7平面直角坐标系-坐标的平移基础题
《常考题》初中七年级数学下册第七单元《平面直角坐标系》基础练习(含答案解析)
![《常考题》初中七年级数学下册第七单元《平面直角坐标系》基础练习(含答案解析)](https://img.taocdn.com/s3/m/9767f9e5a216147916112854.png)
一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )C .E7,D6D .E6,D7 2.已知两点(,5)A a ,(1,)B b -且直线//AB x 轴,则( )A .a 可取任意实数,5b =B .1a =-,b 可取任意实数C .1a ≠-,5b =D .1a =-,5b ≠ 3.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( )A .(-3,6)B .(-6,3)C .(3,-6)D .(8,-3) 4.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1- 5.在平面直角坐标系中,与点P 关于原点对称的点Q 为()1,3-,则点P 的坐标是( ) A .()1,3 B .()1,3-- C .()1,3- D .()1,3- 6.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置7.已知点A 的坐标为(2,1)--,点B 的坐标为(0,2)-,若将线段AB 平移至A B ''的位置,点A '的坐标为(3,2)-,则点B '的坐标为( )A .(3,2)--B .(0,1)C .(1,1)-D .(1,1)- 8.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 9.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限10.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .111.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1)B .(0,-2)C .(3,1)D .(0,4) 12.在平面直角坐标系中,点P(-5,0)在( ) A .第二象限B .x 轴上C .第四象限D .y 轴上13.点(),A m n 满足0mn =,则点A 在( ) A .原点 B .坐标轴上 C .x 轴上D .y 轴上 14.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 15.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒二、填空题16.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.17.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B .C .D 处的其它甲虫,规定:向上向右走为正,向下向左走为负、如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A C →(______,______),B C →(______,______),C →______(1+,______);(2)若图中另有两个格点M .N ,且M A →(3,4)a b --,M N →(5,2)a b --,则N A →应记为______.18.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.19.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.20.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 21.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.22.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .23.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___.24.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次运动到点(2,0),第3次运动到点(3,-1),…,按照这样的运动规律,点P 第17次运动到的点的坐标为__________.25.如图所示,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点1(0,1)P,2(1,1)P,3(1,0)P,4(1,1)P-,5(2,1)P-,6(2,0)P,…,则点2020P的坐标是______.26.如图,已知点A的坐标为(−2,2),点C的坐标为(2,1),则点B的坐标是____.三、解答题27.平面直角坐标系中有点A(m+6n,-1),B(-2,2n-m),连接AB,将线段AB先向上平移,再向右平移,得到其对应线段A'B'(点A'和点A对应,点B'和点B对应),两个端点分别为A'(2m+5n,5),B'(2,m+2n).分别求出点A'、B'的坐标.28.如图是我国南沙群岛中某个小岛的平面示意图,小明建立了平面直角坐标系后,营房的坐标为(2,5)-,哨所2的坐标为(2,2)-.(1)请将小明所做的坐标系在图上画出,并写出雷达,码头,停机坪,哨所1的坐标. (2)如果平移直角坐标系,使营房为坐标原点,值班士兵从营房出发,沿着(3,3),(1,6),(4,8),(4,7),(5,2),(1,10)---的路线巡逻,请依次写出他所经过的地方.29.如图,四边形ABCD 所在的网格图中,每个小正方形的边长均为1个单位长度. (1)建立以点B 为原点,AB 边所在直线为x 轴的直角坐标系;(2)写出点A 、B 、C 、D 的坐标;(3)求出四边形ABCD 的面积.30.如图1,已知直角梯形ABCO 中,∠AOC =90°,AB ∥x 轴,AB =6,若以O 为原点,OA ,OC 所在直线为y 轴和x 轴建立如图所示直角坐标系,A(0,a),C(c ,0)中a ,c 满足|a+c ﹣7c -=0(1)求出点A 、B 、C 的坐标;(2)如图2,若点M 从点C 出发,以2单位/秒的速度沿CO 方向移动,点N 从原点出发,以1单位/秒的速度沿OA 方向移动,设M 、N 两点同时出发,且运动时间为t 秒,当点N 从点O 运动到点A 时,点M 同时也停止运动,在它们的移动过程中,当2S △ABN ≤S △BCM 时,求t 的取值范围:(3)如图3,若点N 是线段OA 延长上的一动点,∠NCH =k ∠OCH ,∠CNQ =k ∠BNQ ,其中k >1,NQ ∥CJ ,求HCJ ABN∠∠的值(结果用含k 的式子表示).。
人教版七年级数学 下册 第七章 7.2.2 用坐标表示平移 课时练(含答案)
![人教版七年级数学 下册 第七章 7.2.2 用坐标表示平移 课时练(含答案)](https://img.taocdn.com/s3/m/0af78078f90f76c661371aa8.png)
第七章平面直角坐标系7.2.2 用坐标表示平移一、选择题1、如图,如果将三角形ABC向左平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1) B.(1,1)C.(7,1) D.(3,3)2、如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A的对应点A1的坐标为( )A.(4,3) B.(2,4)C.(3,1) D.(2,5)3、将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A.向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位4、把点P1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P2处,则P2的坐标是()A.(5,-1)B.(-1,-5)C.(5,-5)D.(-1,-1)5、在如图所示的单位正方形网格中,三角形ABC经过平移后得到三角形A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)二、填空题6、线段CD是由线段AB平移得到的。
点A(–1,4)的对应点为C(4,7),则点B(– 4,– 1)的对应点D的坐标为7、如图,在平面直角坐标系中,一动点从原点O出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为.8、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB 平移后得到线段A′B′(点A’与点A对应).若点A′的坐标为(-2,2),则点B′的坐标为__________.9、△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3)将其平移到点A′(-1,-2)处,使A与A′重合,则B′、C′两点坐标分别为, .10、点P(-5,1)沿x轴正方向平移2个单位,在沿y轴负方向平移4个单位所得的点的坐标为。
数学六年级下册第七章-用坐标表示平移-课件与答案
![数学六年级下册第七章-用坐标表示平移-课件与答案](https://img.taocdn.com/s3/m/25c1042bcd1755270722192e453610661ed95a3d.png)
7.2
2.用坐标表示图形的平移:
一般地,在平面直角坐标系内,如果把一个图形各个点
的横坐标都加(或减去)一个正数a,相应的新图形就是把原图
形向右(或左)平移a个单位长度;如果把它各个点的纵坐标都
加(或减去)一个正数a,相应的新图形就是把原图形向上(或
下)平移a个单位长度.
数学
七年级 下册
配RJ版
第七章
点为C(1,1),则点B(3,2)的对应点D的坐标是 (6,2)
.
数学
七年级 下册
配RJ版
第七章
7.2
【变式1】如图,A和B的坐标为(2,0),(0,1),若将线段AB平移
1
至A1B1,则ab的值为
.
数学
知识点2
七年级 下册
配RJ版
第七章
7.2
坐标系中的平移作图
【例题2】如图,将三角形ABC向右平移5个单位长度,再向下
数学
配RJ版
七年级 下册
数学
CONTENTS
目
录
七年级 下册
配RJ版
第七章
第七章 平面直角坐标系
7.2
坐标方法的简单应用
第2课时 用坐标表示平移
01
课标要求
02
基础梳理
03
典例探究
04
课时训练
7.2
数学
七年级 下册
配RJ版
第七章
7.2
在平面直角坐标系中,能写出一个已知顶点坐标的多边
形沿坐标轴方向平移一定距离后图形的顶点坐标,知道对应
第七章
7.2
(3)①如解图1,当点P在线段BD上时,∠APC=∠PCD+∠PAB.
数学
七年级下册练习及答案用坐标表示平移
![七年级下册练习及答案用坐标表示平移](https://img.taocdn.com/s3/m/461d1cbd6f1aff00bed51e70.png)
用坐标表示平移一、单选题(共29题;共58分)1.已知点A(3-p,2+p)先向x轴负方向平移2个单位,再向y轴负方向平移3个单位得点B(p,-p),则点B的具体坐标为()A. B. C. D.2.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A. (﹣1,2)B. (2,1)C. (2,﹣1)D. (3,﹣1)3.将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A. (1,1)B. (-1,3)C. (5,1)D. (5,3)4.已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A. (-3,5),(-6,3)B. (5,-3),(3,-6)C. (-6,3),(-3,5)D. (3,-6),(5,-3)5.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A. (﹣2,﹣4)B. (﹣2,4)C. (2,﹣3)D. (﹣1,﹣3)6.将△ABC的三个顶点的横坐标都加上6,纵坐标都减去5,则所得图形与原图形的关系是()A. 将原图形向x轴的正方向平移了6个单位,向y轴的正方向平移了5个单位B. 将原图形向x轴的负方向平移了6个单位,向y轴的正方向平移了5个单位C. 将原图形向x轴的负方向平移了6个单位,向y轴的负方向平移了5个单位D. 将原图形向x轴的正方向平移了6个单位,向y轴的负方向平移了5个单位7.如图,在平面直角坐标系中,将点A(﹣2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是()A. (﹣2,﹣3)B. (﹣2,6)C. (1,3)D. (﹣2,1)8.点M(﹣3,﹣5)是由N先向上平移4个单位,再向左平移3个单位而得到,则点N的坐标为()A. (0,﹣9)B. (﹣6,﹣1)C. (1,﹣2)D. (1,﹣8)9.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A. (6,2)B. (4,4)C. (2,6)D. (12,﹣4)10.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2)则点B′的坐标为()A. (4,3)B. (3,4)C. (-1,-2)D. (-2,-1)11.过点A(﹣3,2)和点B(﹣3,5)作直线,则直线AB()A. 平行于y轴B. 平行于x轴C. 与y轴相交D. 与y轴垂直12.在平面直角坐标系中,已知线段AB的两个端点分别是A(- 4 ,-1).B(1,1) 将线段AB平移后得到线段A ’B’,若点A’的坐标为(-2 , 2 ) ,则点B’的坐标为()A. ( 3 , 4 )B. ( 4 , 3 )C. (-1 ,-2 )D. (-2,-1)13.在平面直角坐标系中,将点关于原点对称得到点,再将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.14.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为()A. (3,4)或(2,4)B. (2,4)或(8,4)C. (3,4)或(8,4)D. (3,4)或(2,4)或(8,4)15.如图,在平面直角坐标系中,点B在x轴上,△AOB是等边三角形,AB=2,则点A的坐标为( )A. (2,)B. (1,2)C. (1,)D. (,1)16.在平面直角坐标系中,将点(1,2)先向左平移2个单位长度,再向下平移3个单位长度,则平移后得到的点是()A. (﹣1,﹣1)B. (﹣1,5)C. (3,﹣1)D. (3,5)17.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C(2,5),则点B(﹣4,﹣1)的对应点D的坐标为()A. (﹣8,﹣3)B. (4,2)C. (0,1)D. (1,8)18.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A. 5个B. 4个C. 3个D. 2个19.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (4,0)D. (0,-4)20.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度的到点A′,则点A′的坐标是()A. (-5,6)B. (1,2)C. (1,6)D. (-5,2)21.若将点A(m+2,3)先向下平移1个单位,再向左平移2个单位,得到点B(2,n﹣1)则()A. m=2,n=3B. m=2,n=5C. m=﹣6,n=3D. m=﹣6,n=522.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A. -1B. -4C. 2D. 323.在平面直角坐标系中,已知点,,平移线段,使点落在点处,则点的对应点的坐标为()A. B. C. D.24.若点A的坐标是,AB=4,且AB平行于y轴,则点B的坐标为()A. B. 或 C. D. 或25.过点和作直线,则直线()A. 与轴平行B. 与轴平行C. 与轴相交D. 与轴,轴均相交26.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)27.在平面直角坐标系中,点向左平移个单位长度得到的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限28.点先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是()A. B. C. D.29.在平面直角坐标系中,点先向左平移个单位,再向下平移个单位,得到的()A. B. C. D.二、填空题(共20题;共25分)30.抛物线y=x2+4x+3向下平移4个单位后所得的新抛物线的表达式是________.31.将点P(a+1,2a)向上平移8个单位得到点在第二象限,则a的取值范围是________.32.在平面直角坐标系中,点A的坐标为(﹣1,3),线段AB∥x轴,且AB=4,则点B的坐标为________ .33.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是________.34.在平面直角坐标系中,过三点A(0,0),B(2,2),C(4,0)的圆的圆心坐标为________.35.将线段AB平移1cm得到线段A'B',则点A到点A'的距离是________ cm.36.在平面直角坐标系xOy中,点A、B的坐标分别为(3,m)、(3,m+2),若线段AB与x轴有交点,则m的取值范围是________.37.如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为________ 。
人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案
![人教版七年级下第七章平面直角坐标系(用坐标表示平移)同步练习题含答案](https://img.taocdn.com/s3/m/374dcc032e60ddccda38376baf1ffc4ffe47e26c.png)
【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.
