非金属材料纳米二氧化锆概论

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非金属材料纳米二氧化锆

摘要:本文介绍了纳米二氧化锆的结构和性质,纳米二氧化锆的一些制备方法及应用。由于纳米二氧化锆具有优良的物理和化学性能,它的应用也将会越来越受人瞩目。

关键词:纳米二氧化锆;制备方法;应用;

纳米材料是指在三个维度空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米材料的分类方法很多,如果按照维数分类的话,可分为四类:零维纳米颗粒、纳米团簇、一维纳米线、纳米管、纳米带及纳米棒等、二维纳米片、超晶格及厚度在纳米尺度的薄膜等、三维以零维、一维或二维材料为结构单元的聚集材料和多孔材料等。通过研究已问世的纳米材料有很多种,包括金属纳米材料、半导体纳米材料、陶瓷纳米材料、高分子纳米材料以及由它们组成的各种复合材料等。纳米材料繁多的组成形式和千变万化的结构特征,开拓了化学领域特别是材料化学的研究新阵地,同时也大大扩展了材料的应用范围。作为一种重要的结构功能材料,二氧化错具有耐高温、硬度大、热稳定性和化学稳定性好等特点,在燃料电池、隔热、信息、电子及仿生材料等领域有着广泛的应用,业界对二氧化锆纳米材料的研究也非常活跃,其合成与应用已引起广大研究者的重视。

1.二氧化锆的结构与性质

1.1二氧化锆的结构

二氧化锆(ZrO2)有三种物相结构:当温度高于2370℃时,二氧化锆为立方蛮石型结构

(c-ZrO2;),空间群为Fm3m,由Zr4+构成的面心立方点阵占据二分之一八面体空隙,O2-占据面心立方点阵所有的四面体空隙;1170-2370℃之间二氧化结以四方相形式存在(t-ZrO2;),四方二氧化锆相当于蛮石结构沿着C轴伸长而变形的晶体结构,空间群为P42/nmc;室温下二氧化浩以单斜形式存在(m-ZrO2),单斜二氧化锆晶体则可以看作四方结构晶体沿着P角偏转一定角度而构成的,空间群为P21/c (如图1-1所示)。不同物相的二氧化锆的晶格常数和密度列于表

1-1[1]

图1-1 立方(a)、四方(b)、单斜(c)二氧化锆的单胞结构

单斜相((monoclinic)四方相((tetragonal)立方相((cubic)(1-1)

从热力学角度来说,室温下单斜相是稳定相,四方相和立方相是亚稳相。如方程式1-1所示,加热时二氧化锆由单斜相转变为四方相,体积收缩;在温度变化、应力或其它外界条件作用下亚稳的四方相会转化为单斜相,并伴有3%~5%的体积膨胀,同时这种相变与四方相的颗粒大小及含量也有密切关系[1]。

表1-1纯二氧化锆的晶格常数和密度

晶型晶格常数密度

a b c d (g/cm3)

单斜0.51507 0.52028 0.53165 99.2 5.55

四方0.5074 0.5074 0.5088 90 6.1

立方0.5117 0.5117 0.5117 90 6.27

1.2二氧化锆的性质

二氧化锆中Zr-O键强约为Si-O键强的94%,在后者中每个Si与4个O配位,而二氧化锆中每个Zr与7个以上的O配位,因此二氧化锆具有很高的化学稳定性。除热的浓硫酸和氧氟酸之外, 二氧化锆不溶于其它无机及有机溶剂。二氧化锆具有弱酸、弱碱双重性质,与碱和碳酸盐共焰时反应生成锆酸盐,它能溶解于馆融的硼砂、玻璃和硫酸氧钾等溶体中[2]。二氧化锆具有耐高温、耐腐烛、耐磨、不导电、不导磁等特性,抗热冲击性好、折射率高、热稳定性好。1979年Nakano等人还通过实验发现了二氧化锆的氧化和还原性[3]。二氧化锆易于产生氧空位(又被归类于P型半导体),能与活性物质发生独特的相互作用,因此也是颇具特色的催化剂和催化剂载体[1]。

1.2.1影响二氧化锆物相结构的因素

二氧化锆是一个多相体系,不同相结构显示不同的性质。在二氧化锆单斜相和四方相转变的过程中会有3 %-5%的体积变化(加热时单斜相转变为四方相,体积收缩;冷却时四方相转变为单斜相,体积膨胀),从而引起剪切应力的增大,使得材料的热抗震性能大大降低,易发生开裂[1]。为了克服因相变引起体积变化这一问题,近年来科学家们围绕二氧化锆物相结构的稳定性开展了大量研究。

首先,二氧化锆晶粒的尺寸大小对其物相结构有影响。二氧化锆纳米颗粒从四方相向单斜相转变的过程中存在一个临界尺寸,这已被很多实验所证实,不过对于临界尺寸的大小还存在很多争论。1965年,Garvie首先借助热力学理论提出了这一看法,因四方相二氧化锆比单斜相二氧化锆具有更低的表面能,在一定温度和压力下,随着二氧化锆纳米颗粒尺寸的增大,两相结构间的表面能差别逐渐减少,在颗粒长大到某一尺寸之前,四方相二氧化锆可以在低温条件下稳定存在[4]。1978年,Garvie又研究了二氧化锆纳米晶的相稳定性,并且估计临界尺寸约为l0nm[5];尺寸在11-30nm之间时四方相和单斜相共存;当尺寸接近30nm时,形成单斜相的二氧化锆;Shukla等人利用溶胶凝胶法合成了无添加剂的室温稳定的四方相二氧化锆,利用HR-TEM观察表明当颗粒粒径达到45nm时才出现单斜相二氧化锆[6].Iversen 等人在超临界水或超临界异丙醇的条件下,利用连续合成法制备了粒径小于10nm的单斜相二氧化锆,因此他们认为二氧化锆由四方向单斜相转变的临界尺寸为5-6nm[7]。目前,虽然二氧化锆由四方相向单斜相转变的临界尺寸尚无定论,但可以肯定的是减小晶体粒径有利于形成室温稳定的四方相二氧化锆。

其次,掺杂对二氧化锆物相结构也有重要影响。目前,室温稳定的四方相或者立方相二氧化锆的获得主要通过以下掺杂方法:(1)通过掺杂离子半径比错离子大的四价金属来增大阳离子和阴离子的半径比,如Ce4+[8]; (2)通过掺杂离子半径小于四价错的碱土和稀土金属离子,如Ca2+[9], Mg2+[10],Y3+[11], Er3+[12]等。理论和实践都已证实,当在二氧化锆晶体中引入一定量的低价态阳离子时,它们会取代错离子的位置,此时为了保持材料的电中性会引入氧空位,分布在错离子周围的空位降低了局部氧氧之间的排斥力,使配位层产生较大的畸变,从而促进室温条件下四方相或者立方相二氧化锆的稳定[1];(3)利用碳、氮等阴离子的掺杂稳定室温

相关文档
最新文档