抗剪强度与基坑支护

合集下载

基坑支护技术要点

基坑支护技术要点

基坑支护技术要点基坑支护技术是对开挖基坑过程中进行的土方开挖和土方失稳施工过程中出现的安全隐患进行控制和处理的一种技术措施。

其目的是保障基坑的稳定与安全,防止土方塌方、滑坡等情况的发生。

下面将介绍基坑支护技术的要点。

1.土质判断和土壤力学参数的确定:首先需要对开挖区域的土质进行判断和分析,了解土体的物理力学特性。

通过取样试验和实地勘察,确定土体的承载力、抗剪强度、水分含量等参数,为支护方案的设计提供依据。

2.支护结构的选择:根据开挖的深度、土体的稳定性及各种条件,选用合适的支护结构进行基坑支护。

常见的支护结构包括钢支撑、混凝土切削桩、抽水降水等。

选择合适的倾斜支撑,避免开挖过程中土体失稳和塌方。

3.渗流和降水处理:开挖过程中,地下水会通过土体中的裂隙和孔隙进入开挖区域,增加土体的湿度,导致土体的失稳。

因此需要进行降水处理,降低地下水位,减小土体的水分含量。

常见的降水方法有抽水井、井点降水、排水管等。

4.土体加固处理:对于土体较松散、岩土层分布较复杂的基岩开挖工程,需要进行土体加固处理。

常用的加固方法有喷射法、冻结法、挖槽法等,以增加土体的强度和稳定性。

5.安全监测:基坑支护过程中需要进行安全监测,及时了解工程的变形和变化情况,以便采取相应的措施。

常用的监测手段有测斜仪、测变仪、测孔仪等设备。

6.施工管理与操作规范:在进行基坑支护施工时,需要有合理的施工管理和操作规范。

施工人员要具备丰富的施工经验和技术知识,严格执行支护方案,确保施工过程的安全与质量。

7.环境保护及防污染:基坑支护施工过程中应注重环境保护,采取合理的措施进行防尘、防噪、防污染。

定期清理施工现场,保持周边环境的整洁和安全。

8.合理安排施工进度:基坑支护施工是一项复杂的工程,需要合理安排施工进度,保证施工的连续性和高效性。

避免承担过高的风险和压力,确保施工质量和工期的完成。

总之,基坑支护技术具有重要的意义和价值,是保障基坑工程安全的关键措施。

基坑安全的判定指标

基坑安全的判定指标

基坑安全的判定指标基坑是指在土地开挖或者施工过程中形成的围护结构,用于保证施工区域的稳定和安全。

基坑的安全是施工过程中至关重要的环节,确定基坑是否安全需要考虑多个因素。

本文将介绍一些判定基坑安全的指标,旨在为相关人员提供参考。

1. 土质稳定性:基坑施工过程中,土壤的稳定性是判定基坑安全的重要因素之一。

主要考虑土体本身的承载力、抗剪强度、稳定性等指标。

可以通过土壤取样进行实验室测试,或者现场进行观察和试验来评估土壤的稳定性,并据此确定适当的基坑支护措施。

2. 基坑支护结构的设计:基坑支护结构是保护基坑及周边环境和设备的重要措施。

判定基坑安全时,需要评估支护结构的设计是否合理,并考虑其稳定性和承载能力。

相关指标包括支护结构的类型、尺寸、材料、施工方法等。

3. 周边建筑物的影响:基坑施工过程中,周边建筑物的承载力和稳定性也是判定基坑安全的一项重要指标。

需要考虑挖掘过程对周边建筑物产生的影响,如土体沉降、地基沉降、地震影响等。

可以通过现场勘察、建筑物结构分析等方法进行评估。

4. 地下水位:地下水位的高低会对基坑安全产生重要影响。

如果地下水位较高,可能导致土壤变软、溶解基坑周围的土壤等问题;而地下水位较低则可能导致周围土壤干裂、承载力降低等情况。

因此,在判定基坑安全时,需要考虑地下水位的影响,并采取相应的防护措施。

5. 天气条件和自然灾害:天气条件和自然灾害也会对基坑的安全性产生重要影响。

例如,降雨可能导致土壤湿润、地面沉降等问题;强风可能会对基坑支护结构产生压力。

因此,在判定基坑安全时,需要考虑当地的气候条件和相应的防护措施,以确保基坑的稳定性和安全性。

总之,判定基坑安全需要综合考虑土质稳定性、基坑支护结构的设计、周边建筑物的影响、地下水位、天气条件和自然灾害等因素。

综合评估这些指标,可以指导相关人员制定合理的基坑施工方案和支护措施,以确保基坑施工过程中的安全性和稳定性。