13.D
【分析】根据在平面直角坐标系中坐标与图形变化-平移的规律进行判断.
【详解】解:点P(2,3)平移后变为点P1(3,-1),表示点P向右平移1个单位,再向下平移4个单位得到点P1.
故选D.
【点睛】本题考查了坐标与图形变化-平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)
∴平移方法为向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=0+1=1,
∴a22b=1²-2×1=-1;
故答案为:-1.
【点睛】本题考查了平面直角坐标系-点的平移,根据题意得出平移方式是解本题的关键.
3.
【分析】把点 向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.
【详解】解:把点 向右平移5个单位得到点 ,则点 的坐标为 ,即 ,
二、单选题
5.如图,用平移三角尺的方法可以检验出图中平行线共有( )
A.3对B.4对C.5对D.6对
6.在平面直角坐标系中,将点 向右平移 个单位得到点 ,则点 关于 轴的对称点的坐标为()
A. B. C. D.
7.□ 的顶点坐标分别是为 , , ,则点 的坐标是()
A. B. C. D.
8.已知关于 的一元二次方程 的两根分别记为 , ,若 ,则 的值为()
(2)通过证明 ,即可求证;
七年级数学下册第七章平面直角坐标系7.2.2用坐标表示平移课件新版新人教版
![七年级数学下册第七章平面直角坐标系7.2.2用坐标表示平移课件新版新人教版](https://img.taocdn.com/s3/m/50d6218a561252d381eb6e25.png)
课堂导学
3.把A(2,3)向左平移2个单位,再向上平移6个单位 得到的点的坐标是____(_0_,__9_) _.
4.线段AB是由线段CD平移得到,点A(-2,1)的对 应点为C(1,1),则点B(3,2)的对应点D的坐标是 __(_6_,__2_)___.
5.如图,三角形ABC的顶点都在 方格纸的格点上, 如果将三角形 ABC先向右平移4个单位长度,再 向下平移1个单位长度,得到三角 形A1B1C1,那么点A的对应点A1的 坐标为___(_2_,__5_)__.
课堂导学
6.如图,把三角形ABC经过一定的变换得到三角形 A′B′C′,如果三角形ABC上点P的坐标为(a,b),那 么点P变换后的对应点P′的坐标为_(_a_+__3_,__b_+__2_)__.
2. 单击鼠标右键,选择“更改图片”,选
3. 在“替换为”下拉列表中选择替换字体。 4. 点击“替换”按钮,完成。
PPT放映 设置 PPT放映场合不同,放映的要求也不同,下面将例举几种常用的放映设置方式。
让PPT停止自动播放
1. 单击”幻灯片放映”选项卡,去除“使用计时”选项即可。
让PPT进行循环播放
课堂导学
对点训练一 1.已知点A(3,-2),写出这点经过平移后得到的点
的坐标: (1)向右平移3个单位得到__(6_,__-__2_),或向左平移3个
单位得到__(_0_,__-__2_) _; (2)向上平移3个单位得到__(3_,__1_)__,或向下平移3个
单位得到__(3_,__-__5_).
最新人教版七年级下册数学培优第七章 用坐标表示平移
![最新人教版七年级下册数学培优第七章 用坐标表示平移](https://img.taocdn.com/s3/m/b391b27600f69e3143323968011ca300a6c3f6cc.png)
6.(教材 P80 习题 T10 变式)如图,已知长方形 ABCD 四个顶点的坐标分别是 A(2, -2 2 ),B(5,-2 2 ),C(5,- 2 ),D(2,- 2 ).将长方形 ABCD 向上平移 2 个单位长度,求所得的四边形 A′B′C′D′的四个顶点的坐标.
【解析】∵将长方形 ABCD 向上平移 2 个单位长度,∴所得的四边形 A′B′C′D′的 四个顶点的坐标分别为:A′(2,- 2 ),B′(5,- 2 ),C′(5,0),D′(2,0).
7.将某图形的各顶点的纵坐标都减去3,横坐标保持不变,则该图形( D ) A.沿x轴向右平移3个单位 B.沿x轴向左平移3个单位 C.沿y轴向上平移3个单位 D.沿y轴向下平移3个单位
8.如图,在平面直角坐标系中,点A(-3b,0)为x轴负半轴上一点,点B(0,4b) 为y轴正半轴上一点,其中b满足方程3(b+1)=6. (1)求点A,B的坐标; (2)点C为y负半轴上一点,且△ABC的面积为12,求点C的坐标.
将线段PQ平移使点P,Q分别落在两条坐标轴上,则点P平移后的对应点的
坐标是( D )
A.(0,2)
B.(0,-3)
C.(0,-2)或(3,0)
D.(0,2)或(-3,0)
3.若点P(2-m,-1),将P点向右平移2个单位长度后落在y轴上,则m= ___4___. 4.(教材P78习题T1变式)编队飞行(即平行飞行)的两架飞机A,B在坐标系中的 坐标分别为A(-1,2),B(-3,3),当飞机A飞到指定位置的坐标是(3,-1) 时,飞机B的坐标是____(_1_,__0_) _.
5.(教材P79习题T8变式)已知,三角形ABC在平面直角坐标系中的位置如图所 示. (1)写出A,B,C三点的坐标. (2)三角形ABC中任意一点P(x0,y0)经平移后 对应点为P1(x0+4,y0-3).将三角形ABC作 同样的平移得到△A1B1C1,写出B1,C1的坐标. (3)求△ABC的面积.
七年级数学下册 第七章 平面直角坐标系 7.2 坐标方法的简单应用 7.2.2 用坐标表示平移一课一
![七年级数学下册 第七章 平面直角坐标系 7.2 坐标方法的简单应用 7.2.2 用坐标表示平移一课一](https://img.taocdn.com/s3/m/3f48920b7c1cfad6185fa798.png)
第七章平面直角坐标系 7.2 坐标方法的简单应用用坐标表示平移一课一练·基础闯关题组点的平移1.将点P(2m+3,m-2)向上平移1个单位长度得到点P′,且点P′在x轴上,那么点P的坐标是( )A.(9,1)B.(5,-1)C.(7,0)D.(1,-3)【解析】选B.∵将点P(2m+3,m-2)向上平移1个单位长度得到点P′,∴点P′的坐标为(2m+3,m-1),∵点P′在x轴上,∴m-1=0,解得m=1,∴点P的坐标是(5,-1).2.(2017·通州区一模)如图,在平面直角坐标系xO1y中,点A的坐标为(1,1).如果将x轴向上平移3个单位长度,将y轴向左平移2个单位长度,交于点O2,点A的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(3,-2)B.(-3,2)C.(-2,-3)D.(3,4)【解析】选A.x轴向上平移3个单位长度,y轴向左平移2个单位长度相当于把点A向下平移3个单位长度,再向右平移2个单位长度,所以在平面直角坐标系xO2y中,点A的坐标是(3,-2).3.在平面直角坐标系中,将点P(2,3)向左平移3个单位长度,再向下平移个单位长度后,得到的点位于第________象限.【解析】∵点P(2,3)向左平移3个单位长度,再向下平移个单位长度,∴平移后的点的横坐标为2-3=-1,纵坐标为3-,∴平移后的点的坐标为(-1,3-),在第三象限.答案:三4.点P在平面直角坐标系的位置如图所示,将点P向下平移a个单位长度得到点P′,若点P′到x轴和y轴的距离均相等,且点P′在第三象限,则a的值是________.【解析】由题干图得知:P(-2,4),∵将点P向下平移a个单位长度得点P′,∴P′(-2,4-a),∵点P′到x轴和y轴的距离均相等,且点P′在第三象限,∴4-a=-2,∴a=6.答案:65.已知点P(2a-12,1-a)位于第三象限,点Q(x,y)位于第二象限且是由点P向上平移一定单位长度得到的.(1)若点P的纵坐标为-3,求a的值.(2)在(1)的条件下,试求出符合条件的一个点Q的坐标.【解析】(1)根据题意,1-a=-3,解得a=4.(2)∵a=4,∴2a-12=2×4-12=8-12=-4,∴点P的坐标是(-4,-3),∴点Q的坐标可以是(-4,1).(答案不唯一.只要横坐标是-4,纵坐标大于0即可.)题组图形的平移与坐标1.(2017·市中区一模)如图,在10×6的网格中,每个小方格的边长都是1个单位长度,将△ABC平移到△DEF的位置,下面正确的平移步骤是( )A.先向左平移5个单位长度,再向下平移2个单位长度B.先向右平移5个单位长度,再向下平移2个单位长度C.先向左平移5个单位长度,再向上平移2个单位长度D.先向右平移5个单位长度,再向上平移2个单位长度【解析】选A.根据网格结构,观察对应点A,D,点A向左平移5个单位长度,再向下平移2个单位长度即可到达点D的位置,所以平移步骤是:先把△ABC向左平移5个单位长度,再向下平移2个单位长度.2.在平面直角坐标系中,已知线段AB的两个端点分别是A(1,2),B(2,0),将线段AB平移后得到线段CD,若点A的对应点是点C(3,a),点B的对应点是点D(b,1),则a-b的值是( )A.-1B.0【解析】选A.由题意得,对应点之间的关系是横坐标加2,纵坐标加1,∴2+2=b,2+1=a,∴a=3,b=4.∴a-b=-1.3.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),右眼B的坐标为(0,3),则将此“QQ”笑脸向右平移3个单位长度后,嘴唇C的坐标是________.【解析】∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),∴嘴唇C的坐标为(-1,1),∴将此“QQ”笑脸向右平移3个单位长度后,嘴唇C的坐标为(2,1).答案:(2,1)4.(2017·某某期中)在平面直角坐标系中,△A′B′C′是由△ABC平移后得到的,△ABC中任意一点P(x0,y0)经过平移后对应点为P′(x0+6,y0+1),若点A′的坐标为(5,2),则它的对应的点A的坐标为________.【解析】由平移后P(x0,y0)对应点为P′(x0+6,y0+1)可知平移方式为:向右平移6个单位长度,向上平移1个单位长度,∵点A′(5,2)的对应的点A的坐标为(5-6,2-1),即(-1,1).答案:(-1,1)5.如图所示,在四边形ABCO中,AB∥OC,BC∥AO,A,C两点的坐标分别为(-,),(-2,0),A,B两点间的距离等于O,C两点间的距离.(1)点B的坐标为________.(2)将这个四边形向下平移2个单位长度后得到四边形A′B′C′O′,请你写出平移后四边形四个顶点的坐标.【解析】(1)∵C点的坐标为(-2,0),∴OC=2,∵AB∥OC,AB=OC,∴将点A向左平移2个单位长度得到点B的坐标,∵点A的坐标为(-,),∴点B的坐标为(--2,),即(-3,).答案:(-3,)(2)∵将四边形ABCO向下平移2个单位长度后得到四边形A′B′C′O′,∴点A′的坐标为(-,-),点B的坐标为(-3,-),点C′的坐标为(-2,-2),点O′的坐标为(0,-2).6.如图,将三角形ABC通过平移,使点A移动到点E,请你写出点B,C的对应点F,G的坐标,作出三角形EFG,并说明△ABC通过怎样移动得到三角形EFG?【解析】平移后三角形EFG的顶点坐标分别是:F(6,8),G(10,4),平移后的三角形EFG如图,将三角形ABC向右移动6个单位长度,再向上平移4个单位长度得到三角形EFG.如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC,BD,CD.(1)点C的坐标为________,点D的坐标为________,四边形ABDC的面积为________.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.【解析】(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12.答案:(0,2) (6,2) 12(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4-x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0).【母题变式】[变式一]如图所示的直角坐标系中,三角形ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将△ABC向上平移1个单位长度,再向右平移2个单位长度,得到△A1B1C1,则A1的坐标为________;B1的坐标为________.(2)求线段BC扫过的面积.【解析】(1)根据题意,把各点的横坐标加2,纵坐标加1得对应点的坐标,即A1(2,1),B1(9,2). 答案:(2,1) (9,2)(2)线段BC扫过的面积=▱BCC′B′面积+▱B′C′C1B1面积=1×3+2×4=11.[变式二]已知A(0,2),将线段AB平移,使A平移到C(-3,0),B平移到D(1,-2),CD交y轴于点E.(1)求B点的坐标.(2)P为x轴上的一动点,若S△ABP=5,求P点的坐标.【解析】(1)∵A(0,2),将线段AB平移,使A平移到C(-3,0),∴平移规律为向左3个单位长度,向下2个单位长度,∵B平移到D(1,-2),又4-3=1,0-2=-2,∴点B的坐标为(4,0).(2)设P点坐标为(x,0),则BP=|x-4|,∵S△ABP=5,∴×|x-4|×2=5,解得x=-1或9.∴P点坐标为(-1,0)或(9,0).。
七年级数学上册-第七章《平面直角坐标系》解析版
![七年级数学上册-第七章《平面直角坐标系》解析版](https://img.taocdn.com/s3/m/edce114b54270722192e453610661ed9ac515576.png)
