第一节 微分方程的基本概念 第二节 可分离变量的微分方程
高等数学教学教案§7-1--微分方程的基本概念-§7-2--可分离变量的微分方程
例2列车在平直线路上以20m/s(相当于72km/h)的速度行驶当制动时列车获得加速度04m/s2问开始制动后多少时间列车才能停住以及列车在这段时间里行驶了多少路程?
几个概念
微分方程表示未知函数、未知函数的导数与自变量之间的关系的方程叫微分方程常微分方程未知函数是一元函数的微分方程叫常微分方程
例3设降落伞从跳伞塔下落后所受空气阻力与速度成正比并设降落伞离开跳伞塔时速度为零求降落伞下落速度与时间的函数关系
例4求微分方程 的通解
例4有高为1m的半球形容器水从它的底部小孔流出小孔横截面面积为1cm2开始时容器内盛满了水求水从小孔流出过程中容器里水面高度h随时间t变化的规律
解由水力学知道水从孔口流出的流量Q可用下列公式计算
讨论下列方程中哪些是可分离变量的微分方程?
(1)y2xy是y1dy2xdx
(2)3x25xy0是dy(3x25x)dx
(3)(x2y2)dxxydy=0不是
(4)y1xy2xy2是y(1x)(1y2)
(5)y10xy是10ydy10xdx
(6) 不是
第一步分离变量将方程写成g(y)dyf(x)dx的形式
作业布置
《高等数学》标准化作业
双语教学
导数:derivative;微分:differential calculus;微分方程:differential equation;阶:order;
常微分方程:ordinary differential equation;偏微分方程:partial differential equation;
教 学 基 本 内 容
函数是客观事物的内部联系在数量方面的反映利用函数关系又可以对客观事物的规律性进行研究因此如何寻找出所需要的函数关系在实践中具有重要意义在许多问题中往往不能直接找出所需要的函数关系但是根据问题所提供的情况有时可以列出含有要找的函数及其导数的关系式这样的关系就是所谓微分方程微分方程建立以后对它进行研究找出未知函数来这就是解微分方程
高等数学 上册 第7章 微分方程
形如
dny dxn
a1
(
x)
d n1 y dxn1
an1
(
x)
dy dx
an (x) y
f (x)
的微分方程称为n阶线性微分方程.否则,就称为 n阶非线性微分方程.
例如,xy 2 y x2 y 0 是三阶线性微分方程.
dy dx
2
x
dy dx
y
cos
x
是一阶非线性微分方程.
y 2 y( y)2 2x 1 是二阶非线性微分方程.
可分离变量的微分方程 dy f (x)g( y) 的解法总结如下:
dx
① 分离变量: 1 dy f (x)dx
g( y)
②
两边积分:
1 g( y)
dy
f
(x)dx
二、可分离变量的微分方程
例1. 求微分方程
的通解.
解: 分离变量,得 d y 4x3 d x 说明: 在求解过程中
y
每一步不一定是同解
dx x
;
5、回代变量:将u回代成 .
一、齐次方程
例1. 求微分方程 x2 dy y2 xy 满足初值条件 y |x1 1 的特解 x2
①
假定方程①中的f(x),g(y)是连续的,且 g( y) 0,
设y=(x)是方程①的解, 则有恒等式
1 (x) d x f (x) d x g( (x))
两边积分, 得
f (x)dx
设函数G(y)和F(x)依次为 则有
和f(x)的原函数, ② 这说明方程①的解满足等式②
二、可分离变量的微分方程
①
dx
y x1 3
②
由①得
( C为任意常数)
高等数学第十一章课件.ppt
这类方程的特点是经过适当的变换,可以将方程
右边分解成只含 x 的函数与只含 y 的函数的乘积,而左 边是关于 y 的一阶导数.具体解法如下:
(1) 分离变量 将方程写成 1 dy f (x)dx 的形式
g( y)
(2) 两 端 积 分
1 g( y)
dy
f
(x)dx
设积分后得
G( y) F(x) C ; 则 G( y) F(x) C 称为隐式通解,隐式解有时可以
知 u 0, 取 u( x) x, 则 y2 xerx ,
得齐次方程的通解为 y (C1 C2x)erx;
3.有一对共轭复根 ( 0)
特征根为 r1 i , r2 i ,
y1 e( i ) x , y2 e( i )x ,
重新组合
1
y1
( 2
y1
y2 )
ex cos x,
y py qy f1(x) f2 (x)
的特解.