土的抗剪强度和地基承载力

土的抗剪强度和地基承载力

抗剪强度进行比较: 通过土体中一点有无数的截面,当所有截面上都满
足τ< ,f 该点就处于稳定状态;当所有截面之中有且只有一个截面上
的τ =
时,该点处于极限平衡状态。
f
根据莫尔应力圆与抗剪强度曲线的关系可以判断土中某点M是否处于
极限平衡状态
从理论上讲该点 早已破坏,因而 这种应力状态是
不会存在
不会发生剪 切破坏
③上下盒的错动,剪切过程中试样剪切面积逐渐减小, 剪切面上的剪应力分布不均匀。
4.2.2 三轴剪切试验
三轴试验是根据摩尔库仑破坏准则测定土的黏聚力c 和 内摩擦
角。常规的三轴试验是取三个性质相同的圆柱体试件,分别先在
其四周施加不同的围压(即小主应力),随后逐渐增大大主应力直 到破坏为止
三轴压缩试验原理是根据莫尔――库伦强度理论 得出的。
c
O
3
1 1f 1
三、摩尔-库仑强度理论
3. 破坏判断方法
判别对象:土体微小单元(一点)
1= 常数:
1,3
x
z 2
x
z 2
2
4
2 xz
根据应力状态计算出 大小主应力σ1、σ3
判断破坏可能性
σ3>σ3f 弹性平衡状态
由σ1计算σ3f 比较σ3与σ3f
σ3=σ3f 极限平衡状态 σ3<σ3f 破坏状态
莫尔应力圆描 述土中某点的
尔应力圆描述
2
O 3 1/2(1 +3 ) 1
3
1
莫尔圆可以表示土体中一点的应力状态, 莫尔圆圆周上各点的坐标就表示该点在相 应平面上的正应力和剪应力。
4.1.3 土的极限平衡条件
土体受荷后,任意截面mn上将同时产生法向应力与剪应力,对 与

基坑支护中淤泥软土的抗剪强度取值探讨

基坑支护中淤泥软土的抗剪强度取值探讨

基坑支护中淤泥软土的抗剪强度取值探讨本文阐述淤泥软土的特性和抗剪强度指标的常用取值方法,对不同的取值方法进行对比,分析淤泥软土抗剪强度指标在基坑支护中的选用。

标签:淤泥软土抗剪强度指标基坑支护1前言软土作为一种软弱土层,抗剪强度低,在基坑工程中容易发生失稳。

在广东地区,软土主要为淤泥或淤泥质土,抗剪强度指标的取值对基坑支护设计在安全性和经济性方面具有重要影响。

对此目前仍然存在一定争议,不同地区,不同规范并不统一。

因此,软土基坑支护设计中对抗剪强度如何取值仍是一个值得探讨的问题。

2淤泥软土的特性在珠三角地区,分布着深厚的淤泥质软土,其物理力学性质是:呈灰~灰黑色,流塑~软塑状,天然含水量大于液限,孔隙比大,力学强度低,压缩性高,渗透性差,灵敏度高。

鉴于以上特点,淤泥软土基坑必须进行专门的基坑支护。

3淤泥软土抗剪强度指标常用取值方法土的抗剪强度指标的测定有原位测试和室内试验两种方法。

原位测试基本在原位应力的条件下进行,但是边界条件不能控制和精确确定,试验结果受外界因素影响。

常用的原位测试方法主要为十字板剪切试验,其可直接测定饱和淤泥软土的不排水强度。

室内试验方法的优点是边界条件可以明确确定并可加以控制,通常采用直剪试验(包括快剪和固结快剪)或三轴剪切试验(包括UU、CU试验)测定。

基坑支护设计中土体的抗剪强度指标常采用室内试验测定。

(1)十字板剪切试验:十字板剪切试验是利用插入土中的标准十字板头,以一定的速率扭转,通过量测土体破坏时的抵抗力矩来测定土体的不排水抗剪强度。

十字板剪切试验是在现场原位进行,对土体扰动较小,较能反映土体的原位强度。

但是,对于不均匀土层,或土层中夹有砂土或粉土的淤泥软土,十字板剪切试验误差较大。

(2)直剪试验:直剪试验是将环刀切取的土试样置入剪切盒中进行剪切,通过不同垂直压力作用下的剪切试验获得抗剪强度参数。

直剪试验分为快剪和固结快剪。

直剪试验优点是仪器结构简单,操作简便。

缺点是:①剪切面不一定是试样抗剪强度最弱的面;②剪切面上的应力分布不均匀;③不能严格控制排水条件(3)三轴剪切试验:三轴剪切试验是在圆柱形试样上施加最大主应力(轴向应力)σ1和最小主应力(围压)σ3,保持其中之一(一般是σ3)不变,改变另一主应力,使试样中的剪应力逐渐增大,直至剪切破坏,由此求得土的抗剪强度。