第七章《平面直角坐标系》同步单元基础与培优高分必刷卷一:选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.根据下列表述,能够确定具体位置的是()A .北偏东25°方向B .距学校800米处C .国家大剧院音乐厅4排D .东经116°20″北纬39°56″【答案】D【分析】根据确定一个点的具体位置的方法判断即得.确定一个点的具体位置的方法是确定点所在的方向和距离,或用有序数对.【详解】A.北偏东25°方向不能确定一个点的具体位置,缺少距离,故此选项错误;B.距学校800米处不能确定一个点的具体位置,缺少方向,故此选项错误;C.国家大剧院音乐厅4排不能确定一个点的具体位置,应具体到8排几号,故此选项错误;D.东经116°20″北纬39°56″可以确定一个点的具体位置,故此选项正确.故选:D .【点睛】本题考查确定位置的方法,熟练掌握确定一个点的具体位置是解题的关键.2.象棋起源于中国,中国象棋文化历史悠久.如图,是中国象棋棋盘的一部分,若“帅”位于点()1,1-,“炮”位于点()2,1上,则“兵”位于点()上A .()0,2B .()2,3-C .()3,0-D .()1,2-【答案】D【分析】本题考查了根据点的位置求点的坐标,根据纵坐标在上用加法,横坐标在左用减法,即可求出“兵”的坐标,解题的关键是找到点所对应的横坐标和纵坐标,再写出点的坐标.【详解】解: “兵”在“炮”的上面一行,∴“兵“的纵坐标是112+=,“兵”在“帅”的左面第二格上,∴“兵”的横坐标是121-=-,∴“兵”的坐标是()1,2-,故选:D .3.平面直角坐标系中,已知(,3)A a ,(3,)B b 位置如图所示,则下列关系一定成立的是()A .3a <B .3b >C .a b >D .a b<A 、3a <,故A 符合题意;B 、3b <,故B 不符合题意;C 、a 与b 的大小关系不能确定,故D 、a 与b 的大小关系不能确定,故故选:A .4.如图,在直角坐标系中,已知点()3,1A --,点()2,1B -,平移线段AB ,使点A 落在()10,1A -,点B 落在点1B ,则点1B 的坐标为()A .()0,2B .()1,3C .()2,2D .()1,1故选:D .5.直角坐标系中,点()2,3A 向右平移2个单位得到点1A ,则1A 点的坐标是()A .()4,3B .()-2,1C .()0,3D .()4,3-【答案】A【分析】本题考查了坐标与图形的变化——平移,根据点向右平移,横坐标加,纵坐标不变,即可解答.【详解】∵点()2,3A 向右平移2个单位得到点1A ,∴点1A 的横坐标为:224+=,纵坐标为3,∴点1A 的坐标为()4,3.故选:A6.已知点(),P a b 在第二象限,且3a =,8b =,则点P 的坐标为()A .()3,8B .()3,8--C .()3,8-D .()3,8-7.如图,在平面直角坐标系中,点A 的坐标是()3,0-,点B 的坐标是()0,2-,将线段AB 平移,使其一个端点到点()2,2C ,则平移后另一个端点的坐标是()A .()5,0B .()1,4-C .()5,0或()1,5-D .()5,0或()1,4-【答案】D【分析】分两种情况进行讨论求解即可.【详解】解:①当,A C 为对应点时,∵()30A -,,()2,2C ∴平移规则为:先向右平移5个单位长度,再向上平移2个单位长度,∴点B 的对应点为:()05,22+-+,即为:()5,0;②当,B C 为对应点时,∵()0,2B -,()2,2C ∴平移规则为:先向右平移2个单位长度,再向上平移4个单位长度,∴点A 的对应点为:()32,04-++,即为:()1,4-;综上:平移后另一个端点的坐标是()5,0或()1,4-;故选D .【点睛】本题考查坐标轴下的平移.解题的关键是确定平移规则.8.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA₂A 3,以OA 3为直角边作第三个等腰直角三角OA 3A 4,…,依此规律,得到等腰直角三角形OA 2017A 2018,则点A 2017的坐标为()A .(0,21008)B .(21008,0)C .(0,21007)D .(21007,0)9.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,⋯,按这样的运动规律,经过第25次运动后,动点P 的坐标是()A .()26,0B .()25,0C .()25,1D .()25,2【详解】解:由题可知:每次运动后点的横坐标都增加1,所以第25次运动后点的横坐标为25;点P 的纵坐标按1,0,2,0,1,0,2,0,……,重复出现,每4个数为一个循环,25461÷= ,∴经过第25次运动后,动点P 的坐标是()25,1.故选C .10.数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++=(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二:填空题(本大题共7小题,每小题4分,共28分)11.已知点(),P x y 在第二象限,且3x =,5y =,则点P 的坐标是.12.下图是贵州省部分城市在地图中的位置,若贵阳的位置坐标为()13,,安顺的位置坐标为()01,,请在图中建立适当的直角坐标系,写出遵义的坐标为.【答案】()4,5【分析】本题主要考查了实际问题中用坐标表示位置,根据贵阳和安顺的坐标确定出坐标轴和原点的位置,然后画出坐标系即可得到答案.【详解】解:根据题意可得如下坐标系,∴遵义的坐标为()4,5,故答案为:()4,5.13.若把点523a a -+(,)向上平移3个单位长度后,该点正好落在x 轴上,则a 的值为.【答案】3-【分析】本题主要考查坐标与图形变化—平移,解题的关键是掌握平移的规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.根据平移坐标的变化规律列方程求解即可.【详解】解:∵点523a a -+(,)向上平移3个单位长度后为526a a -+(,),平移后正好落在x 轴上,∴260a +=,解得3a =-.故答案为:3-14.在直角坐标系中,把点A 先向右平移1个单位,再向下平移3个单位得到点B .若点B 的横坐标和纵坐标互为相反数,则点A 的横坐标和纵坐标的和是.【详解】解:设(),A x y ,∵把点A 先向右平移1个单位,再向下平移3个单位得到点B ∴()1,3B x y +-,∵点B 的横坐标和纵坐标互为相反数,∴130x y ++-=,∴312x y +=-=,故答案为:2.15.对于平面直角坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“※”;()()()11221221,,,A B x y x y x y x y ==※※,根据这个规则计算:()(),2,335=-※.【答案】(10,9)-;【分析】本题考查新运算,平面直角坐标系;根据()()()11221221,,,A B x y x y x y x y ==※※代入求解即可得到答案;【详解】解:由题意可得,()()2,33,5(25,33)(10,9)-=-⨯⨯=-※,故答案为:(10,9)-.16.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点2021A 时,点2021A 的坐标为.17.如图,在平面直角坐标系中,已知点()()()111112(1)2A B C D ----,,,,,,,,点P ,点Q 分别从点A ,点C 同时出发,沿长方形ABCD 的边作环绕运动,点P 按逆时针方向以每秒2个单位长度的速度匀速运动,点Q按顺时针方向以每秒3个单位长度的速度匀速运动,则第2023秒P,Q两点相遇地点的坐标是.【点睛】本题考查了点坐标的规律探究.解题的关键在于根据题意正确的推导一般性规律.三、解答题(本大题共8小题,共62分.解答应写出文字说明、证明过程或演算步骤)18.在平面直角坐标系中,已知点()21,3M m m ++,点()2,1N .(1)若点M 在第一象限,且点M 到x 轴的距离与到y 轴的距离相等,求m 的值;(2)若线段MN ∥x 轴,求线段MN 的长度.【答案】(1)2m =;(2)5.【分析】(1)根据第一象限内点的坐标符号特征及点M 到x 轴的距离与到y 轴的距离相等可得321m m +=+,解之即可求解;(2)根据线段//MN x 轴,得到点M N ,的纵坐标相等,即31m +=,解之即可求解;本题考查了点到坐标轴的距离,平行于坐标轴的直线上点的坐标特征,解题的关键是掌握点到x 轴距离等于纵坐标的绝对值,到y 轴距离等于横坐标的绝对值;平行于x 轴的直线上的点纵坐标相等,平行于y 轴的直线上的点横坐标相等.【详解】(1)解:∵M 在第一象限,点M 到x 轴的距离与到y 轴的距离相等,∴321m m +=+,解得2m =;(2)解:∵线段MN ∥x 轴,∴点M N ,的纵坐标相等,即31m +=,解得2m =-,∴()3,1M -,∴线段MN 的长度为()235--=.19.中国象棋棋盘中蕴含着平面直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图①中“马”所在的位置可以直接走到点A 、B 处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为,点C的坐标为,点D的坐标为.(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,并用坐标表示.三个顶点的坐标分别为20.如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC()()()----,,,.A B C23,42,10(1)将ABC 先向右平移4个单位长度,再向下平移3个单位长度,得到A B C ''' (点A 、B 、C 的对应点分别为A B C '''、、),请在图中作出A B C ''' ′;(2)在(1)的条件下,连接AA C C ''、,求四边形AA C C ''的面积.(2)四边形AA C C ''的面积为A AC S ' 21.如图,在平面直角坐标系中,点A ,B 坐标分别为(),0a ,(),a b ,点C 在y 轴上,且BC x ∥轴,a ,b 满足340a b -+-=.一动点P 从原点出发,以每秒2个单位长度的速度沿着O A B C O ----的路线运动(点P 首次回到点O 时停止),运动时间为t 秒()0t ≠.(1)直接写出点A ,B 的坐标;(2)点P 在运动过程中,是否存在点P 到x 轴的距离为12t 个单位长度的情况,若存在,求出点P 的坐标,若不存在,请说明理由.22.在平面直角坐标系中,对于点()A x y ,,若点B 的坐标为()x ay ax y ++,,其中a 为常数,则称点B 是点A 的“a 倍相关点”.例如,点()1,2A 的“3倍相关点”B 的横坐标为:1327+⨯=,纵坐标为:3125⨯+=,所以点A 的“3倍相关点”B 的坐标为()75,.(1)已知点()46M -,的“12倍相关点”是点()N s t ,,求2s t +的值;(2)已知点()12P m ,的“2-倍相关点”是点Q ,且点Q 在y 轴上,求点Q 到x 轴的距离.23.如图1:在平面直角坐标系内,O 为坐标原点,线段AB 两端点在坐标轴上且点()4,0A -,点()0,3B ,将AB 向右平移4个单位长度至OC 的位置.(1)直接写出点C 的坐标______;(2)如图2,过点C 作CD x ⊥轴于点D ,在x 轴正半轴有一点()1,0E ,过点E 作x 轴的垂线,在垂线上有一动点P ,求三角形PCD 的面积;(3)如图3,在(2)的条件下,连接AC ,当ACP △的面积为332时,求点P 的坐标.CD x ⊥轴,4D C x x ∴==,413DE ∴=-=,∵3CD =,PE x ⊥轴,12PCD S CD DE ∴=⋅ 1332=⨯⨯92=;故三角形PCD 的面积为(3)解:①当P 在AC 如图,将PAC △补成直角梯形设()1,P m ,AG DF m ∴==,GP AE ==∴PAC AGP ACFG S S S S =-- 梯形()1122FG CF AG AG GP =⋅+-⋅12PAC S AD CD =⋅ 1832=⨯⨯33122=<,∴此种情况不存在;③当P 在x 的下方时,如图,将PAC △补成直角梯形设()1,P m ,AN DM m ∴==-,NP AE =∴PAC ANP ACMN S S S S =-- 梯形24.如图,已知长方形ABCO 中,8,4AB BC ==,以点O 为原点,,OA OC 所在直线为x 轴和轴建立平面直角坐标系.(1)写出,,A B C 三点的坐标;(2)若点P 从点C 出发,以2个单位长度/秒的速度向CO 方向移动(不超过点O ),点Q 从原点O 出发,以1个单位长度/秒的速度向OA 方向移动(不超过点A ).设,P Q 两点同时出发,在它们移动的过程中,四边形OPBQ 的面积是否发生变化?若不变,求其值;若变化,请说明理由.【答案】(1)A 的坐标为()0,4,点B 的坐标为()8,4,点C 的坐标为()8,0(2)面积不发生变化,为16【详解】(1) 四边形ABCO 是长方形,,,8,4AB OC BC OA AB OC OA BC ∴====∥∥,∴点A 的坐标为()0,4,点B 的坐标为()8,4,点C 的坐标为()8,0.(2)在它们移动的过程中,四边形OPBQ 的面积不发生变化.设运动时间为s t ,则,2OQ t PC t ==,4AQ t ∴=-,25.在平面直角坐标系中,有点(,0),(0,)A a B b ,且a ,b |2|0b +=,将线段AB 向上平移k 个单位得到线段CD .(1)求出点A 、B 的坐标;(2)如图1,若5k =,过点C 作直线l x ∥轴,点M 为直线l 上一点,若MAB △的面积为8,求点M 的坐标;(3)如图2,点E 为线段CD 上任意一点,点F 为线段AB 上任意一点,120EOF ∠=︒.点G 为线段AB 与线段CD 之间一点,连接GE ,GF ,且13DEG DEO ∠=∠,80EGF ∠=︒.试写出AFG ∠与GFO ∠之间的数量关系,并证明你的结论;5k = ,5BC ∴=,(0,2)B - ,2OB ∴=,52OC BC OB ∴=-=-(4,0)A ,4∴=OA ,MAB ABC ACM S S S =+- MAB 的面积为8,108CM ∴-=,2CM ∴=,∴点(2,3)M ,②当点M 在点C 右侧,且在直线⨯MAB ABC BCM ACM S S S S =+- MAB 的面积为8,108CM ∴+=,2CM ∴=-(不合题意舍去)综上所述:点M 的坐标为(3)12AFG GFO ∠=∠,理由如下:延长FG 、CD 交于点N。
