电磁场与电磁波_ 矢量分析和场论_

合集下载

精品课件-电磁场与电磁波-第1章

精品课件-电磁场与电磁波-第1章
第1章 矢量分析基础
第1章 矢量分析基础
1.1 矢量分析 1.2 场论 1.3 标量场的方向导数和梯度 1.4 矢量场的通量及散度 1.5 矢量场的环量和旋度 1.6 亥姆霍兹定理 1.7 圆柱坐标系和球坐标系
第1章 矢量分析基础 1.1 矢量分析 矢量分析讨论矢性函数的求导、积分等内容,它是矢量代 数的继续,也是场论的基础。在物理学和工程实际中,许多物 理量本身就是矢量,如电场强度、磁场强度、流体的流动速度、 物质的质量扩散速度及引力等。采用矢量分析研究这些量是很 方便的。有些物理量本身是标量,但是描述它们的空间变化特 性用矢量较为方便。如物体的引力势,描述它的空间变化就需 要用引力。再比如,空间的电位分布,描述其变化采用电场强 度较为方便。
记为
,u 即
l M0
u lim u(M ) u(M0 )
l M0 M M0
M0M
(1-7)
第1章 矢量分析基础 图1-6 梯度和方向导数
第1章 矢量分析基础
2. 方向导数的计算公式
设有向线段l的单位矢量为l°=l/l,这个单位矢量的方
向余弦为(cosα, cosβ, cosγ),则标量场在某点的方向导
第1章 矢量分析基础
例1-1 若两个点电荷产生的电位 u(x, y, z) kq kAq r r1
为 r x2 y2 z2 r1 ,其(x a)2 y2 z2


,A、q和k是常数。求
电位等于零的等位面方程。
解 令u=0,则有1/r=A/r1,即Ar=r1, 左右同时平方, 得
(xA2(x2a+y2+)z22)=(yx2+a)z22+y2+z2A2a 2
若问题的本身就是两个变量的函数,这种情形叫做平面标 量场。此时,标量场一般可以写为u(x,y)。标量场具有相同 数值的点,就组成标量场的等值线,等值线方程为

第01章 矢量分析和场论基础

第01章 矢量分析和场论基础
ϕ
cos ϕ e y
− sin ϕ e x
cos ϕ e x ϕ
e ρ cos ϕ sin ϕ 0 e x e = − sin ϕ cos ϕ 0 e ϕ y ez 0 0 1 e z − sin ϕ cos ϕ 0 0 e ρ 0 eϕ 1 e z
第一章 矢量分析与场论基础
电磁场与电磁波理论基础
3.体、面和线微分元 体 体微分元 dV = ρ d ρ dϕ dz
dS ρ = ρ dϕ dze ρ 面微分元 dSϕ = d ρ dz eϕ dS = ρ d ρ dϕ e z z
Z
ez
线微分元 dl = d ρ e ρ + ρ dϕ eϕ + dze z
P( ρ ,θ , ϕ )
er eϕ
θ是位矢 与正 轴之间的夹角, 是位矢r与正 轴之间的夹角, 与正Z轴之间的夹角
θ
in rs

r sin θ sin ϕ
(1-17)
式中 n 是一垂直于由矢量 A 和 B 构成的平面的单位矢量, 构成的平面的单位矢量,并遵循 右手螺旋法则,见图1-3。 右手螺旋法则,见图 。
图1-3 矢量的标积和矢积
矢量的矢积不满足交换律: 矢量的矢积不满足交换律: A × B = −B × A (1-18) 矢积满足分配律和数乘, 矢积满足分配律和数乘,即
ϕ
ez
P( ρ , ϕ , z )
ρ


