石墨烯量子点制备与应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯量子点的概述
1.1.1 石墨烯量子点的性质
GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显著,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显著变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。
1.2.2 石墨烯量子点的制备
GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用
的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧化剂、高温、强机械力等多步来实现,这种制备方法不能有效的控制产物的表面形态和粒径尺寸,且不容易提纯。自下而上法是以多环芳香族化合物和具有芳香族环状分子的化合物为原料,通过化学反应合成GQDs,虽然其合成原理比较复杂,产率比较低,但是最终的产品形貌和尺寸容易控制,可以得到粒径均匀的GQDs。
图1-1 自上而下法和自下而上法制备GQDs的过程
Fig.1-1 Schematic diagram for synthesizing GQDs by top-down and bottom-up methods 自上而下法:
水热法Zhu等使用N-N二甲基甲酰胺(DMF)作为分散剂,使用氧化石墨烯(Graphene Oxide, GO)为原料一步合成GQDs。GO经过溶剂超声切割和还原一步进行,然后使用柱层析方法进行分离,可以得到不同氧化程度的GQDs,因此也获得了一批含有特定荧光特性的GQDs。
Pan等使用超声辅助水热法制备得到直径为5~13 nm的GQDs,此GQDs可以被激发出蓝色荧光。这种方法需要多步,首先将石墨片在酸性介质中氧化为氧化石墨片,然后经过热液还原为GQDs,并且通过各种表征手段进行检测分析,GO在酸性介质下被切割成纳米管和纳米带。如图1-2所示,在酸性条件下的氧化过程中,在GO表面形成了大量的环氧基团,这些基团形成了一条拉链式的带线,从而导致了C-C键的断裂,随后这些环氧键经过断裂后转变为羰基,并在碱性热液下进行还原,由于GO表面更多的线缺陷,所以在热液还原过程中氧原子逐渐被分解掉。由于还原温度的不同,最终得到的GQDs的表面形态不
同,通过高温反应得到的GQDs晶型稳定,表面状态均一,且平均粒径尺寸为9.6 nm,荧光产率可以达到6.9%。
Peng等使用碳纤维(carbon fiber, CF)作为原料,通过酸热处理,将CF进行氧化剥离,通过控制不同的反应温度,制备出不同尺寸的GQDs,所得到的GQDs 边缘具有锯齿状结构,且尺寸大小在3 nm左右,如图1-3所示。另外,这种方法制备的GQDs结晶度非常好,具有很好的溶解性,可以通过改变反应温度来调控GQDs的尺寸形貌和表面形态,从而改变了其荧光颜色。
图1-2 水热法切割氧化石墨烯微片制备GQDs的机理
Fig.1-2 Mechanism for the preparation of GQDs by hydrothermal cutting oxidized graphene
sheets
图1-3 碳纤维水热氧化切割制备GQDs
(a)氧化切割碳纤维制备GQDs (b) GQDs的透射电镜图(反应温度120°C),插图是GQDs 的高倍透射电镜图(c) GQDs的原子力显微镜图(d) GQDs的尺寸大小和粒径高度分布图Fig.1-3 Schematic diagram forthe preparation of GQDs by hydrothermal oxidation of carbon
fibers
(a)The preparation of GQDs by hydrothermal oxidating cutting of carbon fibers (b) TEM
image of GQDs (synthesized reaction temperature at 120°C) and the inset is the HRTEM of GQDs
(c) AFM image of GQDs (d) Size and height distribution of GQDs
电化学法电化学法是制备GQDs较为广泛的一种方法。一般采用鳞片石墨和石墨棒为主要原材料,并将其作为工作电极。这种方法采用的电势为-1.5V到+3V左右,其氧化电势比氧化石墨中C-C键要高,电解液中的离子在氧化裂解反应过程中作为碳链的“剪切刀”。氧化还原电势能够促使电解质中的阴离子快速插入到阳极的碳层中,起到氧化插层的作用,阳极的电化学氧化作用和溶液阴离子的嵌入插层作用共同导致石墨片层的分离剥落,从而得到GQDs。电化学法制备GQDs的工艺主要有以下四个主要步骤如图1-4所示:第一步,主要发生在石墨晶粒的缺陷区或者边缘位置,具体为阳极上发生氧化反应,使得石墨阳极表面层增加大量含氧官能团,石墨边缘的官能团进行自由基氧化或羟基化,从而导致石墨阳极上碳原子之间的化学键发生断裂;第二步,氧化反应通过边界层进一步嵌入,使得阴离子进一步插层氧化,石墨表面不断膨胀;第三步,石墨层与层之间进一步氧化裂解为石墨烯纳米片;第四步,氧化的石墨烯纳米片作为产物沉淀下来或者悬浮在溶液中,未氧化的石墨烯纳米片漂浮在溶液表面。进一步研究已经证实,通过改变反应溶液中阴离子的种类和供给电压的大小对产物的尺寸和形貌有很大影响。在整个反应过程中,羟基和含有氧的自由基都起着电化学“剪切刀”的作用,通过切割得到的碳纳米片由于发生阳极氧化,而得到表面修饰了较多含氧官能团的GQDs。通过电化学法制备的GQDs溶液具有很强的稳定性,GQDs在水溶液中带负电荷,从而导致GQDs之间发生静电排斥,形成的溶液分布均匀稳定。但电化学方法也有一些缺点[10],使用的石墨需要进行长时间的预处理,需要进一步透析分离才能制备得到比较纯的GQDs,制备耗时较长,而且得到产品的GQDs产率不高。
图1-4 电化学法制备GQDs的装置及原理图