7-2-2用坐标表示平移课后分层作业——解析版
![7-2-2用坐标表示平移课后分层作业——解析版](https://img.taocdn.com/s3/m/0deeaa477ed5360cba1aa8114431b90d6c8589d4.png)
7.2.2用坐标表示平移参考答案与试题解析夯基训练知识点1点在坐标系中的平移1.平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,-8)B.(1,-2)C.(-6,-1)D.(0,-1)1.解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).故选C.方法总结:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.2.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)2.【答案】D解:本题可用逆向思维法,将点B(-3,2)向右平移5个单位长度,再向下平移3个单位长度,即还原为原来A点位置,由此可得点A的坐标为(2,-1).知识点2图形在坐标系中的平移3.如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2)B.(a+6,b+2)C.(-a+6,-b)D.(-a+6,b+2)3.解析:根据已知三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A ′B ′C ′.∵△ABC 边上点P 的坐标为(a ,b ),∴点P 变换后的对应点P ′的坐标为(a +6,b +2).故选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据已知对应点找到各对应点之间的平移变化规律.4.如图,线段AB 经过平移得到线段A'B',其中点A,B 的对应点分别为点A',B',这四个点都在格点上.若线段AB 上有一个点P(a,b),则点P 在A'B'上的对应点P'的坐标为()A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)4.【答案】A解:根据点A,B 平移后横纵坐标的变化可得线段AB 向左平移了2个单位长度,向上平移了3个单位长度,然后根据向左平移横坐标减,向上平移纵坐标加求点P 的对应点P'的坐标.知识点3平移作图5.如图,在平面直角坐标系中,P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标;(2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.5.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.解:(1)△A 1B 1C 1如图所示,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.题型总结题型1利用平移坐标系比较其坐标变化规律6.如图,一个动点在第一象限及x轴、y轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2011秒时动点所在位置的坐标是________.6.解析:方法一:动点运动的规律:(0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动;(2,2),动点运动了2×3=6(秒),接着向下运动;(3,3),动点运动了3×4=12(秒),接着向左运动;(4,4),动点运动了4×5=20(秒),接着向下运动;…于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2011-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,则由(n,n)到(n+1,n+1)所用时间增加(2n+2)秒,这样可以先确定第2011秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2011最近,此时n为偶数,即该过程是从(0,43)到(44,0)的过程.2024-2011=13,即从(44,0)向上“退”13步即可.当到2011秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.7.如图为某动物园的示意图.(图中小正方形的边长代表1个单位长度)(1)以虎山为原点,水平向右为x轴正方向、铅直向上为y轴正方向在图中建立平面直角坐标系,并写出各景点的坐标.(2)若以猴园为原点,水平向右为x 轴正方向、铅直向上为y 轴正方向建立平面直角坐标系,写出各景点的坐标.(3)比较(1)、(2)中各景点的坐标,你发现了什么规律?7.解:(1)如图①,由图可得虎山(0,0)、熊猫馆(3,2)、鸟岛(-1,3)、狮子馆(-2,-2)、猴园(3,-1).(2)如图②,由图可得虎山(-3,1)、熊猫馆(0,3)、鸟岛(-4,4)、狮子馆(-5,-1)、猴园(0,0).(3)(2)中各景点的坐标与(1)中的相比,横坐标减小3,纵坐标增加1.题型2利用图形的特征求平移前后的坐标8.如图,长方形ABCD 在坐标平面内,点A 的坐标是(,1),且边AB,CD 与x 轴平行,边AD,BC与y 轴平行,AB=4,AD=2.(1)求B,C,D 三点的坐标.(2)怎样平移,才能使A 点与原点重合?8.解:(1)因为A(2,1),AB=4,AD=2,所以BC 到y 轴的距离为4+2,CD 到x 轴的距离为2+1=3.所以B(4+2,1),C(4+2,3),D(2,3).(2)由题图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).题型3利用坐标的变化确定平移方式9.在平面直角坐标系中,三角形ABC 三个顶点的坐标分别是A(-4,-4),B(-2,-3),C(-3,-1).(1)将三角形ABC 三个顶点的横坐标都加上5,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得三角形A 1B 1C 1与三角形ABC 在大小、形状和位置上有什么关系?(2)将三角形ABC 三个顶点的纵坐标都加上4,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得三角形A 2B 2C 2与三角形ABC 在大小、形状和位置上有什么关系?9.解:平移后的图形如图所示.(1)所得三角形A 1B 1C 1与三角形ABC 的大小、形状完全相同,三角形A 1B 1C 1可以看作是将三角形ABC 向右平移5个单位长度得到的.(2)所得三角形A 2B 2C 2与三角形ABC 的大小、形状完全相同,三角形A 2B 2C 2可以看作是将三角形ABC 向上平移4个单位长度得到的.分析:从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移;横坐标的变化决定图形左右平移,纵坐标的变化决定图形上下平移.题型4利用平移方式确定坐标的变化10.在平面直角坐标系中,三角形ABC的三个顶点的位置如图所示,点A'的坐标是(-2,2),现将三角形ABC平移,使点A变换为点A',点B',C'分别是B,C的对应点.(1)请画出平移后的三角形A'B'C'(不写画法),并直接写出B',C'的坐标;(2)若三角形ABC内部一点P的坐标为(a,b),则点P的对应点P'的坐标是_________. 10.解:(1)如图,B'(-4,1),C'(-1,-1).(2)(a-5,b-2)拓展培优拓展角度1利用图形平移的坐标变化求其覆盖坐标平面的面积11.已知三角形ABC在平面直角坐标系中的位置如图所示,将三角形ABC先向下平移5个单位长度,再向左平移2个单位长度,求平移后C点的对应点的坐标和三角形ABC所扫过部分的面积.11.解:如图,平移后C 点的对应点的坐标为(1,-2).三角形ABC 所扫过部分的面积=S 三角形ABC +S 长方形ABB'A'+S 三角形A″A'C″=3×2×12+3×5+12×2×2=3+15+2=20.拓展角度2利用平移与对称作图求面积12.如图,有8×8的正方形网格,按要求操作并计算.(1)在8×8的正方形网格中建立平面直角坐标系,使点A 的坐标为(2,4),点B 的坐标为(4,2);(2)将点A 向下平移5个单位长度,再关于y 轴对称得到点C,求点C 的坐标;(3)画出三角形ABC,并求其面积.12.解:(1)如图所示.(2)点A 向下平移5个单位长度得到点(2,-1),其关于y 轴对称的点C 的坐标为(-2,-1).(3)如图,S 三角形ABC =S 长方形CDEF -S 三角形BCD -S 三角形AFC -S 三角形ABE=5×6-12×6×3-12×4×5-12×2×2=9.。
七年级数学平面直角坐标系典型例题及答题技巧
![七年级数学平面直角坐标系典型例题及答题技巧](https://img.taocdn.com/s3/m/2c24713c58eef8c75fbfc77da26925c52cc59139.png)
七年级数学平面直角坐标系典型例题及答题技巧单选题1、点A(−3,−5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,−8)B.(1,−2)C.(−6,−1)D.(0,−1)答案:C解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.解:点A的坐标为(−3,−5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是:−3−3=−6,纵坐标为:−5+4=−1,即(−6,−1).故选:C.小提示:本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.2、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2)B.(2,0)C.(﹣2,0)D.(0,﹣2)答案:D解析:点P在y轴上则该点横坐标为0,据此解答即可.∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.3、在平面直角坐标系中,将点(2,l)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)答案:B解析:在平面直角坐标系中,将点(2,l)向右平移时,横坐标增加,纵坐标不变.将点(2,l)向右平移3个单位长度,则所得的点的坐标是(5,1).故选B.小提示:本题运用了点平移的坐标变化规律,关键是把握好规律.4、下面四个点位于第四象限的是()A.(−1,2)B.(−2,−2)C.(2,5)D.(6,−2)答案:D解析:根据直角坐标系中,不同象限内点的坐标特点,依次对四个选项进行判断即可求解.A.(−1,2),因为-1<0,2>0,所以(−1,2)在第二象限,故A不符合题意B.(−2,−2),因为-2<0,所以(−2,−2)在第三象限,故B不符合题意C.(2,5),因为2>0,5>0,所以(2,5)在第一象限,故C不符合题意D.(6,−2),因为6>0,-2<0,所以(6,−2)在第四象限,故D符合题意本题考查了直角坐标系中不同象限内点的坐标特点,第四象限内的点,横坐标大于零,纵坐标小于零.5、以下能够准确表示宣城市政府地理位置的是()A.离上海市282千米B.在上海市南偏西80°C.在上海市南偏西282千米D.东经30.8°,北纬118°答案:D解析:根据点的坐标的定义,确定一个位置需要两个数据解答即可.解:能够准确表示宣城市政府地理位置的是:东经30.8°,北纬118°.故选:D.小提示:本题考查了坐标确定位置,是基础题,理解坐标的定义是解题的关键.6、在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)答案:A解析:点P(1,-2)关于x轴的对称点的坐标是(1,2),故选A.7、某班级第3组第4排的位置可以用数对(3,4)表示,则数对(1,2)表示的位置是( )A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排答案:C解析:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.故某班级第3组第4排位置可以用数对(3,4)表示,则数对(1,2)表示的位置是第1组第2排,故选C.8、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是()A.(3,8)B.(4,7)C.(5,6)D.(6,5)答案:C解析:不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,根据此规律即可知第50个有序数对.观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5…,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1…,∵1+2+3+4+5+6+7+8+9=45,∴第46、47、48、49、50个有序数对依次是(1,10)、(2,9)、(3,8)、(4,7)、(5,6).所以C选项是正确的.小提示:本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.填空题9、如图是中国象棋棋盘的一部分,如果我们把“馬”所在的位置记作(2,1),“卒”所在的位置就是(3,4),那么“相”所在的位置是____________.答案:(5, 3) .解析:马在第2列第1行,表示为(2,1),“卒”所在的位置就是(3,4),可知数对中前面的数表示的是列,后面的数表示的是行.据此进行解答.故答案为(5, 3)由已知可得:数对中前面的数表示的是列,后面的数表示的是行.