图1-10 圆柱坐标
0 ≤ ρ < +∞ 取值范围 0 ≤ ϕ ≤ 2π −∞ < z < +∞
z = 常数

矢量分析与场论

矢量分析与场论

i
F ds lim F P ds
S N i 1 i N S N i 1 i
i

L
F dl lim F Pi
N i 1
N

dli
F ds lim F P ds
i
标 量 场
标量场:随空间和时间变化的单值标量函数,如温度场。
ˆ cos cos cos G l l x y z
显然,在直角坐标系中有
ˆ grad G x ˆ ˆ y z x y z
矢 量 场
矢量场:随空间和时间变化的单值矢量函数,如流速场。
一年四季大气流速分布
F t F t0 ,则称 F 在 t0处连续。 连续:若 lim t t
0
F t F0 ,则称 lim F t F0 。 t t
0
导数:

增量: F F t t F t
F t
F

dF F 可导: lim t 0 t dt lim F t t F t t
a e a j m a
x ,y ,z

ˆe a j
x ,y ,z

ˆm a
矢 量 代 数
运算规则:当以坐标分量表示时,形式上与实矢量运算 规则相同。 但是没有任何几何意义!
ˆ ay by z ˆ a x bx y ˆ a z bz abx ˆ ay by z ˆ a x bx y ˆ a z bz ab x
f f x1, x 2 , x 3, x 4 , f f x1, x 2 , x 3, x 4 ,

电磁场与电磁波复习重点

电磁场与电磁波复习重点

梯度: 高斯定理:A d S ,电磁场与电磁波知识点要求第一章矢量分析和场论基础1理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公 式和方法(限直角坐标系)。

:u;u;u e xe ye z ,-X;y: z物理意义:梯度的方向是标量u 随空间坐标变化最快的方向;梯度的大小:表示标量 u 的空间变化率的最大值。

散度:单位空间体积中的的通量源,有时也简称为源通量密度,旋度:其数值为某点的环流量面密度的最大值, 其方向为取得环量密度最大值时面积元的法 线方向。

斯托克斯定理:■ ■(S?AdS|L )A d l数学恒等式:' Cu )=o ,「c A )=o3、理解亥姆霍兹定理的重要意义:a时,n =3600/ a , n为整数,则需镜像电荷XY平面, r r r.S(—x,y ,z)-q ■严S(-x , -y ,z)S(x F q R 1qS(x;-y ,z )P(x,y,z)若矢量场A在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场A可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

A八F u第二、三、四章电磁场基本理论Q1、理解静电场与电位的关系,u= .E d l,E(r)=-V u(r)P2、理解静电场的通量和散度的意义,「s D d S「V "v dV \ D=,VE d l 二0 ' ' E= 0静电场是有散无旋场,电荷分布是静电场的散度源。

3、理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。

《电磁场与电磁波》复习纲要(含答案)

《电磁场与电磁波》复习纲要(含答案)

S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0

C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S

电磁场与电磁波课件

电磁场与电磁波课件

电磁场与电磁波理论
A B
D
D
AB
B

ABC D B
C
ABC D
C
A
B A
A
Nanjing
University
of
Information
Science
&
Technology

Az ( B z )
A(B )
Ay ( B y )
O y
O
Ax ( B x )
y
x
x
代学方法:若 两矢量的对应分量相等,则 A B 。 A x = B x , A y = B y , A z = B z ,则 A 例如:在直角坐标系中,若
A、 B


第一章 矢量分析
直角坐标系下矢量表示:A A x e x A y e y A z e z
电磁场与电磁波理论
z
Az A
Байду номын сангаас大小:
A A
eA
Ax A y Az
2 2
2
ez ex Ax
方向(单位矢量):
A
ey O
A Ay A ex x e y ez z A A A A
电磁场与电磁波理论
标量积
a A B A B co s
矢量积
C A B e n A B sin
e x e y e y e z e z e x 0
e x e x e y e y e z e z 1
R R
大小:

电磁场与电磁波-1、2、3章矢量分析与场论基础

电磁场与电磁波-1、2、3章矢量分析与场论基础
R e zez
位置矢量的微分元是
dR
它在
d 、
(
和e ) dBiblioteka (zez ) e d e d ezdz
z 增加方向的微分元分别为d 、d和dz,如
图1.6所示。与单位坐标矢量相垂直的三个面积元分别为
dS ddz
dS d dz
体积元可表示为
dSz d d
dV dddz
r 3.球坐标系
A aA A ,其中是与同方向的单位矢量,为矢量的模值。
其中 aA 是 与 A同方向的单位矢量,A为矢量A模值。 一个矢量在三个相互垂直的坐标轴上的分量已知,则
这个矢量就确定了。如在直角坐标系中,若矢量A的坐标
分量为( Ax,Ay, Az),则可表示为则 A可表示为
A ex Αx ey Αy ez Αz
矢量A和B矢量的平面,方向满足右手螺旋法则,即
当右手四指从矢量A到B旋转 角时大拇指所指的方 向,其大小为 ABsin ,即
A B en AB sin
是叉积方向的单位矢量。 在直角坐标系中,各单位坐标矢量的叉积满足如下关系
ex ey ez ,ey ez ex ,ez ex ey
ex ex ey ey ez ez 0
y
x
图1.4 直角坐标系 在直角坐标系中,以坐标原点为起点,指向M (x, y, z点) 的矢 量R称为M点的位置矢量,可表示为
R xex yey zez 位置矢量的微分元是
dR exdx e ydy ezdz
它在x、y和z增加方向的微分元分别为 dx、dy和 dz ,
而与单位坐标矢量相垂直的三个面积元分别为
【提示】A B的模就是A与B所形成的平行四边形的面 积,因此C ( A B)是平行六面体的体积。

第1章__矢量分析。

第1章__矢量分析。
27
★梯度的性质
标量场)的梯度是一个矢量函数。 1)一个标量函数u(标量场)的梯度是一个矢量函数。 变化率最大的, 梯度的方向就是函数u变化率最大的,它的模就是 函数在该点的最大变化率的数值。 函数在该点的最大变化率的数值。 2)函数u在给定点沿l方向的方向导数等于函数u 方向的投影。 的梯度在l方向的投影。
16
4、矢量代数公式
v v v v v v v v v (1) Α⋅ (B×C) = B⋅ (C × A) = C ⋅ ( A× B) v v v v v v (2) ( A ⋅ B ) C ≠ A ( B ⋅ C )
v v v v v v (3) A × ( B × C ) ≠ ( A × B ) × C v v v v v v v v v (4) Α × (Β × C ) = (Α ⋅ C )Β − (Α ⋅ B )C
0 ≤ r < ∞ 0 ≤θ ≤ π 0 ≤ϕ ≤ 2π
v v v ar , vθ ,v ϕ a a v er , eθ , eϕ
v 矢量表示: ★矢量表示:A
6
4、坐标变换
★直角坐标系与圆柱坐标系: 直角坐标系与圆柱坐标系:
x = r cos ϕ y = r sin ϕ z = z
v 例如: v v 例如: a x = a r cos ϕ − aϕ sin ϕ v v v a x = a r cos ϕ − aϕ sin ϕ
10
★圆柱坐标系与球坐标系: 圆柱坐标系与球坐标系:
v v v 例如: 例如:a r = a R sin θ + aθ cos θ v v v a R = a r sin θ + a z cos θ
14
v v v v A⋅ B与 ×B的 算 A 计 v

电磁场与电磁波课件

电磁场与电磁波课件
z
a
A
c
任取一点C,对于原点的位置
矢量为
,则 c
C
b
B
c a k (b a )
y
x
c (1 k )a kb
其中:k 为任意实数。
电磁场与电磁波
第1章 矢量分析
三、矢量微分元:线元、面元、体元
例:
其中:dl , dS 和 dV 称为微分元。
求:确定垂直于 A、 B所在平面的单位矢量。 解:已知 A B 所得矢量垂直于 A 、 B 所在平面。
A B ˆn a A B
ˆx a ˆy a ˆz a
ˆ x 3a ˆy a ˆz B 4a
ˆ x 10a ˆ y 30 a ˆz A B 2 6 3 15a 4 3 1
ˆx a
ˆy a By Cy
ˆz a Bz Cz
Cx
b.矢量三重积: A ( B C ) B( A C ) C ( A B)
电磁场与电磁波
第1章 矢量分析
例2:设
ˆx a ˆy a ˆ z , r2 a ˆ x 3a ˆ y 2a ˆz r1 2a ˆx a ˆ y 3a ˆ z , r4 3a ˆ x 2a ˆ y 5a ˆz r3 2a
A (B C) A B A C
推论3:当两个非零矢量点积为零,则这两个矢量必正交。 •在直角坐标系中,已知三个坐标轴是相互正交的,即
ˆx a ˆ y 0, a ˆx a ˆ x 1, a ˆx a ˆz 0, a ˆy a ˆ y 1, a ˆy a ˆz 0 a ˆz a ˆz 1 a