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算

第三章基坑支护结构设计计算3.1土压力计算为计算简便,土压力计算采用简化的兰肯主动土压力计算公式,即采用加权平均之后的内摩擦角、粘聚力值进行计算。

3.1.1加权平均值计算各层土的物理指标如下表所示:基坑开挖的深度为16.3m ,即到粉土夹粉砂层为止。

(1)土层加权平均重度为:)/(68.1797.052.111.95.115.105.21997.09.1752.11711.98.175.15.1815.14.1905.230m KN hh iii =+++++⨯+⨯+⨯+⨯+⨯+⨯==∑∑γγ土层物理参数表土层序号及名称 土层厚度L (m ) 天然含水量W(%)液限指数IL 塑性指数Ip 天然重度粘聚力C(kpa) 内摩擦角φ(°) ①1填土 2.05 0.75 11.8 19.4 16.5 19.6 ①2黏土 1.15 36 0.68 19.5 18.5 20.5 13.1 ②1黏土 1.5 39.9 0.98 18.7 17.8 15.3 11 ②2淤泥质黏土 9.11 52.3 1.55 19.4 17 11.5 8.4 ②3淤泥质粉质黏土1.52 41.6 0.45 14.6 17.913.5 10.2 ③1粉土夹粉砂 3.28 28.9 1.16 9.3 19 11.6 20 ③2粉质黏土夹粉砂10.04 31.8 1.16 11.4 18.812.2 15.2 ④1淤泥质粉质黏土 5.3 38.2 1.28 13.4 18.213.2 12.1 ④2黏土 7.18 36.8 0.99 17.6 18.2 17.2 12.7 ⑥2粉质黏土 6.25 34.2 0.84 14.4 18.6 20.7 14.5 ⑥4粉土 2.04 25.4 0.98 9.6 19.4 12.3 26.6 ⑦1粉质黏土 2.93 27 0.56 13.6 19.6 31.218.3注:表中仅列出本车站有分布布的底层。

毕业论文基坑支护

毕业论文基坑支护

毕业论文基坑支护毕业论文基坑支护一、引言基坑支护是土木工程中一个重要的环节,它涉及到建筑物的稳定性和安全性。

在建筑物的施工过程中,基坑的挖掘和支护是必不可少的步骤。

本文将探讨基坑支护的方法和技术,以及其在工程实践中的应用。

二、基坑支护的意义基坑支护是为了保证基坑的稳定和安全。

在施工过程中,基坑的挖掘会导致周围土体的失稳,从而对建筑物和地下管线造成威胁。

因此,基坑支护的目的是通过采取一系列措施来防止土体塌方和基坑塌陷,以确保施工的顺利进行。

三、基坑支护的方法1. 土钉墙土钉墙是一种常见的基坑支护方法。

它通过在基坑周围的土体中安装钢筋混凝土土钉,并与钢筋混凝土挡土墙连接,形成一个整体结构。

土钉墙具有施工简便、成本低廉、适用范围广等优点,因此在基坑支护中得到了广泛应用。

2. 桩墙桩墙是另一种常见的基坑支护方法。

它通过在基坑周围驱动或挖孔灌注钢筋混凝土桩,并与钢筋混凝土挡土墙连接,形成一个整体结构。

桩墙具有承载能力强、稳定性好等优点,适用于较深的基坑支护。

3. 挡土墙挡土墙是一种常用的基坑支护结构。

它通过使用钢筋混凝土、砖石、钢板等材料构建,用于抵抗土体的侧压力。

挡土墙具有结构稳定、抗震性好等优点,适用于各种类型的基坑支护。

四、基坑支护的工程实践基坑支护在工程实践中有着广泛的应用。

以某大型商业综合体的地下停车场基坑支护为例,该工程采用了土钉墙和桩墙的组合支护方式。

首先,在基坑周围安装了土钉墙,以增加土体的抗剪强度;然后,在土钉墙内部挖孔灌注了钢筋混凝土桩,以增加整体结构的稳定性。

通过这种组合支护方式,成功地实现了基坑的稳定和安全。

五、基坑支护的挑战和发展趋势基坑支护面临着一些挑战,如复杂地质条件、施工难度大等。

为了应对这些挑战,需要不断改进和创新基坑支护技术。

未来,基坑支护的发展趋势可能包括以下几个方面:1. 新型材料的应用:如高强度钢筋、纤维增强材料等,可以提高基坑支护结构的承载能力和抗震性能。

2. 数字化技术的应用:如计算机模拟、数据采集和监测等,可以提高基坑支护的设计和施工效率,减少工程风险。

基坑支护设计说明

基坑支护设计说明

基坑支护设计说明基坑支护设计是指在建筑工程施工过程中,为了保证基坑的安全稳定,减少地面沉降和地质灾害的发生,采用相应的工程措施和设计方法,对基坑进行支护的一项重要工作。