定理 4 若 Y 是线性齐次方程 y py qy 0 的
通解, y 是线性非齐次方程 y py qy f (x) 的一个
解,则Y y 是 y py qy f (x) 的通解.
设非齐方程特解为
代入原方程
综上讨论
注意 上述结论可推广到n阶常系数非齐次线性 微分方程(k是重根次数).
第二节 一阶微分方程
一、可分离变量的微分方程 二、齐次方程 三、一阶线性微分方程 四、伯努利方程
一、可分离变量的微分方程
一阶微分方程的一般形式为
F(x, y, y) 0 或 dy f (x, y) dx
形如
dy f (x)g( y)(g( y) 0) dx
的一阶微分方程,称为可分离变量的微分方程.
微分方程的概念,可分离变量,齐次
5 3
,
所求曲线方程为y 1 x3 5 . 33
例 2 一物体以初速 v 0 垂直上抛,设此物体只受重 力的影响.试求该物体运动的速度和时间 t 的关系.
解 设所求函数为v v(t) , 则 dv g dt
v gt C
代入条件后知 C v0
故 v gt v0 ,
二、微分方程的基本概念
例 dy 2x 的特解为 y x 2 1,
dx
d 2s dt 2
0.4
的特解为s 0.2t 2 20t,
特解的图象: 微分方程的积分曲线. 通解的图象: 积分曲线族.
这就是微分方程的几何意义.
初始条件: 用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y)
两端积分
dy
1 y2 (sin x cos x)dx
得:arcsin y (cos x sin x) C
这就是所给方程的通解.
隐式通解
例3
解 微 分 方 程y
y .
x
解 这是可分离变量方程,分离变量得: dy 1 dx
两端积分
dy y
所给方程
1 x
dx
ln y
的通解为: y
C
F( x,( x),( x), ,(n)( x)) 0. 微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且任
意常数的个数与微分方程的阶数相同.
例 dy 2x
dx
d 2s dt 2
0.4
的通解为 y x2 C,
的通解为s 0.2t 2 C1t C2
(2)特解: 确定了通解中任意常数以后的解.
注意:
可分离变量的微分方程
微分方程;
阶;
定解条件;
解;
通解;
特解
说明: 通解不一定是方程的全部解 . 例如, 方程 有解 ( x y) y 0
y=–x 及 y=C 后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件定常数 .
3.解微分方程应用题的方法和步骤
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例4 , 例 5 )
y f ( x) .
因积分与路径无关 , 故有
即
因此有
[ F ( x, y ) cos x ] [ F ( x, y ) y sin x] x y Fx cos x F sin x Fy y sin x F sin x Fx y tan x Fy y y y tan x 1 y sec x y x 0 1 cos x
则有
当G(y) 与F(x) 可微且 G’(y) =g(y)≠0 时, 说明由②确定的隐函数 y=(x) 是①的解. = f (x)≠0 时, 由②确定的隐函数 x=(y) 也是①的解.
称②为方程①的隐式通解, 或通积分.
例1.求微分方程
解: 分离变量得
的通解.
dy 3x 2 d x y
或
说明: 在求解过程中每一步不一 定是同解变形, 因此可能增、 减解.
返回
然后积分: 即
对方程分离变量,
M C e t
M
M0
得 ln M t ln C ,
利用初始条件, 得 故所求铀的变化规律为
第七章微分方程
34
第三节 齐次方程
三 节
齐 次 方 程
若有 f ( t x , t y ) = t f ( x , y ),
k
次齐次函数。 则称 f (x, y) 为 k 次齐次函数。 当 k = 0, 即 f ( t x, t y ) = f (x, y), 称为零次齐次函数 零次齐次函数, 则 f (x, y) 称为零次齐次函数,且有 y y y f ( x , y ) = f ( x , x ) = f ( 1, ) = ϕ ( ) . x x x
y = y( x , C1 ,L, C n ), 或 F ( x , y , C1 ,L , , C n 相互独立 )
(2) 确定了通解中任意常数的解称为微分 方程的特解 特解。 方程的特解。
12
4. 由实际情况提出的可确定通解中任意常数 的条件称为初始条件 初始条件。 的条件称为初始条件。 初始条件个数 = 任意常数个数 = 方程阶数
( n)
y x= x
) = 0.
x = x0 ( = y 0n-1) .