所以,“相”所在的位置是(5, 3).小提示:本题主要考查了学生用数对表示位置的知识.10、点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.答案:(2,1).解析:将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).小提示:本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11、与点(2,−7)关于y轴对称的点的坐标为_______,关于y=−1对称的点的坐标为_______.答案:(−2,−7)(2,5)解析:关于y轴对称的点的坐标特征是:纵坐标不变,横坐标变为原数的相反数;关于y=−1对称的点的坐标特征是:横坐标不变,纵坐标关于y=−1对称,据此解题.解:点(2,−7)关于y轴对称的点的坐标为(−2,−7),关于y=−1对称的点的坐标为(2,5),所以答案是:(−2,−7);(2,5).小提示:本题考查直角坐标系、关于y轴对称的点的坐标等知识,是基础考点,掌握相关知识是解题关键.12、对于两个非零实数x,y,定义一种新的运算:x∗y=ax +by.若1∗(−1)=2,则(−2)∗2的值是__.答案:-1解析:根据新定义的运算法则即可求出答案.∵1*(-1)=2,∴a1+b−1=2,即a-b=2∴原式=a−2+b2=−12(a-b)=-1故答案为-1.小提示:本题考查代数式运算,解题的关键是熟练运用整体的思想.13、请写出一个在第三象限内的点的坐标:__________(只写一个).答案:(−1,−1)解析:根据第三象限内的点的横坐标和纵坐标都是负数直接写出即可.解:因为第三象限内的点的横坐标和纵坐标都是负数,故坐标可以是(−1,−1)(答案不唯一).小提示:本题考查了平面直角坐标系内点的坐标的特征,解题关键是熟知在不同象限的点的坐标的符号特征.解答题14、已知点P(2a−2,a+5),解答下列各题.(1)点P在x轴上,求出点P的坐标.(2)点Q的坐标为(4,5),直线PQ//y轴;求出点P的坐标.(3)若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.答案:(1)P(−12,0);(2)P(4,8);(3)2021解析:(1)根据x轴上点的坐标特征:纵坐标为0,列出方程即可求出结论;(2)根据与y轴平行的直线上两点坐标关系:横坐标相等、纵坐标不相等即可求出结论;(3)根据题意可得:点P的横纵坐标互为相反数,从而求出a的值,即可求出结论.解:(1)若点P在x轴上,∴a+5=0解得:a=-5∴P(−12,0);(2)∵点Q的坐标为(4,5),直线PQ//y轴∴2a−2=4解得:a=3∴P(4,8);(3)∵点P在第二象限,且它到x轴、y轴的距离相等∴2a−2+a+5=0解得:a=-1∴a2020+2020=(−1)2020+2020=2021小提示:此题考查的是根据题意,求点的坐标,掌握x轴上点的坐标特征、与y轴平行的直线上两点坐标关系和点到x 轴、y轴的距离与坐标关系是解题关键.15、适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.(1)看图案像什么?(2)作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?答案:(1)“鱼”;(2)向左平移2个单位.解析:(1)描点根据顺序连线即可.(2)根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.解:(1)像“鱼”.(2)纵坐标不变,横坐标减2,即向左平移两个单位,根据平移前后图形的形状和大小没有变化可以知道,图案大小形状没有变化,位置向左平移两个单位.小提示:本题考查直角坐标系中描点,平移作图,细心画图即可.。
人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)
![人教版七年级数学下册第七章第二节用坐标表示平移复习试题(含答案) (43)](https://img.taocdn.com/s3/m/8b9eac1e65ce050877321395.png)
人教版七年级数学下册第七章第二节用坐标表示平移习题(含答案)如图,平面直角坐标系中,A (﹣3,0)B (0,4)把△AOB 按如图标记的方式连续做旋转变换,这样得到的第2017个三角形中,O 点的对应点的坐标为_____.【答案】(8064,0)【解析】解:∵A (﹣3,0),B (0,4),∴OA =3,OB =4,由勾股定理得:AB =,∴△ABC 的周长=3+4+5=12.∵△OAB 每连续变换3次后与原来的状态一样,2017÷3=672…1,∴第2017个三角形的直角顶点是第673个循环组第一个三角形的直角顶点,∴三角形2017的直角顶点O 的横坐标=672×12=8064,∴三角形2017的直角顶点O 的坐标为(8064,0).故答案为:(8064,0).点睛:本题考查了坐标与图形变化﹣旋转,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.42.在平面直角坐标系中,点(,)P x y 经过某种变换后得到(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P 、…n P 、…,若点1P 的坐标为(2,0),则点2017P 的坐标为__________.【答案】(2,0)【解析】分析:按题中所示规律,依次往后列举出一些点的坐标,观察这些点的坐标特征求解.详解:根据题意得,P1(2,0),P2(1,4),P3(-3,3),P4(-2,-1),P5(2,0),P6(1,4),…….可以得到从第一个点开始,每4个点的坐标为一个循环.因为2017=504×4+1,所以P2017与P1的坐标相同.故答案为(2,0).点睛:找数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程中归纳出运算结果或运算结果的规律,当所得结果按一定的数量循环时,则可根据循环的规律来解答.43.在平面直角坐标系中,点A坐标为(1,0),线段OA绕原点O沿逆时针方向旋转45°,并且每次的长度增加一倍,例如:OA1=2OA,∠A1OA=45°.按照这种规律变换下去,点A2017的纵坐标为_____.【答案】22016【解析】根据点A0的坐标为(1,0),可得OA=1.然后根据题意,将线段OA绕原点O沿逆时针方向旋转45°,可知360°÷45°=8,可得A1、A9、A17、···A2017都在第一象限,再根据OA1=2OA=2,∠A1OA=45°,可求得A1的纵坐标为同理可得,A 99;∴A201720172016故答案为:20162.44.点P(2,m )在x 轴上,则B (m -1,m+1)在第________________象限.【答案】二【解析】【分析】根据x 轴上的点的坐标特征可得m=0,然后把m 代入点B 的坐标中,即可确定出点B 的具体坐标,根据点B 的坐标即判断所在的象限.【详解】∵点P (2,m )在x 轴上,∴m=0,∵点B (m-1,m+1),∴B (-1,1),∴点B 在第二象限,故答案为:二.【点睛】本题考查了点的坐标特征,熟练掌握点的坐标特征是解题的关键.坐标轴上的点的特征:x 轴上的点的纵坐标为0,y 轴上的点的横坐标为0;坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,各象限点的坐标的符号特征:一象限(+,+),二象限(-,+),三象限(-,-),四象限(+,-).45.已知线段MN 平行于x 轴,且MN 的长度为5,若()2,2M -,则点N的坐标______.【答案】()7,2-或()3,2--.【解析】【分析】根据“平行于x 轴的直线上的点的坐标的特征”结合已知条件分析解答即可.【详解】∵MN ∵x 轴,且M 的坐标为(2,-2),∵可设点N 的坐标为(a ,-2),又∵MN=5, ∵25a -=,∵25a -=或25a -=-,解得:7a =或3a =-,∵点N 的坐标为(7,-2)或(-3,-2).故答案为:(7,-2)或(-3,-2).【点睛】本题解题有以下两个要点:(1)平行于x 轴的直线上的点的纵坐标相等;(2)平行于x 轴的直线上两点间的距离等于这两个点的横坐标差的绝对值.46.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1),B (1,3),将线段AB 经过平移后得到线段A ′B ′,若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是___.【答案】(6,4)【解析】【分析】先求出点A 经过怎样的平移得到A ′,再将B 进行同样的平移即可.【详解】∵-2+5=3,1+1=2,∴A 点向右平移5个单位长度,向上平移1个单位长度,∴1+5=6,3+1=4,∴点B ′的坐标为(6,4).【点睛】此题主要考察线段的平移,根据对应点的平移分式相同是解题的关键.47.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么粒子运动到点(3,0)时经过了________秒,粒子运动60秒后的坐标为_________________.【答案】15 (7,3)【解析】分析:该题是点的坐标规律,通过对部分点分析,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯, 12342,6,12,20,a a a a ==== 找出规律.详解:由题意,设粒子运动到12,,,n A A A ⋯时所用的间分别为12,,,n a a a ⋯,则12342,6,12,20,a a a a ====1122,a =⨯=2236,a =⨯=33412,a =⨯=44520,a =⨯= ,()1n a n n =+,第12秒的时候在()33,3,A 向下运动3秒,到点()3,0.即在第15秒的时候运动到点()3,0.77856,A =⨯=即粒子运动56秒后到点()77,7.A 然后粒子向下运动4秒后到点()7,3. 即粒子运动60秒后的坐标为()7,3.故答案为:()15,7,3.点睛:属于找规律题目,找出它们之间的规律是解题的关键.48.如图,在平面直角坐标系中,点A 的坐标为(﹣2,,以原点O为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________.【答案】(【解析】作AB ⊥x 轴于点B ,∴AB=OB=2,则tan ∠AOB=AB BO == ∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A ′后,∠A ′OC=165°-30°-90°=45°,OA ′=OA=2OB=4,∴A ′C=OC=即A ′(−),故答案为:(.49.如图,在直角坐标系中,设一动点M 自P 0(1,0)处向上运动1个单位至P 1(1,1),然后向左运动2个单位至P 2处,再向下运动3个单位至P 3处,再向右运动4个单位至P 4处,再向上运动5个单位至P 5处,…如此继续运动下去,设P n (x n ,y n ),n =1,2,3,…求x 1+x 2+…+x 99+x 100的值.【答案】50【解析】由题意可得:x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2;∴原式=2×(100÷4)=50.故答案为:50.50.如图,在△ABC中,BC=6,将△ABC沿BC方向平移得到△A′B′C′,连接AA′,若A′B′恰好经过AC的中点O,则AA′的长度为_____.【答案】3【解析】【分析】先根据平移的性质得到AA′=BB′,AA′∥BB′,则可判定四边形ABB′A′为平行四边形,所以AB∥A′B′,再证明OB′为△ABC的中位线得到BB′=CB′=1BC=3,2于是得到AA′=3.【详解】∵△ABC沿BC方向平移得到△A′B′C′,∴AA′=BB′,AA′∥BB′,∴四边形ABB′A′为平行四边形,∴AB∥A′B′,∵点O为AC的中点,∴OB′为△ABC的中位线,∴BB′=CB′=12BC=3,∴AA′=3.故答案是:3.点睛:考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.。
2022-2023学年人教版数学七年级 下册7
![2022-2023学年人教版数学七年级 下册7](https://img.taocdn.com/s3/m/7a2b502cdf80d4d8d15abe23482fb4daa58d1dfb.png)
7.2.2用坐标表示平移一、选择题。
1.在平面直角坐标系中,将点(1,1)向右平移2个单位长度后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( )A.(2,3)B.(-6,3)C.(-2,7)D.(-2,-1)5.如图,如果将△ABC向左平移2格得到△A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)6.四盏灯笼的位置如图,已知A,B,C,D的坐标分别是(-1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是( )A.将B向左平移4.5个单位长度 B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度 D.将C向左平移3.5个单位长度7.如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a-b的值为( )A.-1 B.0 C.1 D.28.如图所示,在平面直角坐标系中,点A,B,C的坐标分别为(1,3)-,(4,1)-,(2,1)-,将ABC平移后得到111A B C,点B的对应点1B的坐标是(1,2),则点1A,1C的坐标分别是( )A.1(4,4)A,1(3,2)C B.1(3,3)A,1(2,1)C C.1(4,3)A,1(2,3)C D.1(3,4)A,1(2,2)C9.如图,一把直角三角尺的直角顶点与原点重合,另两个顶点A、B的坐标分别为(−1,0)、(0,√3).现将该三角尺向右平移,点A移至点O处,得到三角形OCB',则点B的对应点B'的坐标为()A.(1,0)B.(√3,√3)C.(1,√3)D.(−1,√3)二、填空题。
