QAM误码率公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不同调制模式下的误码率与信噪比的关系
一.原理概述
多进制正交幅度调制(QAM )
在MPSK 调制中,传输信号的幅度保持在一恒定值,因此星座图的圆形的。通过改变相位和幅度,我们获得一种新的调制方法,称为多进制正交调制(QAM ),一般形式定义为:
cos(2sin (2),0,=1,2,,M i i c i c s s f t f t t T i ππ≤≤
其中,min E 是幅度最小的信号的能量,i a 和i b 是一对独立的整数。
第i
个信号点的坐标是a
b i a ,i b )是如下给出的L 矩阵的元素:
(-L+1,L-1)(-L+3,L-1)(L-1,L-1)(-L+1,L-3)(-L+3,L-3)(L-1,L-3){,}=(-L+1,-L+1)(-3+1,-L+1)(L-1,-L+1)i i a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
其中L 。对于16-QAM 信号的星座图,其L 矩阵为
(-3,3)(-1,3)(1,3)(3,3)(-3,1)(-1,1)(1,1)(3,1){,}=(-3,-1)(-1,-1)(1,-1)(3,-1)(-3,3)(-1,3)(1,-3)(3,-3)i i a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
如果使用相干检测,多进制QAM 信号在AWGN 信道中的平均差错概率大约是:
,QAM e P Q 使用平均信号能量av E ,上式表示为:
,QAM e P Q 二.实验仿真与分析
我们用matlab 分别仿真了各种调制模式下的信噪比与误码率的关系,其中图1 是无分集情况下的仿真结果图,图2 是在发射接收端二分集的情况下的仿真结果图,图3 是4分集的情况下仿真结果图。
图1. 无分集情况下的各种调制方式的BER与SNR的关系图2. 二分集情况下的各种调制方式的BER与SNR的关系
图3. 四分集情况下的各种调制方式的BER与SNR的关系由上述三图我们可以看出,在不同的分集情况下,在各个信噪比点相对于其他调制方式来说,BPSK的误码率最小。而对于FSK,虽然非相干检测简化了接收机的结构,但与相干检测相比,相同信噪比下的误码率约大一个数量级。而其他几种调制方式的误码率随着信噪比和分集的增加变化相差无几。