0
′ y = y0 , ′ x = x = y0 , L , y ( n-1)
0
14
注意1, 注意 ,不能认为方程的解简单地加上一个 任意常数后还是方程的解, 任意常数后还是方程的解, 例如: 例如:
15
注意2, 注意 ,通解中的任意常数必须实质上是任意的 如:y = c1+ c2x +c3x2 c1 , c2 , c3 任意 而 y = c1x + c2x c1 , c2 不任意
y 2 PA = x − x − + ( y − 0) = a y′ ±y . ⇒ y′ = 2 2 a −y
高数第一册
= −e ( ye
y
−y
− ∫ e d y) + C e
−y
y
= − y − 1+ C e +
y
另解: 另解
(变量代换法 变量代换法) 变量代换法
解: 令 x + y = u, 代入原方程得 用分离变量法得 所求通解为 即
小结
1. 微分方程的阶、解、通解、特解及初始条件 微分方程的阶、 通解、特解及初始条件. 2. 可分离变量的微分方程 g( y) d y = f ( x)dx 计算方法:两边同时积分. 计算方法:两边同时积分
∫ g( y)d y =
∫ f ( x)dx
设左、 设左、右两端的原函数分别为 G(y) , F(x), 则有 ② 表达式②称为微分方程① 隐式通解. 表达式②称为微分方程①的隐式通解
dy 例1. 求微分方程 = 2xy 的通解. 的通解. dx
解:
dy 原方程可改写为 = 2x dx y dy 两边积分 ∫ = ∫ 2x dx y
dy + P( x) y = 0 1. 解齐次方程 dx
分离变量得 两边积分得
ln y = −∫ P( x)dx + ln C
故齐次方程的通解为
对应齐次方程通解 2. 解非齐次方程
y= C e
−∫ P( x) d x
常数变易法: 用常数变易法 作变换 y = c( x)e ∫
dy + P( x) y = Q( x) dx
一般地 , n 阶常微分方程的形式是
′,⋯, y(n) ) = 0 F( x, y, y
使方程成为恒等式的函数叫做微分方程的解 使方程成为恒等式的函数叫做微分方程的解.
若微分方程的解中含有任意常数, 若微分方程的解中含有任意常数,且其个数与微分 方程的阶数相同,这样的解称为微分方程的通解 通解. 方程的阶数相同,这样的解称为微分方程的通解.
高等数学上册第七章微分方程
n 个函数, 若存在不全为 0 的常数
使得
则称这 n个函数在 I 上线性相关, 否则称为线性无关.
例如,
在( , )上都有
故它们在任何区间 I 上都线性相关;
又如,
若在某区间 I 上
必需全为 0 ,
在I 上都 线性无关.
DMU
第五节 二阶线性微分方程解的结构
两个函数在区间 I 上线性无关的充要条件:
(1) 当p2 4 q 0 时, ②有两个相异实根
则微分
方程有两个线性无关的特解:
因此方程的通解为 y C1 er1 x C2 er2 x
DMU
第六节 常系数齐次线性微分方程
(2) 当p2 4 q 0 时, 特征方程有两个相等实根
则微分方程有一个特解
设另一特解
( u (x) 待定)
代入方程得:
可化为变量分离方程的类型
• 形如 dy g的(方y )程,称为齐次方程 dx x
如何求解满足上述条件的齐此方程
令 y u, y ux x
du u x du ,
dx
dx
x du g(u) u dx
du g(u) u
dx
x
化为一个变量可分离的方程
DMU
第二节 可分离变量的微分方程 齐次方程
第一节 微分方程的概念
微分方程的预备知识
➢ 微分方程
y P(x) y Q(x)y f (x)
➢ 阶:最高阶导数的阶数 ➢ 解:使方程成为恒等式的函数
➢ 通解: y (c1, c2, , cn )
➢ 特解:满足初始条件的解 ➢ 初始条件:
y(x0 ) y0, y(x0 ) y1, , y(n1) (x0 ) yn1
高数第十二章 微分方程
可分离 变量的 微分方程
内容小结
1.通解不一定是方程的全部解 例如, 方程
( x y) y 0 有解
y=–x 及 y=C
后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件(初始条件)定常数 .