平面直角坐标系练习题(打印版)
![平面直角坐标系练习题(打印版)](https://img.taocdn.com/s3/m/f6609a53f68a6529647d27284b73f242336c31a5.png)
平面直角坐标系练习题(打印版)一、基础题1. 坐标点的表示在平面直角坐标系中,点A的坐标为(3, 4),请写出点B的坐标,使得AB垂直于x轴。
2. 坐标点的移动如果点P的坐标为(-2, 5),它向右移动3个单位,向下移动1个单位,求新坐标。
3. 坐标系中的图形画出一个以(0, 0)为中心,半径为5的圆,并标出圆上任意两点的坐标。
二、中等题4. 距离的计算已知点A(1, 2)和点B(4, 6),求AB两点之间的距离。
5. 直线的方程若点C(2, -1)和点D(-3, 4)在同一直线上,求这条直线的方程。
6. 中点的坐标已知线段AB,A(3, -1)和B(-2, 5),求线段AB的中点坐标。
三、提高题7. 斜率的计算已知直线l过点E(-1, 3),且斜率为4/3,求直线l的方程。
8. 平行线的性质若直线m的方程为y = 2x + 1,求与m平行且在y轴上截距为-3的直线方程。
9. 垂直平分线已知点F(-4, 2)和点G(6, -3),求线段FG的垂直平分线方程。
四、拓展题10. 坐标变换将平面直角坐标系中的点H(2, -3)绕原点顺时针旋转90度,求旋转后点H'的坐标。
11. 图形的对称性若点I(-1, 4)关于x轴对称,求对称点I'的坐标。
12. 坐标系中的图形面积已知矩形的顶点坐标为A(0, 0),B(0, 5),C(3, 5),求矩形ABCD的面积。
答案提示:- 对于基础题,可以通过直接观察和简单的计算得出答案。
- 中等题需要运用距离公式、直线方程的求法以及中点坐标公式。
- 提高题涉及到斜率的概念、平行线和垂直平分线的性质。
- 拓展题可能需要使用坐标变换和对称性的概念,以及计算图形的面积。
请同学们认真思考,逐步解答这些问题,以加深对平面直角坐标系的理解。
广元市第二中学七年级数学下册 第七章 平面直角坐标系 7.2.2 用坐标表示平移同步练习含解析新人教
![广元市第二中学七年级数学下册 第七章 平面直角坐标系 7.2.2 用坐标表示平移同步练习含解析新人教](https://img.taocdn.com/s3/m/56dc5b1919e8b8f67d1cb948.png)
用坐标表示平移知识要点:在平面直角坐标系中,(1)将点(x,y)向右平移a个单位长度,对应点的横坐标加上a,而纵坐标不变,即坐标变为(x+a,y).(2)将点(x,y)向左平移a个单位长度,对应点的横坐标减去a,而纵坐标不变,即坐标变为(x-a,y).(3)将点(x,y)向下平移a个单位长度,对应点的纵坐标减去a,而横坐标不变,即坐标变为(x,y-a).(4)将点(x,y)向上平移a个单位长度,对应点的纵坐标加上a,而横坐标不变,即坐标变为(x,y+a)一、单选题1.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2) B.(2,2) C.(﹣2,2) D.(2,﹣2)2.在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(–2,1),则点B的对应点的坐标为A.(5,3)B.(–1,–2)C.(–1,–1)D.(0,–1)4.已知三角形的三个顶点坐标分别为(-2,1),(2,3),(-3,-1),把这个三角形运动到一个确定位置,在下列各点的坐标中,是经过平移得到的是( )A.(0,3),(0,1),(-1,-1) B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3) D.(-1,3),(3,5),(-2,1)5.将某图形中所有点的横坐标都减去 2,纵坐标不变,则该图形()A.向上平移 2 个单位B.向下平移 2 个单位C.向右平移 2 个单位D.向左平移 2 个单位6.如图,已知点,的坐标分别为(3,0),(0,4),将线段平移到,若点的对应点的坐标为(4,2),则的对应点的坐标为().A.(1,6)B.(2,5)C.(6,1)D.(4,6)7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是( )A.3:4 B.5:8 C.9:16 D.1:28.在内的任意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.二、填空题9.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A1B1,则a+b的值为_____.A 向左平移2个单位再向上平移3个单位得到点10.在平面直角坐标系中,将点(2,3)B,则点B的坐标是__________.11.如图,将△ABC沿BC方向平移1cm得到△DEF,若△ABC的周长等于10cm,则四边形ABFD的周长等于________cm.12.如图,在△AOB中,AO=AB,在直角坐标系中,点A的坐标是(2,2),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上.点O′、B′在x轴上.则点B'的坐标是______BC ,现将三角形ABC沿直线BC向右平13.如图,已知三角形ABC的面积为16,8移a个单位到三角形DEF的位置,当边AB所扫过的面积为32时,那么a的值为__________.三、解答题14.在如图所示的平面直角坐标系中描出下面各点:A(0,3);B(1,-3);C(3,-5);D(-3,-5);E(3,5);F(5,7);G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积.15.已知:△ABC 与△A'B'C 在平面直角坐标系中的位置如图.(1)分别写出B 、B'的坐标:B______;B′______;(2)若点P (a ,b )是△ABC 内部一点,则平移后△A'B'C 内的对应点P′的坐标为______;(3)求△ABC 的面积.16.如图,方格纸中每个小格子的边长均为1个单位长度,ABC ∆的三个顶点和点P 都在方格纸的格点上,(1)若将ABC ∆平移,使点P 恰好落在平移后得到的A B C '''∆的内部,则符合要求的三角形能画出_______个,请在方格纸中画出符合要求的一个三角形;(2)在(1)的条件下,若连接对应点BB '、CC ',则这两条线段的位置关系是______;(3)画一条直线l ,将ABC ∆分成两个面积相等的三角形.17.如图,长方形OABC 中,O 为平面直角坐标系的原点,A 点的坐标为(4,0),C 点的坐标为(0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位长度的速度沿着O ﹣A ﹣B ﹣C ﹣O 的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间答案1.B2.A3.C4.D5.D6.A7.B8.D9.210.(4,6)-11.1212.(2,0)13.814.(1)易知C向x负半轴移动6个单位,即往左边移动6个单位,与D重叠.(2)连接CE,因为两点坐标x值相等,故CE垂直于x轴交于H点,平行于y轴(3)四边形DEGC面积=S△EDC+S△GEC=1111DC610102 2222EC EC GH⋅+⋅=⨯⨯+⨯⨯=4015.解:(1)由图知点B′的坐标为(2,0)、点B坐标为(-2,-2),故答案为:(2,0)、(-2,-2);(2)由图知△ABC向左平移4个单位,再向下平移2个单位可得到△A'B'C′,则平移后△A'B'C内的对应点P′的坐标为(a-4,b-2),故答案为:(a-4,b-2);(3)△ABC的面积为2×3-12×1×3-12×1×1-12×2×2=2.16.解:(1)∵△ABC内部有10个格点,∴使点P恰好落在平移后得到的△A'B'C'的内部,则符合要求的格点三角形能画出10个,如图所示,△A'B'C'即为所求(答案不唯一);故答案为:10;(2)连接对应点BB'、CC',则这两条线段的位置关系是平行或在同一条直线上;故答案为:平行或在同一条直线上;(3)如图所示,直线l即为所求(答案不唯一).17.解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴PA=2.∴S△OAP=12OA×PA=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,PA=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒第2课时平方差公式的应用【知识与技能】进一步体会平方差公式的意义,会利用公式进行计算,能够掌握平方差公式的一些应用。
专题07 平面直角坐标系单元的基础与达标(原卷版)
![专题07 平面直角坐标系单元的基础与达标(原卷版)](https://img.taocdn.com/s3/m/205b25244531b90d6c85ec3a87c24028915f8526.png)
一、图形的位置与坐标(1)理解平面直角坐标系的有关概念,能画出平面直角坐标系;在给定的平面直角坐标系中,能根据坐标描出点的位置,由点的位置写出坐标。
(2)在实际问题中,能建立适当的平面直角坐标系,描述物体的位置。
(3)对给定的正方形,会选择合适的平面直角坐标系,写出它的顶点坐标,体会可以用坐标表达简单图形。
(4)在平面上,运用方位角和距离刻画两个物体的相对位置。
二、图形的运动与坐标(1)在平面直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,知道对应顶点坐标之间的关系。
(2)在平面直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移一定距离后图形的顶点坐标,知道对应顶点坐标之间的关系。
(3)在平面直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形和原来图形具有平移关系,体会图形顶点坐标的变化。
考点1:认识平面直角坐标系1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
考点2:平面直角坐标系中坐标的规律1.平面直角坐标系中各象限点的坐标特点①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0。
2.平面直角坐标系中坐标轴上点的坐标特点①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0。
2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx
![2020—2021年新人教版初中数学七年级下册《用坐标表示平移》试题及答案解析.docx](https://img.taocdn.com/s3/m/108f9ba13968011ca2009157.png)
新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版)一、选择题1、如图1所示,为了得到点B需将点A向右平移( )A、3个单位长度B、4个单位长度C、5个单位长度D、6个单位长度2、如图1所示,将点A向下平移5个单位长度后,将重合于图中的( )A、点CB、点FC、点DD、点E3、如图1所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到;将点B先向下平移5个单位长度,再向右平移3个单位长度,得到;则与相距( )A、4个单位长度B、5个单位长度C、6个单位长度D、7个单位长度4、如图1所示,点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A、(6,5)B、(4,5)C、(6,3)D、(4,3)5、点P(8,3)向上平移6个单位长度,下列说法正确的是()A、点P的横坐标加6,纵坐标不变B、点P的纵坐标加6,横坐标不变C、点P的横坐标减6,纵坐标不变D、点P的纵坐标减6,横坐标不变6、把点A(0,0)先向右平移1个单位长度,再向下平移2个单位长度后,得到的点B位于()A、第一象限B、第二象限C、第三象限D、第四象限7、将点A(a ,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b的值分别为()A、(1,4)B、(4,1)C、(2,1)D、(1,2)8、在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A、(-2,6)B、(-2,0)C、(1,3)D、(-5,3)9、将某图形的横坐标都减去2,纵坐标不变,则该图形()A、向右平移2个单位B、向左平移2个单位C、向上平移2个单位D、向下平移2个单位10、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A、(﹣9,﹣5)B、(﹣9,1)C、(1,﹣5)D、(1,1)11、已知三角形ABC平移后得到三角形A1B1C1,且A(-2,3),B(-4,-1),C1(m ,n),C(m+5,n+3),则A1,B1两点的坐标为()A、(3,6),(1,2)B、(-7,0),(-9,-4)C、(1,8),(-1,4)D、(-7,-2),(0,-9)12、如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动:即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,0)B、(5,0)C、(0,5)D、(5,5)13、已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为()A、(0,0)B、(1,1)C、(2,2)D、(5,5)14、已知平面内两点M、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是()A、不能确定B、发生变化C、不发生变化D、需分情况说明15、已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A、(-3,5),(-6,3)B、(5,-3),(3,-6)C、(-6,3),(-3,5)D、(3,-6),(5,-3)二、填空题16、将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q,则点Q的坐标为________.17、三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,且使A与A′重合,则B、C两点对应点的坐标分别为________,________.18、如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b ,1)则a+b =________.19、在平面直角坐标系中,若点M(1,3)与点N(x ,3)之间的距离是5,则x的值是________.20、如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.