新课程背景下初高中数学课程衔接问题的探究的心得体会
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程背景下初高中数学课程衔接问题的探究的心得体会
林老师学生由初中升入高中将面临许多变化,受这些变化的影响,学生不能尽快适应高中学习,学习成绩大幅度下降,甚至过去的尖子生可能变为学习后进生。为此,笔者结合高一实际,对初高中分化原因进行了分析,并就如何采取有效措施搞好衔接,全面提高高一数学教学质量进行实践,取得了良好效果。
一、关于初高中数学成绩分化原因的分析
1.环境与心理的变化。
对高一新生来讲,环境可以说是全新的,新教材、新同学、新教师、新集体……学生有一个由陌生到熟悉的适应过程。另外,经过紧张的中考复习,考取了自己理想的高中,必有些学生产生"松口气"想法,入学后无紧迫感。也有些学生有畏惧心理,他们在入学前,就耳闻高中数学很难学,高中数学课一开始也确是些难理解的抽象概念,如映射、集合、异面直线等,使他们从开始就处于怵头无趣的被动局面。以上这些因素都严重影响高一新生的学习质量。
2.升学考试要求不同下的教法变化。
在初中,由于内容少,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多,为了提高合格率,不少初中教师把题型分类,让学生强记解题方法和步骤,重点题目反复做过多次。如江苏洋思的先学后教。而高中教师在授课时要求内容容量大,从概念的发生发展、理解、灵活运用及蕴含其中的数学思想和方法,注重理解和举一反三、知识和能力并重。
从升学考看,在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得好成绩,取得中考好成绩。而高考要求则不同,有的高中教师往往用高三复习时应达到的类型和难度来对待高一教学,造成了轻过程、轻概念理解重题量的情形,造成初、高中教师教学方法上的巨大差异,中间又缺乏过渡过程,至使高中新生普遍适应不了高中教师的教学方法。
3.学习方法的变化。
学生在初中三年已形成了固定的学习方法和学习习惯。由于由于初中学生的学习负担较重,他们上课注意听讲,缺乏积极思维,遇到新的问题不是自主分析思考,而是希望老师讲解整个解题过程;不会自我科学地安排时间,缺乏自学、看书的能力,而课后,也不看书,
接按老师上课讲的例题方法套着解题,碰到问题寄希望于老师的讲解,依赖性较强。虽然不少高一教师介绍并强调了高中数学的学法调整,但由于原有学习方法已成习惯,有的同学特别是女生不敢对自己的学习方法进行调整,高一阶段课目多负担重,突出的就是不能真正理解知识、不会灵活运用,高一同学们普遍反映数学课能听懂不会做题,或者说能做作业但考试不会,在数学上花了最多的时间去做练习,但收效不大。
4.学生现有初高中数学学习知识存在以下“脱节”。
1).立方和与差的公式
这部分内容在初中教材中已删去不讲,但进入高中后,它的运算公式却还在用。
2).因式分解
十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。
3).二次根式中对分子、分母有理化
这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。
4).二次函数
二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容.二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。
5).根与系数的关系(韦达定理)
在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,因此王老师建议:
①理解一元二次方程的根的判别式,并能用判别式判定根的情况;
②掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式(这里指“对称式”)的值,能构造以实数p、q为根的一元二次方程。
6).图像的对称、平移变换
初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。
7).含有参数的函数、方程、不等式
初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常成为高考综合题。
8).几何部分很多概念(如重心、垂心、外心、内心等)和定理(如平行线分线段比例
定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材多常常要涉及。
二、初高中衔接措施很多,但归纳起来,可从三个方面思考:
(1)重视新旧知识的联系与区别。
每年新高一开头的几节课,数学老师讲的都比较别扭,在讲授新知识时,一些原本应该在初中掌握的知识点,发现学生大多只掌握了很浅显的内容,稍微深一些的内容,学生就说没有学过。有的高中必备知识、公式,以前初中应该教,高中默认你已经熟练掌握的知识,有的学生却没有一点概念。还有的知识一部分学生学过,一部分听说过,还有根本么听过的。有的老师就说“今年中考成绩600多分的学生,教起来还不如过去500多分的学生”。学生学得吃力,教师也教得吃力,这几乎是老师们的共同感受。一些老师不得不对这些新生补习与高中教材相对应的初中老教材,有时补课就要占去很多的课堂时间。为了不落下高中新课程,只得赶进度,学生学得吃力,很多问题还没搞明白,又要上新课了。“不仅初中知识没能掌握,高中知识的学习也因此受到影响”。这就要求最好在开学前对这部分初高中衔接过程中必备的知识自己先有所了解并将它强化。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能会有所变化。因此,联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。
(2)重视展示知识的形成过程和方法探索过程,培养创造能力。
高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上,要有质疑和解疑的思想,促进创造性思维能力的提高。碰到比较难理解的地方,一是反复多看,二是放一点时间在回过来看。以前学习遇到的难点,现在看起来可能就很简单了,小学的数学题你现在就不屑于做了。尽量缩短理解的过程,比如函数,两三天理解了还行,两三个星期再理解基本概念,那落下的就很多了。定义域、值域、求解析式、单调性、奇偶性、图象的变换一堆东西都学过去了。
(3)重视培养自我反思自我总结的良好习惯,高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,认真总结归纳。
培养好的学习习惯:预习、听讲、作业、总结这些每天做好就是了。这就要求学生应具备善于自我反思和自我总结的能力。在解题后,积极反思:思解题思路和步骤,思解题方法和解题规律的总结。在单元结束时,进行自我章节小结,形成自己的知识网络。每天晚上回顾一遍即可,每星期,每月都要对自己学过的知识作一个系统的梳理。
总的来说,要想使初中到高中有一个理想的衔接,就是要提高自己的能力。能做好开学时对自己心理和知识上的准备,学习时认真,学习后做到及时归纳整理就一定会取得理想的