28
3. 解微分方程应用题的方法和步骤
d2x 程 2 k 2 x 0的解. 当 k≠0 时,求满足初始条 dt dx 0的特解. 件 x t 0 A, dt t 0 dx 解 kC1 sin kt kC 2 cos kt , dt d2x 2 2 k C cos kt k C 2 sin kt , 1 2 dt d2x 将 2 和x的表达式代入原方程 , dt 13
y '' f ( x , y , y ') y | y , y ' | y ' x x 0 x x 0 0 0
几何意义:求过定点 ( x0 , y0 ) 且在定点的切线的斜 率为定值 y '0 的积分曲线.
12
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分方
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例 3)
3) 根据微量分析平衡关系列方程 ( 如: 例4 )
积分
y 2 xdx 即 y x 2 C ,
将 x 1时, y 2代入上式, 求得C 1,
故所求曲线方程为 y x 2 1 .
3
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 当制动时列车获得加速度 0.4米/秒 2,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
微分方程
u( x ) P ( x )e
P ( x ) dx
P ( x )u( x )e
P ( x ) dx
Q( x )
29
u( x )e
P ( x ) dx
P ( x ) dx Q( x ) u( x ) Q( x )e
P ( x ) dx 积分得 u( x ) Q( x )e dx C ,
(1 e u ) e u x C
所求通解: ln(1 e
x y
) y C ( C 为任意常数 )
11
例 3 衰变问题:衰变速度与未衰变原子含量 M 成 正比,已知 M
t 0
M0 , 求 衰 变 过 程 中 铀 含 量
dx y x 0 3.
4
微分方程的解的图形是一条曲线,叫微分 方程的积分曲线。 d2x 2 例 函数 x cos kt , x sin kt 是微分方程 2 k t 0 dt 的解,通解是 x C1 cos kt C2 sin kt .
5
第12章 微分方程
2
(1 y )d x y( x 1)d y 0
可分离变量的微分方程解法
dy 形如 f ( x ) g( y ) dx dy f ( x )dx ( g( y ) 0) 解法 g( y )
分离变量
dy f ( x )dx g( y )
两端积分 求得微分方程的解.
y e e
C1
P ( x ) dx
Ce
P ( x ) dx
.
27
2. 线性非齐次方程
dy P ( x ) y Q( x ). dx
30 微分方程基本概念、可分离变量微分方程
yy(x)或xx(y).
方程G(y)F(x)C, yy(x)或xx(y)都是方程的通解, 其中 G(y)F(x)C称为隐式(通)解.
15
首页
上页
返回
下页
结束
铃
dy 例6 求微分方程 dx 2 xy的通解. 解 这是一个可分离变量的微分方程.
分离变量得
1 dy 2 xdx . y
13
首页
上页
返回
下页
结束
铃
讨论 微分方程 y2xy 3x25xy0 (x2y2)dxxydy=0 y1xy2xy2 y10xy
y y x y x
14
分离变量
是否可分离变量
y1dy2xdx
dy(3x25x)dx
是
是 不是 是 是 不是
下页 结束 铃
m dv mg kv . dt v |t 0 0
提示 降落伞所受外力为Fmgkv(k为比例系数). 牛顿第二运动定律Fma.