下面将从基坑支护的目的、流程和设计方法等方面进行详细说明。

一、基坑支护的目的1.保证施工现场的安全:基坑作为施工的起点,对后续的施工安全影响重大。

通过合理的支护设计,可以有效地减少基坑塌方、下沉等事故的发生,保障施工过程中人员和设备的安全。

2.保护周围建筑物和地下管线的稳定:基坑开挖对周围的建筑物和地下管线会产生一定的影响。

通过支护设计,可以减少地面沉降和损害,保证周围建筑物和地下管线的安全稳定。

3.提高土体的抗剪强度:基坑周围土体的抗剪强度较低,容易产生土体失稳和滑坡等地质灾害。

支护设计可以通过改善土体工程性质,提高土体的抗剪强度,防止地质灾害的发生。

二、基坑支护设计的流程1.地质勘察和力学参数确定:首先需要进行地质勘察,获取地质情况及土体的力学参数。

根据勘察结果,确定基坑的开挖范围、深度和倾斜度等设计参数。

2.支护结构的选择:根据基坑的特点和支护的要求,选择合适的支护结构。

常见的支护结构包括土方开挖法、土钉墙、钢支撑、预应力锚杆等。

3.基坑开挖和土体处理:按照设计要求进行基坑的开挖,同时进行土体处理,如砂浆灌注、地下注浆等。

土体处理可以改善土体的工程性质,提高土体的抗剪强度。

4.支护结构的施工:根据支护结构的设计图纸进行支护结构的施工。

施工过程中需要确保支护结构的稳定性和密实性,以保证其正常使用。

5.监测和调整:在基坑支护施工的各个阶段,进行施工监测,对支护结构的变形和位移进行实时监测。

根据监测结果,及时调整支护设计方案,确保支护结构的安全稳定。

三、基坑支护设计的方法1.基于经验的设计方法:根据以往类似工程的经验进行设计,结合实际情况进行合理调整。

2.基于数值模拟的设计方法:通过使用有限元分析等数值方法,对基坑开挖过程进行模拟,分析基坑及支护结构的受力情况,从而优化设计方案。

基坑设计稳定性验算时土的抗剪强度指标选择

基坑设计稳定性验算时土的抗剪强度指标选择

基坑设计稳定性验算时土的抗剪强度指标选择建筑基坑支护技术规程JGJ120-2012:土压力及水压力计算、土的各类稳定性验算时,土、水压力的分、合算方法及相应的土的抗剪强度指标类别应符合下列规定:1、对地下水位以上的各类土,土压力计算、土的滑动稳定性验算时,对粘性土、粘质粉土,土的抗剪强度指标应采用三轴固结不排水抗剪强度指标ccu、phi;cu 或直剪固结快剪强度指标ccq、phi;cq,对砂质粉土、砂土、碎石土,土的抗剪强度指标应采用有效应力强度指标cprime;、phi;prime;;2、对地下水位以下的粘性土、粘质粉土,可采用土压力、水压力合算方法,土压力计算、土的滑动稳定性验算可采用总应力法;此时,对正常固结和超固结土,土的抗剪强度指标应采用三轴固结不排水抗剪强度指标ccu、phi;cu 或直剪固结快剪强度指标ccq、phi;cq,对欠固结土,宜采用有效自重压力下预固结的三轴不固结不排水抗剪强度指标cuu、phi;uu;3、对地下水位以下的砂质粉土、砂土和碎石土,应采用土压力、水压力分算方法,土压力计算、土的滑动稳定性验算应采用有效应力法;此时,土的抗剪强度指标应采用有效应力强度指标cprime;、phi;prime;,对砂质粉土,缺少有效应力强度指标时,也可采用三轴固结不排水抗剪强度指标ccu、phi;cu 或直剪固结快剪强度指标ccq、phi;cq 代替,对砂土和碎石土,有效应力强度指标phi;prime;可根据标准贯入试验实测击数和水下休止角等物理力学指标取值;土压力、水压力采用分算方法时,水压力可按静水压力计算;当地下水渗流时,宜按渗流理论计算水压力和土的竖向有效应力;当存在多个含水层时,应分别计算各含水层的水压力;4、有可靠的地方经验时,土的抗剪强度指标尚可根据室内、原位试验得到的其他物理力学指标,按经验方法确定。

基坑支护的结构的计算

基坑支护的结构的计算

基坑支护的结构的计算基坑支护是指在建筑工地或者其他开挖工程中,为了防止土方塌方和保证施工安全而采取的一系列措施。

基坑支护结构的计算是基坑工程设计中重要的一部分,本文将对基坑支护结构的计算进行详细介绍。

一、基坑支护结构的分类基坑支护结构通常可以分为两类:一是按照支护方式的不同分为主动支护和被动支护;二是按照结构形式的不同分为钢支撑结构和混凝土支护结构。

主动支护是指通过设置支撑结构对基坑进行支护,常见的主动支护结构有钢支撑和桩墙支护。

被动支护是指利用土体自身力学性质对基坑进行支撑,常见的被动支护结构有土钉墙和锚杆墙。

钢支撑结构是以钢材为主要材料的支护结构,常见的有钢板桩和钢管桩。

混凝土支护结构则是以混凝土为主要材料的支护结构,常见的有混凝土梁和混凝土墙。

二、基坑支护结构的计算方法基坑支护结构的计算方法主要包括以下几个方面:1.基坑支护结构受力分析:支护结构需要承受土压力、地下水压力和附加荷载等多种作用力,计算时需要对支护结构的受力情况进行全面的分析。