三、解答题21、如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?22、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的新四边形的面积是多少?23、与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:________,________,________;(2)说明由经过怎样的平移得到:________;(3)若点(,)是内部一点,则平移后内的对应点的坐标为________;(4)求的面积.答案解析部分一、选择题1、【答案】B【考点】坐标与图形变化-平移【解析】【解答】结合图形可以得知A向右平移4个单位长度可得到点B.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.2、【答案】D【考点】坐标与图形变化-平移【解析】【解答】将点A向下平移5个单位长度后,将重合于图中的点E.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.3、【答案】A【考点】坐标与图形变化-平移【解析】解答:根据平移的特点可以知道,点A、B经过相同的平移得到分别得到点与,所以点与间的距离与点A、B之间的距离相等,均为4个单位长度.分析:先左右平移还是先上下平移坐标系内的点不影响平移后点的位置.4、【答案】D【考点】坐标与图形变化-平移【解析】【解答】点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′的坐标为(4,3).【分析】按要求在坐标系内平移点G,即可得知点G′的坐标.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】向上平移6个单位长度,即纵坐标加6,横坐标不变.【分析】坐标系中的点上下平移时:横坐标不变,向正方向平移几个单位长度,纵坐标就加几,向负方向平移几个单位长度,纵坐标就减几.6、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由平移规律得点B为(1,-2),又横坐标为正,纵坐标为负是第四象限内的点的特征,所以选择D【分析】坐标系中的点的平移规律为:左右移横变,上下移纵变;正方向移加,负方向移减.7、【答案】C【考点】解一元一次方程,坐标与图形变化-平移【解析】【解答】由平移规律可知,由点A平移后得到的点B坐标为(a+2,1),又∵点B为(4,b),∴a+2=4,b=1,∴a=-2,b=1.【分析】根据平移规律得到点B的坐标,再与所给的点B的坐标对比得到关于a与b 的一元一次方程,解该方程即可.8、【答案】C【考点】坐标与图形变化-平移【解析】【解答】将点P(-2,3)向右平移3个单位得到点Q,即点Q 的横坐标加3,纵坐标不变,则点Q的坐标是(1,3),故选C.【分析】根据坐标系内点的坐标的平移规律解题.9、【答案】B【考点】坐标与图形变化-平移【解析】【解答】由平移规律可知横坐标左减右加,故选B.【分析】图形和图形上任何一点发生平移变换时,其坐标变化是一致的,所以可以应用相同的平移规律.10、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由于点A(﹣1,5)的对应点为C(4,8),即点A向右平移5个单位,再向上平移3个单位得到点C,因此点B(﹣4,﹣2)向右平移5个单位,再向上平移3个单位得到点D,那么点D的坐标为(1,1).【分析】先根据点A和对应点C的坐标得到平移的规律为向右平移5个单位,再向上平移3个单位,然后根据此规律把点B进行平移,再写出平移后的对应点D的坐标.11、【答案】B【考点】坐标与图形变化-平移【解析】【解答】∵C1(m ,n),C(m+5,n+3),又∵三角形ABC 平移后得到三角形A1B1C1,∴根据平移规律可知三角形ABC平移向左平移5个单位长度,再向下平移3个单位长度后得到三角形A1B1C1又∵点A为(-2,3),点B为(-4,-1),∴A1,B1两点的坐标为(-7,0),(-9,-4).【分析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减.12、【答案】B【考点】坐标与图形变化-平移【解析】【解答】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).【分析】本题只能根据所给规律逐次计算,特别要注意跳蚤每秒跳动一个单位.13、【答案】A【考点】坐标与图形变化-平移【解析】【解答】将点A(-4,-6)先向右平移4个单位长度,再向上平移6个单位长度,即横坐标加4,纵坐标加6,所以A′的坐标为(0,0).【分析】本题根据平移规律:横坐标左加右减,纵坐标上加下减,来解题.14、【答案】C【考点】坐标与图形变化-平移【解析】【解答】因为平移方式相同,所以平移前后两点之间的相对位置不发生变化.【分析】平移的方式相同,两个点及两个图像的相对位置都不发生变化,但是两个点与图形的位置发生来变化.15、【答案】B【考点】坐标与图形变化-平移【解析】【解答】因为使点A到点(1,-2) ,所以△ABC是先向右平移4个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别加4,纵坐标分别减4,即点B,C平移后对应点的坐标分别为(5,-3),(3,-6).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.二、填空题16、【答案】(-5,1)【考点】坐标与图形变化-平移【解析】【解答】将点P(-3,4)向下平移3个单位,向左平移2个单位,即点P的纵坐标减3,横坐标减2,所以得到点Q的坐标为(-5,1).【分析】本题根据平移规律:横坐标左减右加,纵坐标下减上加.17、【答案】(-3,-6);(-4,-1)【考点】坐标与图形变化-平移【解析】【解答】根据题意可知使点A到点A′,所以△ABC是先向左平移2个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别减2,纵坐标分别减4,即点B、C平移后对应点的坐标分别为(-3,-6),(-4,-1).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.18、【答案】1或2【考点】坐标与图形变化-平移【解析】【解答】①当点A平移到点C时,可以判断线段AB向右平移1个单位,由点B就平移到点D可以判断线段AB向下平移1个单位,那么可知a=0,b=2,即a+b=2;②当点A平移到点D时,可以判断线段AB没有向下平移,由点B就平移到点C可以判断线段AB向右平移1个单位,那么可知a=0,b=1,即a+b=1;综上所述a+b=1或2.【分析】本题分两种情况:点A平移到点C或点D.19、【答案】-4或6【考点】坐标与图形变化-平移【解析】【解答】当点N在点M左边时,那么点M向左平移5个单位得到点N(-4,3);当点N在点M右边时,那么点M向右平移5个单位得到点N(6,3);综上所述x的值为-4或6.【分析】分点N在点M左边或右边.20、【答案】(5,4)【考点】坐标与图形变化-平移【解析】【解答】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以蝴蝶先向右飞7个单位,再向上平移2个单位,所以右图案中右翅尖的坐标是(5,4).【分析】本题先根据左翅尖的平移确定平移方式,再求出右翅尖平移后对应点的坐标.三、解答题21、【答案】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【考点】坐标与图形变化-平移【解析】【解答】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【分析】先左右平移还是先上下平移不影响平移后图形与点的位置.23、【答案】(1)解:可将这个四边形切割成三个三角形和一个长方形,S=×3×6+×9×2+×2×8+9×6=9+9+8+54=80.(2)横坐标增加2,纵坐标不变,则四边形向右平移2个单位长度,形状和大小都不变,其面积仍是80.【考点】三角形的面积,平移的性质,坐标与图形变化-平移【解析】【分析】本题(2)中,实际是将图形进行了平移,根据平移的性质:平移只改变图形的位置,不改变图形的形状与大小,所以新得到的图形面积仍为80.25、【答案】(1)解:(-3,1);(-2,-2);(-1,-1)(2)先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位。
人教版数学七年级下册7 2 2 用坐标表示平移 同步练习(含解析)
![人教版数学七年级下册7 2 2 用坐标表示平移 同步练习(含解析)](https://img.taocdn.com/s3/m/d0d9e4dbbb0d4a7302768e9951e79b8968026833.png)
第七章平面直角坐标系7.2坐标方法的简单应用7.2.2用坐标表示平移基础过关全练知识点1坐标系中点的平移1.(2022广东中考)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1)B.(-1,1)C.(1,3)D.(1,-1)2.在平面直角坐标系中,将点P(-3,4)平移至原点,则平移方式可以是( )A.先向左平移3个单位,再向上平移4个单位B.先向右平移4个单位,再向上平移3个单位C.先向左平移3个单位,再向下平移4个单位D.先向右平移3个单位,再向下平移4个单位3.如图,在平面直角坐标系xO1y中,点A的坐标为(2,2).如果将x轴向上平移6个单位长度,将y轴向左平移4个单位长度,交于点O2,点A 的位置不变,那么在平面直角坐标系xO2y中,点A的坐标是( )A.(-6,4)B.(6,-4)C.(-4,-6)D.(6,8)知识点2坐标系中图形的平移4.如图,点A,B的坐标分别为(-3,1),(-1,-2),若将线段AB平移至A1B1的位置,点A1,B1的坐标分别为(a,4),(3,b),则a+b的值为( )A.2B.3C.4D.55.如图,△ABC经过一定的平移得到△A'B'C',如果△ABC上的点P的坐标为(a,b),那么这个点在△A'B'C'上的对应点P'的坐标为( )A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)6.三角形ABC中一点P(x,y)经过平移后对应点为P1(x+4,y-2),将三角形ABC进行同样的平移得到三角形A1B1C1,若点A的坐标为(-4,5),则点A1的坐标为.7.【教材变式·P86T9变式】如图所示,四边形ABCO中,AB∥OC,BC ∥AO,A、C两点的坐标分别为(-√3,√5)、(-2√3,0),A、B两点间的距离等于O、C两点间的距离.(1)点B的坐标为;(2)将这个四边形向下平移2√5个单位长度后得到四边形A'B'C'O',请你写出平移后四边形四个顶点的坐标.8.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在平面直角坐标系中,已知点A(1,0),B(4,0),C(3,3),D(1,4).(1)描出A、B、C、D四点的位置,并顺次连接A、B、C、D各点,组成一个封闭图形;(2)四边形ABCD的面积是;(3)四边形ABCD向左平移5个单位长度,再向上平移1个单位长度得到四边形A'B'C'D',在图中画出四边形A'B'C'D',并写出A'、B'、C'、D'的坐标.能力提升全练9.(2021重庆丰都期末,10,★★☆)将点P(m+2,2-m)向右平移2个单位长度得到点Q,且Q在y轴上,那么点P的坐标为( )A.(6,-2)B.(-2,6)C.(2,2)D.(0,4)10.【新素材·密码确定】(2022山东济宁兖州期末,5,★★☆)一组密码的一部分如图,为了保密,不同的情况下可以采用不同的密码.若输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,按此方法,若输入数字密码(2,7),(3,4),则最后输出的口令为( )A.垂直B.平行C.素养D.相交11.【代数推理】(2022福建厦门思明湖滨中学期末,9,★★☆)在平面直角坐标系中,将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点.有四个点M(-2n2,1)、N(3n2,1)、P(n2,n2+4)、Q(n2+1,1),一定在线段AB上的是( )A.点MB.点QC.点PD.点N12.【易错题】(2021湖北武汉江岸期末,14,★★☆)如图,第一象限内有两点P(m-4,n),Q(m,n-3),将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是.素养探究全练13.