17
首页
上页
返回
下页
结束
铃
例 7 设降落伞从跳伞塔 两边积分得 dv dt 下落后, 所受空气阻力与速度 , mg kv m 成正比, 并设降落伞离开跳伞 塔时速度为零. 求降落伞下落 即 1 ln(mg kv ) t C1 , k m 速度与时间的函数关系. kC1 kt m g e 解 设降落伞下落速度为 或 v Ce m (C ), k k v(t). 根据题意得初值问题 将初始条件v|t00代入上式得 m dv mg kv mg C . . dt k v | 0 t 0 于是降落伞下落速度与时间 将方程分离变量得 的函数关系为 dv dt , kt m g mg kv m v (1 e m ) . k
第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题
221第八章 微 分 方 程本章主要通过几个具体的例子,说明微分方程的应用问题,并介绍一些基本概念及几种常用的微分方程的解法.第一节 微分方程的基本概念例1 自由落体运动 自由落体运动是指物体在仅受到地球引力的作用下,初速度为零的运动.根据牛顿第二定律:ma F =,它的运动路程)(t s s =大小的变化规律可表示为:m g dtsd m =22. 且还满足0)0(,0)0(='=s s ,即⎪⎩⎪⎨⎧='==(2) 0)0(,0)0((1) 22s s g dt sd对(1)两边积分,得 1C gt dtds+=, (3) 对(3)两边积分,得21221C t C gt s ++=, (4) 这里21,C C 都是任意常数.将(2)代入(4),得0,012==C C . 故自由落体运动路程的规律为221gt s =. (5) 这是微分方程应用的最早一个例子.例2 Malthus 人口模型 英国人口学家马尔萨斯(Malthus T R 1766-1834)根据百余年的人口统计资料,于18世纪末提出著名的人口模型.该模型假设人口的净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与当时的人口数成正比.设时刻t 的人口为)(t x ,净相对增长率为r ,我们将)(t x 当作连续变量考虑,开始时(0=t )的人口数量为0x ,即0)0(x x =.按照Malthus 理论,于是)(t x 满足如下方程为:⎪⎩⎪⎨⎧==(7).)0((6), 0x x rx dt dx其中r 为常数.(6)称为Malthus 人口模型. 对(6)整理,得r d t xdx=. (8) 对(8)两边积分,得rt Ce t x =)(, (9)222将(7)代入(9),得0x C =,故人口增长规律为rt e x t x 0)(=. (10)如果0>r ,(10)表明人口将以指数规律无限增长.特别地,当∞→t 时,+∞→)(t x ,这似乎不可能. 这个模型可以与19世纪以前欧洲一些地区的人口统计数据很好地吻合,但是当后来人们用它与19世纪的人口资料比较时,误差较大.例3 Logistic 模型 荷兰生物数学家V erhulst 引入常数m x 表示自然资源和环境条件所能容许的最大人口,并假定净相对增长率等于⎪⎪⎭⎫⎝⎛-m x t x r )(1,即净相对增长率随着)(t x 增加而减少.因为随着人口的增加,自然资源,环境条件等因素对人口继续增长的阻滞作用越来越显著.如果人口较少时(相对于资源而言)人口增长率还可以看作常数.当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少.这正是对Malthus 人口模型中人口的固定净相对增长率的修正.这样,Malthus 人口模型(6)变为:⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=(12). )0((11), )()(10x x t x x t x r dt dx m该模型的解为()rtm me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110, (13)易看出,当+∞→t 时,m x t x →)(.这个模型称为Logistic 模型,其结果经计算与实际情况比较吻合.此模型在很多领域有着较广泛的应用.例4 广告模型 在当今这个信息社会中,广告在商品推销中起着极其重要的作用.当生产者生产出一批产品后,便会考虑到广告的大众性和快捷性,利用广告促销作用更快更多地卖出产品.那么,广告与促销到底有何关系?广告在不同时期的效果如何?下面建立独家销售的广告模型来研究.该模型假设:商品的销售速度会因做广告而增加,但当商品在市场趋于饱和时,销售速度将趋于极限值,这时,销售速度将开始下降;自然衰减是销售速度的一种性质,商品销售速度的变化率随商品的销售率的增加而减少.设)(t s 为t 时刻商品的销售速度,M 表示销售速度的上限;0>λ为衰减因子常数,即广告作用随时间增加,而自然衰减的速度;)(t A 为t 时刻的广告水平(以费用表示).