2.支撑杆件的稳定性计算:钢支撑结构中的支撑杆件需要满足一定的稳定性要求,包括弯曲强度、屈曲稳定性和抗扭稳定性等方面的计算。

3.连墙件的选择与计算:在钢支撑结构中,如果需要两个或多个支撑壁之间进行连接,则需要使用连墙件。

连墙件的选择和计算需要考虑其承受的弯曲强度和抗剪强度等。

4.土壁和桩身的稳定性计算:在钢板桩和钢管桩的设计中,需要对土壁和桩身的稳定性进行计算,包括土壁的滑移和失稳以及桩身的稳定性等。

5.锚杆的计算:在锚杆墙的设计中,需要对锚杆的承载力和稳定性进行计算。

三、基坑支护结构计算的基本步骤基坑支护结构的计算一般包括以下几个基本步骤:1.确定基坑的尺寸和形状,确定基坑周围的土质和地下水情况。

2.根据基坑的具体情况,选择适当的支护方案和支撑结构类型。

3.进行基坑支护结构的初步设计,包括确定支护结构的布置形式、支距和锚固长度等参数。

4.对支撑结构进行受力分析,计算支护结构受到的土压力、地下水压力和附加荷载等。

开挖深度超过5m的基坑支护工程计算书

开挖深度超过5m的基坑支护工程计算书

开挖深度超过5m的基坑支护工程计算书一、设计及计算参数本计算书计算采用北京理正深基坑7.5版计算软件。

本计算书计算的支护段开挖深度为6.55m、6.70m、6.85m。

本次设计时在根据前人资料、经验数据、岩土工程勘察报告数据及当地地质情况,综合确定如下:二、各支护段计算(一)、AB段(1-1剖面支护段)计算[支护方案]排桩支护规范与规程《建筑基坑支护技术规程》JGJ120-2012 内力计算方法增量法支护结构安全等级二级支护结构重要性系数 1.00基坑深度h(m) 6.55嵌固深度(m) 8.000桩顶标高(m) -0.600桩材料类型钢筋混凝土混凝土强度等级C30桩截面类型圆形↳桩直径(m) 0.800桩间距(m) 1.300有无冠梁有↳冠梁宽度(m) 0.900↳冠梁高度(m) 0.600↳水平侧向刚度(MN/m) 2.232防水帷幕有↳防水帷幕高度(m) 8.700↳防水帷幕厚度(m) 0.600放坡级数 1超载个数 2支护结构上的水平集中力0[放坡信息]坡号台宽(m)坡高(m)坡度系数1 0.000 0.600 1.000 [超载信息]超载序号类型超载值(kPa,kN/m)作用深度(m)作用宽度(m)距坑边距(m)形式长度(m)1 20.000 0.000 4.600 2.600 条形--2 80.000 1.500 10.000 7.260 条形-- 土层数 6 坑内加固土否内侧降水最终深度(m) 7.050 外侧水位深度(m) 2.900内侧水位是否随开挖过程变化否内侧水位距开挖面距离(m)---弹性计算方法按土层指定×弹性法计算方法m法内力计算时坑外土压力计算方法主动层号土类名称层厚(m)重度(kN/m³)浮重度(kN/m³)黏聚力(kPa)内摩擦角(度)黏聚力水下(kPa)内摩擦角水下(度)1 杂填土 3.90 18.0 8.0 10.60 7.50 10.60 7.52 粉质粘土3.00 19.0 9.0 13.9 10.60 13.90 10.603 中砂0.5 18.5 8.5 0.00 22.00 0.00 22.004 卵石 1.5 19.2 9.2 --- --- 0.00 30.205 强风化岩10.60 21.5 11.5 --- --- 35.00 25.006 中风化9.70 23.0 13.0 --- --- 40.00 30.10岩层号与锚固体摩擦阻力(kPa)水土计算方法m,c,k值极限承载力标准值(kPa)1 30.0 分算m法 2.87 30.002 40.0 合算m法 5.15 40.003 50.0 分算m法14.96 50.004 70.0 分算m法30.44 70.005 120.0 合算m法27.00 120.006 200.0 合算m法38.22 200.00层号有效内摩擦角Φ'(度)静止土压力系数估算公式静止土压力系数Ko1 --- --- ---2 --- --- ---3 --- --- ---4 --- --- ---5 --- --- ---6 --- --- --- [支锚信息]支锚道数 1 扩孔锚杆×支锚道号支锚类型水平间距(m)竖向间距(m)入射角(°)总长(m)锚固段长度(m)1 锚索 2.600 2.900 35.00 14.00 8.00支锚道号预加力(kN)支锚刚度(MN/m)锚固体直径(mm)工况号锚固力调整系数材料抗力(kN)材料抗力调整系数1 120.00 8.78 180 2~ 1.00 781.20 1.00[土压力模型及系数调整]弹性法土压力模型:经典法土压力模型:[设计结果][结构计算]各工况工况1——开挖(3.40m)工况2——加撑1(2.90m)工况3——开挖(6.55m)内力位移包络图:工况3——开挖(6.55m)地表沉降图:[冠梁选筋结果][截面计算]钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,Q-HRBF400,R-HRBF500。

土体抗剪强度指标的选用及各种规范的对比

土体抗剪强度指标的选用及各种规范的对比

土体抗剪强度指标的选用一、土强度指标在深基坑设计中,土压力的计算是支护设计的基础依据和关键所在,而在土压力计算中,土体的粘聚力c、内摩擦角Φ又是最基本的参数。

例如,同一种饱和粘性土,在固结排水和固结不排水试验中就表现出不同的摩擦角,而在不固结不排水试验中,内摩擦角为零。

在进行土强度指标试验时,分为三种情况考虑,即三轴的不固结不排水剪(UU),固结不排水剪(CU)及固结排水剪(CD),与其相对应的直接剪切试验分别为快剪,固结快剪和慢剪。