【抽象能力】如图,已知点A1(1,1),点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3;点A3向上平移4个单位,再向右平移8个单位,得到点A4,……,按这个规律平移得到点A n,则点A n的横坐标为.14.【抽象能力】(2022北京师大附中期末)对于平面直角坐标系xOy 中的图形G和图形G上的任意点P(x,y),给出如下定义:将点P(x,y)平移到P'(x+t,y-t)称为将点P进行“t型平移”,点P'称为将点P进行“t型平移”的对应点;将图形G上的所有点进行“t型平移”称为将图形G进行“t型平移”.例如:将点P(x,y)平移到P'(x+1,y-1)称为将点P进行“1型平移”,将点P(x,y)平移到P'(x-1,y+1)称为将点P进行“-1型平移”.已知点A(1,1)和点B(3,1).(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为;(2)①将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,在线段A'B'上的点是;②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是.答案全解全析基础过关全练1.A将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选A.2.D将点P(-3,4)的横坐标加3,纵坐标减4即可得原点的坐标(0,0),故可以先向右平移3个单位,再向下平移4个单位.3.B新坐标系如图所示,点A在新坐标系中的坐标为(6,-4),故选B.4.A∵点A,B的坐标分别是为(-3,1),(-1,-2),线段AB平移至A1B1的位置后,A1(a,4),B1(3,b),∴线段AB向右平移了4个单位,向上平移了3个单位,∴a=1,b=1,∴a+b=2,故选A.5.C点B的坐标为(-2,0),点B'的坐标为(1,2),横坐标增加了1-(-2)=3,纵坐标增加了2-0=2,∵△ABC上点P的坐标为(a,b),∴点P'的横坐标为a+3,纵坐标为b+2,∴点P'的坐标为(a+3,b+2),故选C.6.答案(0,3)解析∵三角形ABC中任意一点P(x,y)经过平移后对应点为P1(x+4,y-2),∴该点先向右平移了4个单位长度,又向下平移了2个单位长度,又-4+4=0,5-2=3,∴点A的对应点A1的坐标为(0,3).7.解析(1)∵C点的坐标为(-2√3,0),∴OC=2√3.∵AB∥OC,AB=OC,∴将A点向左平移2√3个单位长度得到B点,又∵A点的坐标为(-√3,√5),∴B点的坐标为(-√3−2√3,√5),即(-3√3,√5).(2)∵将四边形ABCO向下平移2√5个单位长度后得到四边形A'B'C'O',∴A'点的坐标为(-√3,-√5),B'点的坐标为(-3√3,-√5),C'点的坐标为(-2√3,-2√5),O'点的坐标为(0,-2√5).8.解析(1)如图..(2)四边形ABCD的面积是172(3)四边形A'B'C'D'如图.其中A'(-4,1)、B'(-1,1)、C'(-2,4)、D'(-4,5).能力提升全练9.B将点P(m+2,2-m)向右平移2个单位长度后得到的点Q的坐标为(m+4,2-m),∵点Q(m+4,2-m)在y轴上,∴m+4=0,即m=-4,则点P 的坐标为(-2,6),故选B.10.D输入数字密码(7,7),(8,5),对应的中转口令是“数学”,最后输出的口令为“文化”,可得平移规律为向左平移1格,向下平移2格,所以输入数字密码(2,7),(3,4),得最后输出的口令为“相交”,故选D.11.B∵将A(n2,1)沿着x轴的正方向平移3+n2个单位后得到B点,∴B(2n2+3,1),∴点B在点A右侧,且AB与x轴平行,AB上的点都距离x轴1个单位,因为点M(-2n2,1)距离x轴1个单位,当n≠0时,M 点在点A左侧,当n=0时,M点跟A点重合,所以点M不一定在线段AB上.点N(3n2,1)距离x轴1个单位,可看作将点A沿着x轴的正方向平移2n2个单位后得到的,不一定在线段AB上.点P(n2,n2+4)在点A 右侧,且距离x轴n2+4个单位,不在线段AB上.点Q(n2+1,1)距离x 轴1个单位,可看作将A(n2,1)沿着x轴的正方向平移1个单位后得到的,一定在线段AB上.所以一定在线段AB上的是点Q.故选B.12.答案(0,3)或(-4,0)解析设平移后点P、Q的对应点分别是P'、Q'.分两种情况:①P'在y轴上,Q'在x轴上,则P'的横坐标为0,Q'的纵坐标为0,∴点P'的纵坐标为n+0-(n-3)=3,∴点P平移后的对应点的坐标是(0,3);②P'在x轴上,Q'在y轴上,则P'的纵坐标为0,Q'的横坐标为0,∴点P'的横坐标为m-4+0-m=-4,∴点P平移后的对应点的坐标是(-4,0).综上可知,点P平移后的对应点的坐标是(0,3)或(-4,0).素养探究全练13.答案2n-1解析由题意知,点A1的横坐标为1=21-1,点A2的横坐标为3=22-1,点A3的横坐标为7=23-1,点A4的横坐标为15=24-1,……,则点A n的横坐标为2n-1.14.解析(1)将点A(1,1)进行“1型平移”后的对应点A'的坐标为(2,0),故答案为(2,0).(2)①如图,将线段AB进行“-1型平移”后得到线段A'B',点P1(2,3),P2(1.5,2),P3(3,0)中,线段A'B'上的点是P2.②若线段AB进行“t型平移”后与坐标轴有公共点,则t的取值范围是-3≤t≤-1或t=1.。
2022年人教版七年级下册数学同步培优第七章平面直角坐标系第2节第2课时用坐标表示平移
![2022年人教版七年级下册数学同步培优第七章平面直角坐标系第2节第2课时用坐标表示平移](https://img.taocdn.com/s3/m/0f11c00d657d27284b73f242336c1eb91a373391.png)
度,再向下平移2个单位长度得到点B.
(1)标出点B的位置,并写出点B的坐标;
(2)求出三角形OAB的面积.
-3-
基础巩固
7.2.2 用坐标表示平移
能力提升
解:(1)图略;点 B 的坐标为(6,2).
1
1
1
2
2
2
(2)S 三角形 OAB=6×4- × × - × × - ×6×2=10.
3.将点P(-3,y)向上平移3个单位长度,向左平移2个单位长度后
得到点Q(x,-1),则xy的值为 20 .
7.2.2 用坐标表示平移
4.
基础巩固
能力提升
将点 A(m+2,m-3)向左平移 3 个单位长度后刚好落在 y
轴上,则平移前点 A 的坐标为 (3,-2) .
5.如图,在平面直角坐标系中,将点A(2,4)向右平移4个单位长
.
12.已知三角形ABC与三角形A'B'C'在平面直角坐标系中的位
置如图所示.
(1)分别写出点B,B'的坐标:B (3,-4)
,B' (-2,0)
;
(2)若P(a,b)是三角形ABC内部一点,则平移后三角形A'B'C'内
的对应点P'的坐标为 (a-5,b+4) ;
基础巩固
7.2.2 用坐标表示平移
7.2.2 用坐标表示平移
基础巩固
能力提升
知识点1 坐标系中点的平移
1.在平面直角坐标系中,点A(1,1)经过平移后的对应点为
B(3,4),下列平移正确的是( B )
A.先向右平移2个单位长度,再向下平移3个单位长度
B.先向右平移2个单位长度,再向上平移3个单位长度
初一数学图形与坐标试题
![初一数学图形与坐标试题](https://img.taocdn.com/s3/m/b94a1fde58fb770bf78a55fb.png)
初一数学图形与坐标试题1.在平面直角坐标系中,已知线段AB的两个端点分别是A(-4,-1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(3,4)B.(-1,-2)C.(-2,-1)D.(4,3)【答案】A.【解析】由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选A.【考点】坐标与图形变化-平移.2.如图,在平面直角坐标系中,若每一个方格的边长代表一个单位。
(1)线段CD是线段AB经过怎样的平移得到的?(2)若C点的坐标是(4,1),A点的坐标是(-1,-2),你能写出B, D三点的坐标吗?(3)求平行四边形ABCD的面积。
【答案】(1)向上平移3个单位,向右平移1个单位;(2)B(3,-2),D(0,1);(3)12【解析】(1)根据图形,找到A点与D点,B点与C点的关系,A点如何变化可得D点;将B 点相应变化即可;(2)观察图象,找到D、B与C的位置关系,即可D、B的坐标;(3)观察图象,可得平行四边形的高与底边长;进而可得平行四边形的面积.试题解析:(1)向上平移3个单位,向右平移1个单位;(2)观察图象,找到D、B与C的位置关系,即D点的横坐标是C点的横坐标减4,且其纵坐标相同,即可得D的坐标为(0,1),B点的坐标是C点的横坐标减1,纵坐标减3,故B点坐标为(3,-2);(3)观察图象,可得平行四边形的高是4;底边长即AB=3;进而可得平行四边形的面积为12.【考点】坐标与图形的变化-平移3.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系﹒(2)写出超市的坐标(小正方形网格的单位长度为1)﹒(3)请将体育场、宾馆和火车站看作三点,用线段连接起来,得到△ABC,然后将此三角形向下平移4个单位,再画出平移后的△A′B′C′,并计算△A′B′C′的面积﹒【答案】(1)图形见解析;(2)超市(2,﹣3);(3)△A′B′C′的面积是7.【解析】(1)直接利用以火车站为原点建立平面直角坐标系即可;(2)利用(1)中建立的坐标系,进而超市的坐标;(3)利用平移规律得出平移后三角形,再利用矩形面积减去周围多余的三角形的面积即可得出△A′B′C′面积.试题解析:(1)如图所示:(2)如图所示:超市(2,﹣3);(3)如图所示,△A′B′C′的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.【考点】1.利用平移设计图案2.坐标确定位置.4.已知点与点关于轴对称,则 .【答案】1.【解析】∵点与点关于轴对称,关于x轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数,∴.∴.【考点】关于x轴对称的点的坐标特征.5.如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0),(0,5),点B在第一象限内.(1)如图1,写出点B的坐标();(2)如图2,若过点C的直线CD交线段AB于点D,且把长方形OABC的周长分为3:1两部分,求点D的坐标;(3)如图3,将(2)中的线段CD向下平移2个单位,得到C/D/,试计算四边形OAD/C/的面积.【答案】(1)点B(3,5);(2)(3,4);(3)7.5.【解析】(1)点B的横坐标等于点A的横坐标,点B的纵坐标等于点C的纵坐标,从而求得点B的坐标;(2)分两种情况讨论,并把不合题意的舍去即可;(3)根据平移的性质,得C′(0,3),D′(3,2),然后再求四边形OAD′C′的面积.(1)点B(3,5)(2)过C作直线CD交AB于D,由图可知:OC=AB=5,OA=CB=3.①当(CO+OA+AD):(DB+CB)=1:3时即:(5+3+AD):(5-AD+3)=1:38-AD=3(8+AD)AD=-4(不合题意,舍去)②当(DB+CB):(CO+OA+AD)=1:3时即:(5-AD+3):(5+3+AD)=1:38+AD=3(8-AD)AD=4∴点D的坐标为(3,4)(3)由题意知:C′(0,3),D′(3,2)由图可知:OA=3,AD′=2,OC′=3∴S四边形OAD′C″=(OC′+AD′)•OA=×(3+2)×3=7.5.【考点】1.矩形的性质;2.坐标与图形性质;3.平移的性质.6.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换①,如;②,如.按照以上变换有:,那么]等于()A.(3,2)B.(3,)C.(,2)D.(,)【答案】A.【解析】∵,,∴.故选A.【考点】1.新定义;2.点的坐标.7.如果点P的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:____________.【答案】(2,2).(答案不唯一)【解析】由题意点P(x,y)的坐标满足x+y=xy,当x=2时,代入得到2+y=2y,求出y即可.∵点P(x,y)的坐标满足x+y=xy,当x=2时,代入得:2+y=2y,∴y=2,故答案为:(2,2).【考点】点的坐标.8.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为.【答案】(0,-2)【解析】思路分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.解:点P1(2,0),P2(-2,2),P3(0,-2),P4(2,2),P5(-2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=335…3,∴点P2013的坐标为(0,-2).故答案为:(0,-2).点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.9.在平面直角坐标系中,已知线段的两个端点的坐标分别是、,将线段平移后得到线段(点、分别平移到点、的位置),若点,则点的坐标为A.B.C.D.【答案】D【解析】点的平移规律:横坐标左减右加,纵坐标上加下减.∵、,∴点的坐标为故选D.【考点】点的平移规律点评:本题属于基础应用题,只需学生熟练掌握点的平移规律,即可完成.10.若点P(a,b)在第四象限内,则a,b的取值范围是()A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<0【答案】A【解析】位于第一象限的点,纵横坐标都是正数;第二象限,横坐标为负,纵坐标为正;第三象限,纵横坐标都是负,第四象限,横坐标为正,纵坐标为负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。