最新三羧酸循环(TCA)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2mol丙酮酸 EMP阶段
净生成2molATP,2mol(NADH+H+)
第二阶段:2mol丙酮酸
2mol乙酰CoA
净生成2mol(NADH+H+),2 molCO2 第三阶段:2mol乙酰CoA经TCA彻底氧化分解
净 生 成 2 × 1 ATP,2×3mol(NADH+H+),2×1 molFADH2,2×2 molCO2
CH3COCOOH+CO2+NADPH+H+
HO—CHCOOH
+NADP+
CH2COOH
再由苹果酸脱氢酶催化:
HO—CHCOOH
+NAD+ O=CCOOH
CH2COOH
+ NADH+H+
CH2COOH
5、α—酮戊二酸和Asp 经转氨作用 生成Glu和草酰乙酸
第五节 磷酸戊糖途径(HMP PPP)
生成一个高能键“~”,此步 类似于丙酮酸的氧化脱羧。
α—酮戊二酸脱氢酶系包括: α—酮戊二酸脱氢酶 二氢硫辛酸转琥珀酰基酶 二氢硫辛酸脱氢酶
7、琥珀酸的生成
底物磷酸化 生成1ATP 可逆
是TCA中唯一直接产生ATP的反应,属 于底物磷酸化。
区别:
EMP:高能磷酸基团直接转移给ADP放能
TCA:琥珀酰CoA中的高能键 键水解放能
硫酯
8、琥珀酸氧化生成延胡索酸 第三次脱氢(FAD脱氢) 可逆
生成1FADH2
该酶结合在线粒体内膜上,丙二 酸是竞争性抑制剂
9、延胡索酸水化生成苹果酸 水化作用 可逆 消耗1H2O
10、苹果酸脱氢氧化生成草酰乙酸 第四次脱氢 可逆
消耗1NAD+,生成1NADH+H+
总反应式:
乙酰CoA+3NAD++FAD+GDP+Pi+2H2O 2CO2+3NADH+3H++FADH2+GTP +HS—CoA
五、生物学意义
1、TCA循环是生物体获能的主要途径,远比无氧分解产 生的能量多。
2、TCA是生物体各有机物质代谢的枢纽。糖、脂肪、氨 基酸的彻底分解都需通过TCA途径,而TCA中的许多中间 产物如草酰乙酸、α—酮戊二酸、琥珀酰CoA等又是合成 糖、氨基酸等的原料。
3、TCA是发酵产物重新氧化进入有氧分解的途径。
三羧酸循环(TCA)
2、柠檬酸脱水生成顺乌头酸 +H2O 可逆
3、顺乌头酸与H2O加成,生成异柠檬酸
异构化反应 —H2O 可逆
通过2——3步,将柠檬酸异构化为 异柠檬酸。实质是将前者的—OH从C2 变到了后者的C3,成为仲醇(由叔醇变 为仲醇),更易氧化。
4—5、异柠檬酸氧化脱羧生成α—酮戊二酸
4、TCA的某些中间产物还是体内积累成分,如柠檬酸、 苹果酸是柑桔、苹果等果实的重要成分,在储藏期,酸作 为呼吸基质被消耗。果实的糖/酸比是衡量果实品质的一 项指标。
六、三羧酸循环的调控
三个调控位点:柠檬酸合成酶、异柠檬酸脱 氢酶、α—酮戊二酸脱氢酶所催化的三个反应。
1、NAD+/NADH的比值
高:TCA循环生成的产物不能满足细胞自身 的需要,三种酶被激活,酶发挥催化功能,速度 加快。
磷酸戊糖途径的概念:是G分解的另一条途径: 在6—P—G上直接氧化,再分解产生5—P—核糖。
磷酸戊糖途径PPP:Pentose Phosphate Pathway 己糖磷酸途径HMP:Hexose Monophosphate Pathway 磷酸己糖支路HMS:Hexose Monophosphate Shunt G直接氧化途径DOPG:Direct Oxidation Pathway of Glucose
由于氧化磷酸化,1mol(NADH+H+)可生成3molATP, 1 molFADH2可生成2molATP。
因此:第一阶段:净生成8molATP 第二阶段:净生成6molATP,2 molCO2 第三阶段:净生成24molATP,4 molCO2
共净生成38molATP,6molCO2
真核生物中,共净生成36molATP,6molCO2
四、化学量计算
(一)物质量计算
1mol乙酰CoA (二)能量计算
2 molCO2+1molCoA
1、计算1mol乙酰CoA彻底氧化分解产生的ATP的数目
1+3×3+1×2=12molATP
2、计算1molG彻底氧化分解产生的ATP的数目(原核生物)
G
丙酮酸
EMP
乙酰CoA
CO2+ H2O
TCA
第一阶段:G
TCA的运转必须通过O2条件下才能运转, 实际上O2并不直接参加TCA,那么O2在何处参 加反应呢?
TCA除了产生1个GTP外,另外的能量 均潜在3NADH和1FADH2中,为了TCA的运 转,NAD+和FAD必须再生。NAD+和FAD 的再生则是通过DADH和FADH2进入电子传 递链,将H交给O2,释放潜能生成ATP而实 现。所以,TCA的运转必须有O2。
七、三羧酸循环的回补效应 产生草酰乙酸的途径主要有:
1、丙酮酸羧化酶催化丙酮酸羧化生成草酰乙酸
位于动物肝脏和肾脏的线粒体中
OCCOOH
CH3COCOOH+CO2+ATP+H2O CH2COOH +ADP+Pi
Mg2+,生物素
2、磷酸烯醇式丙酮酸羧化酶催化PEP生成草酰乙酸
植物、细菌等,PEP羧化酶催化
低:大量的NADH抑制酶的活性,使TCA循环 减速。
2、ATP,琥珀酰CoA抑制柠檬酸合成酶、α—酮戊 二酸脱氢酶的活性,使TCA循环减速。
异柠檬脱氢酶受ATP抑制,被ADP激活。 3、丙酮酸脱氢酶系的调节见前
细胞中ATP浓度越高时,TCA速度下降; NAD+/NADH的比值越高时,TCA速 度越快。
第一次脱氢脱羧 可逆
消耗1NAD+,生成1NADH+H+,1CO2
该酶是别构酶,激活剂是ADP,抑 制剂是NADH、ATP。
有两种同工酶:
以NAD+为电子受体,存在于线粒体 中,需Mg2+。
以NADP+为电子受体,存在于胞 液中,需Mn2+。
6、α—酮戊二酸氧化脱羧生成琥珀酰CoA
第二次脱氢脱羧 不可逆 消耗1NAD+,生成1NADH+H+,1CO2
CH2CCOOH + H2O+ 2COOH
3、磷酸烯醇式丙酮酸羧激酶催化PEP生成草酰乙酸
心脏、骨骼肌中,PEP羧激酶催化
PEP+CO2+GDPO=CCOOH
+GTP
CH2COOH
4、由苹果酸酶、苹果酸脱氢酶催化使
丙酮酸生成草酰乙酸
原核、真核中广泛存在的苹果酸酶催化
相关文档
最新文档