有人将直剪试验的固结快剪说成是固结不排水试验,将快剪称为不排水试验,也是错误的。

对于粘性土,很快的剪切速度对于粘土确实限制了排水,其固结快剪指标往往与三轴固结不排水试验相近;但是对于粉土、砂土来说,固结快剪和固结不排水可能就完全不同。

由于直剪试验上下盒之间存在缝隙,对于渗透系数比较大的砂土,即便在快剪过程中,这种缝隙也足以排水。

因此,对于砂土而言,固结快剪、快剪试验得到的指标基本上就是有效应力指标。

把三轴固结不排水试验指标和固结快剪指标不加区别是错误的。

二、各种规范对土压力计算参数的规定各种规范中关于土压力的计算参数的规定五花八门:1、建设部行业标准《建筑基坑支护技术规程》(JGJ120-99)对于砂性土,采用水土分算,取土的固结不排水抗剪强度指标或者固结快剪强度指标计算;对于粘性土及粉性土,采用水土合算,地下水以下取饱和重度和总应力固结不排水(固结快剪)抗剪强度指标计算。

水土合算,采用固结快剪峰值强度指标有争议。

2、冶金工业部标准《建筑基坑工程技术规范》(YB9258-97)一般情况宜按照水土分算原则计算,有效土压力取有效应力抗剪强度指标指标,粘性土无条件取得有效应力强度指标时,可采用固结不排水(固结快剪)指标代替。

当具有地区工程实践经验时,对粘性土也可采用水土合算原则,取总应力固结不排水抗剪强度指标计算。

3、《建筑地基基础设计规范》(GB50007-2002)对于砂性土,宜按照水土分算原则计算,对粘性土宜按照水土合算的原则计算。

基坑支护工程设计常用指标参数

基坑支护工程设计常用指标参数

基坑、支护工程设计常用指标参数第一章砼钢材的物理力学性质指标 (1)第一节砼的物理力学性质指标 (1)一、砼强度标准值(N/mm2) (1)二、砼强度设计值(N/mm2) (1)三、砼弹性模量(×104N/mm2) (1)第二节钢筋的物理力学性质指标 (2)一、普通钢筋强度标准值、设计值 (2)二、预应力钢筋强度标准值、设计值 (2)三、钢筋弹性模量(×105N/mm2) (3)四、钢绞线公称直径、截面面积、理论重量 (3)五、钢筋公称直径、截面面积、理论重量 (4)第三节水泥搅拌桩物理力学指标 (5)一、水泥土抗剪强度与抗压强度关系表 (5)二、水泥土的变形模量 (5)三、水泥土抗压强度 (6)四、水泥土龄期与抗压强度的关系 (6)第二章基坑规范摘录 (7)二、锚杆安全系数 (7)三、支护结构基底摩擦系数 (7)四、岩土与锚固体间的粘结强度 (8)五、锚管、锚杆水平刚度系数 (9)六、圆桩配筋表 (10)七、基坑支护设计的基本概念 (12)第三章型钢钢管截面面积及单位重量 (15)第一节水、煤气输送钢管(YB234-63) (15)第二节电焊钢管(YB242-63) (17)第三节热扎无缝钢管(YB231-70) (20)第四节槽钢 (24)第五节工字钢 (26)第六节等边角钢 (27)第四章岩土工程地质参数 (28)第一节岩石分类 (28)第二节地质年代表 (30)第三节土的物理性质指标 (31)第五节广东省常见土质的物理力学性质指标经验值 (32)第五章常用灌浆材料配制 (33)第一节浆材配制计算公式 (33)第三节水泥、水玻璃浆材配制 (38)第六章常用计算公式和计量单位 (40)第一节常用计算公式 (40)一、体积 (40)二、钢管砼竖向承载力设计值 (40)第二节常用法定计量单位与法定计量单位的关系 (41)第三节灌浆压力换算关系 (48)第七章坝基帷幕的建议防渗标准 (49)第一节试段透水率计算 (49)第二节渗透系数计算 (49)第三节试段透水率与单位吸水量的关系 (50)第四节岩土渗透性分级表 (51)第五节岩石帷幕防渗标准 (51)第一章砼钢材的物理力学性质指标摘自《混凝土结构设计规范》GB 50010-2002。