建立方程为:⎪⎩⎪⎨⎧=-⎪⎭⎫⎝⎛-⋅⋅=(15) )0((14) )()(1)(0s s t s M t s t A p dtds λ 其中p 为响应函数,即)(t A 对)(t s 的影响力,p 为常数.223由假设知,当销售进行到某个时刻时,无论怎样作广告,都无法阻止销售速度的下降,故选择如下广告策略:⎩⎨⎧>≤≤=ττt t A t A 00)(, 其中A 为常数.在[]τ,0时间内,设用于广告的花费为a ,则τaA =,代入(14),有ττλa p s a M p dt ds ⋅=⎪⎭⎫ ⎝⎛⋅++, 令τλa M p b ⋅+=; τpac =. 则有c bs dtds=+. (16) 解(16),得bcke t s bt+=-)( , (17) 其中k 为任意常数.将(15)代入(17),得()bt bt e s e bct s --+-=01)(, (18) 当τ>t 时,由)(t A 的表达式,则(14)为s dtdsλ-=. (19) 其解为()t e t s t s -=τλ)()(. (20) 这样,联合(18)与(20),得到()()⎪⎩⎪⎨⎧>≤≤+-=---τττττλt e s t e s e bct s btbt )(01)(0. (21)其图形如图8-1.224图8-1上述四个例子中的关系式(1)、(6)、(11)和(14)都含有未知函数的导数,它们都是微分方程.一般地,凡是含有自变量、自变量的未知函数以及未知函数的导数(或微分)的方程,都叫做微分方程.如果微分方程中,自变量的个数只有一个,则称之为常微分方程;自变量的个数为两个或两个以上,则称之为偏微分方程.本章只讨论常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶.例如方程(6)、(11)和(14)是一阶微分方程;方程(1)是二阶微分方程. 一般地,n 阶微分方程的形式是,,(y x F )(,,n y y ')=0 (22)其中2+n F 是个变量的函数.这里必须指出,在方程(22)中,)(n y 必须出现的,而)1(,,,,-'n y y y x 等变量则可以不出现.例如n 阶微分方程01)(=+n y中,除)(n y 外,其他变量都没有出现.如果能从方程(22)中解出最高阶导数,得微分方程),,,,()1()(-'=n n y y y x f y (23)以后我们讨论的微分方程都是这种已解出最高阶导数的方程或能解出最高阶导数的方程,且(23)式右端的函数在所讨论的范围内连续.由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数(解微分方程),就是说,找出这样的函数,把这函数代入微分方程能使该方程成为恒等式.这个函数就叫做该微分方程的解.确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,0)](,),(),(,[)(≡'x x x x F n ϕϕϕ那么函数)(x y ϕ=就叫做微分方程(22)在区间I 的解.由前面的例子,可知函数(4)和(5)都是微分方程(1)的解;函数(9)和(10)都是微分方程(6)的解;函数(13)是微分方程(11)的解;函数(21)是微分方程(14)的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.例如,函数(9)是微分方程(6)的解,它含有一个任意常数,而方程(6)是一阶的,所以函数(9)是微分方程(6)的通解;函数(4)是方程(1)的解,它含有两个任意常数,而方程(1)是二阶的,所以函数(4)是方程(1)的通解.在利用微分方程求解实际问题时,所得到的含有任意常数的通解因其具有不确定性而不能满足需要,通常还要根据问题的实际背景,加上某些特定的条件,确定通解中的任意常数.用来确定通解中任意常数值的条件叫做初始条件.例1中的条件(2),例2中的条件(7)等,便是初始条件.一般地,设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的初始条件是,00y y x x ==时,或写成 00y yx x ==.225其中0x 、0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的初始条件是:,00y y x x ==时,0y y '=', 或写成 00y yx x ==,0y y x x '='=. 其中00,y x 和0y '都是给定的值. 由初始条件确定了通解中的任意常数的解,就叫做微分方程的特解.例如(5)式是方程(1)满足条件(2)的特解;(10)式是方程(6)满足条件(7)的特解. 微分方程的解所对应的几何图形叫做微分方程的积分曲线.通解的几何图形是一族积分曲线,特解所对应的几何图形是一族积分曲线中的一条.第二节 变量分离方程从本节开始,我们将在微分方程基本概念的基础上,从求解最简单的微分方程—可分离变量的微分方程入手,从易到难地介绍一些微分方程的解法.形如)()(y x f dxdyϕ= (1) 的方程,称为变量分离方程.其中)(x f 和)(y ϕ分别是x 和y 的连续函数.