电磁场与电磁波总复习

电磁场与电磁波总复习

二、 静态场分析方法
无源区:
静 电 场 2 0 1、位函数方程 恒定电场 2 0
2
V
2
有源区:
恒定磁场 A 0
A J c
2
位函数满足一维微分方程时,可用直接积分法求解。
2、镜像法 a. 平面镜像 导体平面镜像
0
h
y
q l 0 Idl A 4 l R
电磁场与电磁波
总复习
5、麦克斯韦方程组
D l H dl S ( J C t ) dS B l E dl S t dS S D dS V V dV S B dS 0 V S JC dS V t dV
积分形式:
微分形式:
D H JC t B E t
D V B 0 V JC t
电磁场与电磁波
总复习
电场计算方法总结: (1)已知电荷分布用公式计算; 要求熟练掌握点电荷、线电荷的计算公式 (2)对称性的场用麦麦克斯韦积分方程计算;
电磁场与电磁波
总复习
二、基本计算
1、三个物态方程:
导体: J E C
电介质:
2、边界条件:
D r 0 E D 0 E P
磁介质:
ˆ n ( H1 H 2 ) J S
E1t E2t B1n B2n
D1n D2n s
l
电磁场与电磁波
总复习
8、重要的场论公式
a. 两个零恒等式 b. 拉普拉斯算子
2
( ) 0
2 ( )

电磁场与电磁波理论课件PPT第1章

电磁场与电磁波理论课件PPT第1章

(1.2.6)
♥ 标量函数 在空间给定点沿 方向的方向导数等
于该点的梯度矢量
在该方向上的投影 。
(1.2.5)
1-43
《电磁场与电磁波理论》
第1章 矢量分析与场论
2. 标量场的梯度
♥ 梯度的表示——哈密顿(Hamilton)算子 ◘ 直角坐标系中的哈密顿算子 (1.2.7) ◘ 直角坐标系中的梯度表示式 (读作del)
(1.1.33)
(1.1.35)
1-34
《电磁场与电磁波理论》
第1章 矢量分析与场论
1.2 1.2.1
场的微分运算 场的基本概念


1.2.2
1.2.3 1.2.4
标量场的方向导数和梯度
矢量场的通量和散度 矢量场的环量和旋度
1-35
《电磁场与电磁波理论》
第1章 矢量分析与场论
1.2.1 场的基本概念
第1章 矢量分析与场论
1.矢量与单位矢量
♥ 矢量——在三维空间中的一根有方向的线段。 该线段的长度 该线段的方向 代表该矢量的模, 代表该矢量的方向
(1.1.1)
♥ 单位矢量——模等于1的矢量叫做单位矢量。
(1.1.2)
1-12
《电磁场与电磁波理论》
第1章 矢量分析与场论
2.矢量表示法
♥ 在直角坐标系中矢量的表示 (1.1.3) ——矢量的三个分量,即矢量在三个坐标上的投影 矢量的大小 矢量的方向的单位矢量 (1.1.4)
1-13
《电磁场与电磁波理论》
第1章 矢量分析与场论
2.矢量表示法
♥ 矢量的方向余弦
——矢量与三个坐标轴之间的夹角。 ♥ 矢量的方向的单位矢量 (1.1.5)
◘ 一般情况下均采用矢量的方向的单位矢量(方向余弦)来