基坑支护的概念

基坑支护的概念

基坑支护的概念
基坑支护是指在土方工程中,为了防止土壤侧方坡面发生坍塌或失稳,采取一系列的措施来保证施工安全和土方稳定的工程。

基坑支护通常用于大型土方工程、建筑物基础施工等需要挖掘较深的地下空间的工程中。

基坑支护的主要目的是保证在挖掘过程中,土壤围护结构的稳定和地下水的正常排除,并防止土坡塌方。

常见的基坑支护措施包括:
1. 土钉墙:通过高强度的钢筋土钉将土与墙体连接,形成稳定的支撑体系。

2. 桩墙:使用混凝土桩或钢板桩构建的墙体,用以支撑土方和抵抗侧方土压力。

3. 渗流控制:通过排水系统控制基坑内地下水位,减小土方与水的接触,降低坍塌风险。

4. 钢支撑:使用钢管或型钢组成的临时支撑结构,加固土壤。

5. 土工合成材料:如土工格栅、土工布等,用以加固土壤,增强土体的抗剪强度。

基坑支护的具体方法和措施根据工程的不同情况而定,需要综合考虑土壤类型、水文地质条件、施工时间等因素,确保施工的安全可靠。

基坑支护问题常用处理方法

基坑支护问题常用处理方法

一、支挡法当基坑的支护结构出现超常变形或倒塌时,可以采用支挡法,加设各种钢板桩及内支撑。

加设钢板桩与断桩连接,可以防止桩后土体进一步塌方而危及周围建筑物的情况发生;加设内支撑可以减少支护结构的内力和水平变形。

在加设内支撑时,应注意第一道支撑应尽可能高;最下一道支撑应尽可能降低,仅留出浇筑钢筋混凝土基础底板所需的高度。

有时甚至让在底部增设的临时支撑永久地留在建筑物基础底板中。

二、注浆法当基坑开挖过程中出现防水帷幕桩间漏水,基坑底部出现流砂、隆起等现象时,可以采用注浆法进行固处理,防止事态的进一步发展,俗话说“小洞不补,大洞吃苦”,一些大的工程事故都是由于在事故刚出现苗头时没有及时处理,或处理不到位造成的。

注浆法还可以用作防止周围建筑物,地下管线破坏的保护措施。

总之,注浆法是近几年来广泛地用于基坑开挖中土体加固的一种方法,该法可以提高土体的抗渗能力,降低土的孔隙压力,增加土体强度,改善土的物理力学性质。

(1)注浆工艺按其所依据的理论可以分为渗入性注浆、劈裂注浆、压密注浆、电动化学注浆。

①渗入性注浆所需的注浆压力较小,浆液在压力作用下渗入孔隙及裂隙,不破坏土体结构,仅起到充填、渗透、挤密的作用,较适用于砂土、碎石土等渗透系数较大的土。

②劈裂注浆所需的注浆压力较高,通过压力破坏土体原有的结构,迫使土体中的裂隙进一步扩大,并形成新的裂缝或裂隙,较适用于象软土这样渗透系数较低的土,在砂土中也有较好的注浆效果。

