = 1.959964 ≈ 1.96 u1 = 1.959964 ≈ 1.96
P73/7
N(16,4)
⑴ p(10 #y 20) = p(- 3 #u 2) = 0.9773- 0.0014 = 0.9759 ⑵ p( y ? 12)
∑
fy 2 − (∑ fy ) 2 / ∑ f
∑ f −1
121297 − 3467 2 /100 = = 3.33 100 − 1
P47/5 等级差法: 假定y0=35,
y = y0 S=
∑ fd ′ × i = 35 + 2 × (−3) + 7 × (−2) + L + 1× 4 × 3 = 34.67 +
α = 0.01
y = (2.38 + 2.38 +L+ 2.41) /10 = 23.90/10 = 2.39 S= y2 − (∑ y)2 / n ∑ n −1 2.382 + 2.382 +L+ 2.412 − 23.92 /10 = = 0.068 10 −1
S 0.068 Sy = = = 0.02 n 10 t= 2.39 − 2.50 = −5.51 0.02 t0.01,9 = 3.250
∑ ( y − y) = (3 − 3.6) + (6 − 3.6) + L + (3 − 3.6) = 0
Md = 3 S2 = M0 = 3 n −1 R = 6−2 = 4 142 − 362 /10 = = 1.38 10 − 1 S = 1.17 y 2 − (∑ y ) 2 / n ∑
P72/2 ⑴ p (2 ≤ y ≤ 8) = 0.7