电磁场与电磁波_第一章.ppt

电磁场与电磁波_第一章.ppt

(x x')2 (y y')2 (z z')2
ey
(x x')2
y y' (y y')2
(z z')2
ez
R
R
z z' (x x')2 (y y')2 (z z')2

先证明一个关系:
f (R) ex
xf (R) ey源自yf (R) ez
z
直角坐标系中的矢量公式
任一矢量 A在直角坐标系中可表示为:
A ex Ax ey Ay ez Az
矢量和:
A B ex (Ax Bx ) ey (Ay By ) ez (Az Bz )
矢量点积:
A B AxBx AyBy Az Bz
直角坐标系中的叉积
A B (ex Ax ey Ay ez Az )(exBx eyBy ez Bz )
z) ez
的三个相互正交的坐
分别是 , 和z 增
加的方向,且遵循右手螺旋法 则
e e ez , e ez e
ez e e
坐标单位矢量不一定是常矢量,除了z方向例 外
园柱坐标系单位矢量和直角系单位矢
量的变换关系
e
exc
os
ey
s
in
e ex sin ey cos
或反过来,
ex ey
A(B C) AB AC
矢量的叉积
两个矢量 A 和 B 的叉积 A B 是一
个矢量,它垂直于包含矢量 A 和 B 的
平 确面定,符其合大右A小 手定 法B义 则为(e手n A指AB从BssininA卷,向方B向) 的
根据叉积定义,显然有 A B B A

《电磁场与电磁波》期末复习

《电磁场与电磁波》期末复习

ò E v(rv)=- 1 r(rv')?(1)dV'
4pe0V'
R
ò Ev(rv)=-
?
轾 犏 犏 犏 臌 4p1e0V'
r(rv'))dV' R
E v(rv)=-?f(rv)
➢ 静电场的散度(有源场)
炎Dv = r
炎Ev= rf + rp e0
➢ 高斯通量定理
vv
òÑ SD?dS åq
➢ 媒质极化
➢ 两个零恒等式
(1) ()0
任何标量场梯度的旋度恒为零。
v (2) ( A )0
任何矢量场的旋度的散度恒为零。
电磁场的基本规律
➢ 电流连续性方程(无源区)
vv
òÑsJ ?dS 0

v J
=
-
¶r
¶t
➢ 静电场的旋度(无旋度)
蝌 蜒 E v?dlv l
vv
(汛E)缀 dS 0
s
v
汛E=0
➢ 电位函数
¶u ¶l
=
gradu?avl
? a v x抖 抖 x+a v y y+a v z? ?z
➢ 点积
vv A ? BA x B x+ A y B y+ A y B y
avi ?avi 1 avi ?avk 0
➢ 叉积
vv A?B
avx avy avz Ax Ay Az
Bx By Bz =(AyBz - AzBy)avx +(AzBx- AxBz)avy +(AxBy- AyBx)avz
《电磁场与电磁波》期末复习
复习内容
• 考试内容及题型 • 各章要点

2023年大学_电磁场与电磁波第2版(陈抗生著)课后习题答案下载

2023年大学_电磁场与电磁波第2版(陈抗生著)课后习题答案下载

2023年电磁场与电磁波第2版(陈抗生著)课后
习题答案下载
电磁场与电磁波第2版(陈抗生著)课后答案下载
本书以“麦克斯韦”作为主线,从一般到具体(由静到动、由无界到有界、由无源到有源),系统地阐述了电磁场与电磁波的基本理论和分析方法,重点突出电磁场的传输特性。

本书主要内容包括电磁理论必要的`数学基础、电磁场的基本问题、静态场、时变电磁场、平面电磁波、导行电磁波、电磁波的辐射。

各章例题具体实用,并配有习题和参考答案。

本书可作为高等院校通信与电子信息类及相关专业本科生的教材,也可供从事电磁场理论、微波技术、天线领域的工程技术人员学习和参考。

电磁场与电磁波第2版(陈抗生著):内容简介
第0章绪论
第1章矢量分析与场论
第2章基本电磁场
第3章静态场
第4章时变场的基本问题
第5章均匀平面电磁波的传播
第6章平面电磁波的反射与折射
第7章导行电磁波
第8章电磁波的辐射
部分习题参考答案
电磁场与电磁波第2版(陈抗生著):图书目录
点击此处下载电磁场与电磁波第2版(陈抗生著)课后答案。