③注浆法所用的浆液一般为在水灰比0.5左右的水泥浆中掺水泥用量10%~30%的粉煤灰。

另外还可以采用双液注浆,即用二台注浆泵,分别注入水泥浆和化学浆液,二种浆液在管口三通处汇合后压入土层中。

(2)注浆法在基坑开挖中的应用有以下几种用途:①用于止水防渗、堵漏。

当止水帷幕桩间出现局部漏水现象时,为了防止周围地基水土流失,应马上采用注浆法进行处理;当基坑底部出现管涌现象时,采用注浆法可以有效地制止管涌。

当管涌量大不易灌浆时,可以先回填土方与草包,然后进行多道注浆。

基坑支护技术与施工要点

基坑支护技术与施工要点

基坑支护技术与施工要点随着城市发展的不断推进,越来越多的高楼大厦在建设中出现,这就需要对基坑进行支护,以确保施工安全和工程质量。

基坑支护技术是指在基坑挖掘过程中采取的一系列措施,用于稳定土体、防止坍塌和确保施工安全。

本文将介绍基坑支护的常见技术和施工要点。

一、常见的基坑支护技术1. 土钉墙土钉墙是一种常见的基坑支护技术,它主要通过在土体中埋设钢筋钉来增加土体的抗剪强度,从而达到支护基坑的目的。

土钉墙具有施工方便、成本较低等优势,适用于一定深度和较小荷载的基坑。

2. 桩墙桩墙是另一种常见的基坑支护技术,它利用预制混凝土或钢筋混凝土桩组成墙体,以增加土体的整体稳定性。

桩墙适用于基坑较深、受力较大的情况下,具有稳定性好、安全可靠的特点。

3. 框架支护框架支护是一种用钢杆、钢管等构成的框架结构来支撑土体的一种技术。

它适用于土体稳定性较好,基坑深度不大的情况下,具有架构简单、施工快捷等优点。

二、基坑支护的施工要点1. 前期调查在进行基坑支护施工前,必须进行详细的前期调查,了解施工区域的地质情况、土体性质以及周边环境等。

只有了解到位,才能制定科学合理的施工方案,确保施工安全和工程质量。

2. 施工方案制定根据前期调查结果,制定基坑支护的具体施工方案。

施工方案应考虑土体稳定性、荷载分布、支护结构的选择等因素,合理布置支护措施,确保施工的稳定性和安全性。

3. 施工工艺选择根据基坑深度、土体性质以及施工条件等因素,选择合适的施工工艺。

施工工艺包括开挖方式、支护结构的组装、墙体土工材料的运输等。

合理选择施工工艺能够提高施工效率,降低成本,确保施工质量。

4. 施工质量控制基坑支护施工过程中,应严格控制施工质量。

具体来说,要做好施工记录、监测数据的记录和分析,及时发现和处理质量问题。

同时,要加强施工队伍的管理,确保施工人员严格按照施工规范进行作业。

5. 安全管理基坑支护施工涉及到较高的风险,必须加强安全管理。

施工现场应设置明确的安全警示标志,施工人员必须穿戴符合要求的个人防护装备,并接受必要的培训。

技术规范JGJ120-2012基坑支护

技术规范JGJ120-2012基坑支护

建筑物基坑支护技术规程基本规定设计原则3.1.1基坑支护设计应规定其设计使用期限。

基坑支护的设计使用期限不应小于一年。

3.1.2基坑支护应满足下列功能要求:1 保证基坑周边建(构)筑物、地下管线、道路的安全和正常使用;2 保证主体地下结构的施工空间。

3.1.3基坑支护设计时,应综合考虑基坑周边环境和地质条件的复杂程度、基坑深度等因素,按下表采用支护结构的安全等级。

对同一基坑的不同部位,可采用不同的安全等级。

支护结构的安全等级3.1.4支护结构设计时应采用下列极限状态:1承载能力极限状态1)支护结构构件或连接因超过材料强度而破坏,或因过度变形而不适于继续承受荷载,或出现压屈、局部失稳;2)支护结构和土体整体滑动;3)底坑因隆起而丧失稳定;4)对支挡式结构,挡土构件因坑底土体丧失嵌固能力而推移或倾覆;5)对锚拉式支挡结构或土钉墙,锚杆或土钉因土体丧失锚固能力而拨动;6)对重力式水泥土墙,墙体倾覆或滑移;7)对重力式水泥土墙、支挡式结构,其持力土层因丧失承载能力而破坏;8)地下水渗流引起的土体渗透破坏。

2正常使用极限状态1)造成基坑周边建(构)筑物、地下管线、道路等损坏或影响其正常使用的支护结构位移;2)因地下水位下降、地下水渗流或施工因素而造成基坑周边建(构)筑物、地下管线、道路等损坏或影响正常使用的土体变形;3)影响主体地下结构正常施工的支护结构位移;4)影响主体地下结构正常施工的地下水渗流。

3.1.5支护结构、基坑周边建筑物和地面沉降、地下水控制的计算和验算应采用下列设计表达式:1 承载能力极限状态1)支护结构构件或连接因超过材料强度或过度变形的承载能力极限状态设计,应符合下列要求:Ύ0S d≤R d式中:Ύ0——支护结构重要性系数S d——作用基本组合的效应(轴力、弯矩等)设计值;R d——结构构件的抗力设计值。

对临时性支护结构,作用基本组合的效应设计值应按下式确定:3.1.8基坑支护设计应按下列要求设定支护结构的水平位移控制值和基坑周边环境的沉降控制值:1 当基坑开挖影响范围内有建筑物时,支护结构水平位移控制值、建筑物的沉降控制值应按不影响其正常使用的要求确定,并应符合现行国家标准《建筑地基基础设计规范》GB50007中对地基变形允许值的规定;当基坑开挖影响范围内有地下管线、地下构筑物、道路时,支护结构水平位移控制值、地面沉降控制值应按步影响其正常使用的要求确定,并应符合现行相关标准对其允许变形的规定;2 当支护结构构件同时用作主体地下结构构件时,支护结构水平位移控制值不应大于主体结构对其变形的限值;3 当无本条第1款、第2款情况时,支护结构水平位移控制值应根据地区经验按工程的集体条件确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边坡稳定式 逆作拱墙式
土钉墙 喷锚支护
加筋水泥土围护墙
灌注桩与 水泥土桩结合
<一>土钉墙支护 天然土体通过钻孔、插筋、
注浆来设置土钉(亦称砂浆锚 杆)并与喷射砼面板相结合, 形成类似重力挡墙的土钉墙, 以抵抗墙后的土压力,保持开 挖面的稳定。
8
钻孔 铺设钢筋网
插筋、注浆 喷射砼护面
<二>挡土灌注桩支护
境的安全,对基坑侧壁及周边环境采用的支挡、加固 与保护的措施。
支护结构主要由围护墙和支撑体系组成。 深层搅拌水泥土桩墙
水泥挡土墙式
高压喷射注浆桩墙
常 用 的 支 护 排桩与板墙式 结 构 体 系
粉体喷射注浆桩墙
钻孔灌注桩
排桩式
挖孔灌注桩
板桩式 板墙式
钢板桩
钢管桩
型钢横挡板
现浇地下连续墙
组合式
加筋水泥土墙
开挖前在基坑周围设置砼灌注桩,桩的排列有间隔式、双
排式和连续式,桩顶设置砼连系梁或锚桩、拉杆。优点:施 工方便、安全度好、费用低;缺点:止水性差。
10
深基坑的间隔式排桩支护
桩顶连续梁 锚杆及横撑
水平支撑
深基坑的间隔式排桩支护 工程案例:郑州地铁1号线二七广场段基坑工程
土体失稳,剪切破坏
p
将土体一分为二
土体内某一曲面
滑裂 面
土体剪切破坏模型
外力在该 面上产生 剪应力
ቤተ መጻሕፍቲ ባይዱ抗剪强度
土粒间的黏 聚力
两部分间 的摩檫力
二、土体剪切破坏的防治:
为了避免基坑土方坍塌滑落目前所采取的方法主要有: 放坡开挖(仅适用于土质较好的浅基坑) 基坑支护
基坑支护是指为保证地下结构施工及基坑周边环
土力学与基础工程
剪切破坏与基坑支护
土工程学院 xxx
第四章 剪切破坏与基坑支护
一、土体强度的破坏机理 二、土体破坏的防治措施 三、工程案例介绍
工程中土的破坏形式主要为滑动破坏面—剪切破坏。
一、土体抗剪强度破坏的机理:
土粒间粘结强度小—松散性 荷载作用(土体自重、外荷载) 土中含水量明显变化
土粒受力发生相对移动
相关文档
最新文档