最新-《电磁场与电磁波》第1章矢量分析-PPT文档资料

最新-《电磁场与电磁波》第1章矢量分析-PPT文档资料

电磁场与电磁波
第1章 矢量分析
在直角坐标系中,两矢量的叉积运算如下: z
A B ( A x a ˆ x A y a ˆ y A z a ˆ z ) ( B x a ˆ x B y a ˆ y B z a ˆ z )
o y
x
(A y B z A z B y )a ˆx (A z B x A x B z)a ˆy (A x B y A y B x )a ˆz
电磁场与电磁波
第1章 矢量分析
矢量: AAxa ˆxAya ˆyAza ˆz
z
模的计算: |A| Ax2Ay2Az2
Az
A
单位矢量:
a ˆ|A A||A A x|a ˆx|A A y|a ˆy|A A z|a ˆz
o
Ax
cosa ˆxcosa ˆycosa ˆz x
Ay
y
方向角与方向余弦: , ,
2.矢量:不仅有大小,而且有方向的物理量。
如:力 F 、速度 v 、电场 E 等
矢量表示为: A | A | aˆ
其中:|
A
|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
定义: A B C |A ||B ||C |s inc o s hBC A
含义:
C
标量三重积结果为三矢量构成
的平行六面体的体积 。
B
电磁场与电磁波
第1章 矢量分析
V A ( B C ) C ( A B ) B ( C A ) hBC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4 矢量场的环量
不是所有的矢量场都由通量 源激发。存在另一类不同于 通量源的矢量源,它所激发 的矢量场的力线是闭合的, 它对于任何闭合曲面的通量 为零。但在场所定义的空间 中闭合路径的积分不为零。
1.4 矢量场的环量
磁场沿任意闭合曲线的积分 与通过闭合曲线所围曲面的 电流成正比,即:
L
S
1.4.1 旋度的公式
u u n ucos u en el uel
l n l n
n
P1
P2
dn
dl
P
| u
ˆ
u nl
maeˆx x uxeˆy
u y
eˆz
u z
e ˆx x e ˆyy e ˆzz
1.2.4 梯度
标量场的梯度:标量场在空间变化最快的方 向及数值
| u nˆu l
u
u
max eˆx x eˆy y eˆz
y e ˆz rotF
z
zeˆ
ex
rotF ex
Fyy| z
z
Fyy| z z
2
2
Fz Fy
Fzz| y y 2
Fyz| y y 2
y
zy z
x
s yz lyz
y
1.4.4 旋度的公式
根据线积分的公式,直角坐标系中旋度的表达式为:
rotF
e ˆlsxiyzm01s
Fdle
l yz
ˆ lim y
22
−35.50
12 50 MLAT 10 60
70 80
2 0 MLT
40
8 30
20 10 6 0
−10
−20
4
−30
−40
33.42
Potential (kV)
Z [R]
15 10
5 0 -5 -10 -15
10
t = 21:15 UT
0
-10
X [R]
p [nPa]
2
1.7725
1.545
1.3175
1.09
0.8625
-20
0.635
0.4075
0.18
1.2.2 标量场的等值面
标量场同一数 值各点在空间 形成的曲面
ux,y,z C
14 16
18
20
−35.50
22
12 50 MLAT 10 60 70
80
2 0 MLT
40 8
30
20
10
6
0
−10
−20
4
−30
−40
33.42
Potential (kV)
u z
n方向为该点所在等值面的法线方向
1.2.4 梯度
标量场的梯度函数建立
了标量场与矢量场的联 系,这一联系使得某一 类矢量场可以通过标量 函数来研究,或者说标 量场可以通过矢量场的 来研究。
标量场的梯度垂直于通 过该点的等值面(或切 平面)
1.2.4 梯度的性质
标量场的梯度是矢量场,其方向表示标量场变化最快的方 向,其数值表示变化最快方向上场的空间变化率。 标量场在方向上的方向导数,是梯度在方向上的投影。 标量场的梯度垂直于过该点场的等值面,因此空间任意点 的梯度方向是过该点标量场的等值面的法矢方向。所以等值 面的单位矢量可表示为: n u
1.2 梯 度
自强●弘毅●求是●拓新
1.2.1 场的概念
任何物理过程总是在一定空间上发生,对应的物理量在 空间区域按特定的规律分布。如
电荷在其周围空间激发电场的分布 电流在周围空间激发磁场的分布 地球上太阳及其他原因激发温度的分布
在空间区域上每一点有确定物理量与之对应,称在该区 域上定义了该物理量的场
矢量场对于闭合曲线 L 的环量定义为:
xd,y,z
L
0 0
F
(1)如果矢量场的任意闭合回路的环量恒为零,称 该矢量场为无旋场,又称为保守场。
(2)如果矢量场对于任何闭合曲线的环量不为零, 称该矢量场为有旋矢量场
1.4.2 旋度的概念
旋度的定义为:矢量场在M点处的旋度为一矢量,其数值为包 含M点在内的小面元边界的环量与小面元比值极限的最大值, 其方向为极限取得最大值时小面积元的法线方向,即:
1.2.2 标量场的等值面
例:点电荷Q位于直角坐标系的原点,它在空间的电位是:
求等值面方程?
(x,y,z)
Q
40 x2 y2 z2
解:
(x,y,z)
Q
C
40 x2 y2 2z
Q
1.2.3 方向导数
实际应用中不仅需要了解宏观 上场在空间的数值,还需要知 道场在不同方向变化。
方向性导数可以描述标量场在 空间某个方向上变化情况
|u |
1.2.5 习题
例:已知标量场u(x, y,z) x2y y2x1,求(2,1,3)处方向导数的最大值。
解:根据梯度的定义,求得该标量场的梯度为:

zyx
那么在(2,1,3)处的梯度为
e y e yz x e xy u
zyx
eeeu
其最大值为 |u | 117
1.4 旋度
自强●弘毅●求是●拓新
Mrl Mr
1.2.3 方向导数
| lim u
l
M0
u l0 l
u
x
dx
u y
dy
u z
dz
1 dl
ex u ey x
u ez y
uˆexdxeyˆdyl ezdˆz
z
dl
u cos ucos cous
x
y
z
cos,cos,cos为 l 的方向余弦
Mr
Mrl
1.2.4 梯度
场在某点处沿不同方 向变化快慢程度(方 向性导数)不同,必 存在变化最快的方向 定义为梯度
l1
l2
l
M
u u u u l2 l1 l
1.2.4 梯度
u l
(u ex u ey x y
u ez)( z
dx ex dl
dy ey dl
dz dl
ez)
(u ex u ey u ez)el x y z
z
lim
1
rotF
n
ˆ s0
s
l F dl Max
y
x
1.4.4 旋度的公式
根据线积分的公式,直角坐标系中旋度的表达式为:
rotF e ˆlxim 1 Fdle ˆ lim y
s syz0
l yz
sxz0
1Fdl xz s
Fz edlˆ1 lim
l sxy0
l
yz
xz
xy
e ˆxrotFe ˆ xeroˆ tyFe ˆ
1.2.1 场的概念
只有数值的大小而没有方向的场称为标量场 既有数值的大小又有方向的场称为矢量场 如果场与时间无关,称为静态场,反之为时变场
静态标量场用 ux,y,z 时变场标量场用 ux,y,z,t
静态矢量场 Fx,y,z 时变矢量场 Fx,y,z,t
1.2.1 场的概念
14 16 18 20
sxz0
1Fdl xz s
Fz edˆl1 lim
l sxy0
lx
yz
xz
xy
eˆxrotFexey ˆrotFey ezroˆtFez ˆ ˆ
ˆ
rotF e ˆxFz Fy eFˆxy Fz Fye ˆzFx y z z x x y
相关文档
最新文档