下面说明方程(1)的求解方法.如果0)(≠y ϕ,我们可将方程(1)改写成dx x f y dy)()(=ϕ 这样,变量就“分离”开来了,两边积分,得到方程(1)的通解C dx x f y dy+=⎰⎰)()(ϕ (2) 这里我们把积分常数C 明确写出来,而把)(y dy ϕ⎰,dx x f )(⎰分别理解为)(1y ϕ,)(x f 的某一个原函数. 如果存在0y ,使0)(0=y ϕ,直接代入方程(1),可知0y y =也是(1)的解.如果它不包含在方程的通解(2)中.必须予以补上.例1 求微分方程xy dxdy2= (3) 的通解.226解 方程(3)是变量分离方程,变量分离后得xdx ydy2=, 两端积分⎰⎰=xdx y dy2,得 12ln C x y +=, 从而 2112x C C x e e e y ±=±=+,因1Ce ±仍是任意常数,把它记作C ,得到2x Ce y =. (4)此外,0=y 显然也是方程(3)的解,如果在(4)中允许0=C ,则0=y 也就包含在(4)中,因此,(3)的通解便是方程(4),其中C 是任意常数.例2 解方程0)1(=++dy x xydx . (5) 解 变量分离,得 dx x xy dy 1+-=, 两边积分,得dx x xy dy 1+-=⎰⎰, ⎰⎰⎪⎭⎫ ⎝⎛+--=+-+-=dx x dx x x y 111111ln , 1ln 1ln ln C x x y +-=+-, 1ln 1lnC x x y+-=+, x Ce x y-=+1(1C C ±=), 故所求方程的通解为x e x C y -+=)1(. (6)此外,0=y 显然也是方程(5)的解,而0=y 包含在(6)中,因此,方程(6)是(5)的通解,其中C 是任意常数.例3 解Malthus 人口模型:227rx dtdx=, 0)0(x x =. 解 变量分离,得rdt xdx=, 两边积分,得C rt x ln ln +=,rt Ce t x =)(,因初始条件()00x x =,所以0x c =,故满足初始条件的解为rt e x t x 0)(= .第三节 齐次方程形如)(xydx dy ϕ= (1) 的方程,称为齐次方程.这里)(u ϕ是u 的连续函数.例如:0)2()(22=---dy xy x dx y xy ,是齐次方程,因为)(21)(2222xy x yxy xyx y xy dx dy --=--=. 下面说明方程(1)的求解方法. 作变量变换,令xyu =, (2) 即ux y =,于是dxdu x u dx dy +=, (3) 将(2)和(3)代入方程(1),则原方程变为)(u dxduxu ϕ=+, 即 u u dxdux -=)(ϕ. 变量分离,得xdxu u du =-)(ϕ,两边积分,得228⎰⎰=-x dxu u du )(ϕ.求出积分后,再用xy代替u ,便得所给齐次方程的通解. 例1 解方程dxdyxydx dy x y =+22. 解 原方程可写成1)(222-=-=xy x y xxy y dx dy , 因此是齐次方程.令,u xy=则 dxdu x u dx dy ux y +==,, 于是原方程变为12-=+u u dx du x u ,即 1-=u u dx du x . 变量分离,得xdx du u =-)11(,两端积分,得x C u u ln ln =+-,或写为 C u xu +=ln . 以xy代入上式中的u ,便得所给方程的通解为 C xyy +=ln . 例2 求解方程y xy dxdyx=+2 )0(<x . 解 将方程改写为xy x y dx dy +=2 )0(<x ,这是齐次方程. 以u xy =及u dx duu dx dy +=代入,则原方程变为 u dxdux 2=, (4) 分离变量,得到xdxudu =2,229两边积分,得到(4)的通解C x u +-=)l n (,即()[]2ln C x u +-=. )0)(l n (>+-C x 这里C 是任意常数. (5)此外,方程(4)还有解 0=u ,注意,此解并不包括在通解(5)中.代回原来的变量,即得原方程的通解[]2)l n (C x x y +-= )0)(l n (>+-C x 及解0=y .第四节 一阶线性微分方程一、一阶线性微分方程形如)()(x Q y x P dxdy=+ (1) 的方程,叫做一阶线性微分方程,因为它对于未知函数y 及其导数是一次方程.如果0)(≡x Q 则方程(1)称为齐次的;如果)(x Q 不恒等于零,则方程(1)称为非齐次的.当0)(≡x Q 时,(1)可写成0)(=+y x P dxdy(2) 方程(2)叫做对应于非齐次线性方程(1)的齐次线性方程.(2)是变量分离方程,变量分离后得dx x P ydy)(-=, 两边积分,得⎰+-=1ln )(ln C dx x P y ,由此得)(,1)(C C Ce y dxx P ±=⎰=- (3)式(3)是所求的齐次线性方程(2)的通解.这里C 是任意常数.下面我们来讨论求非齐次线性方程(1)的通解的方法.不难看出,(2)是(3)的特殊情形,两者既有联系又有差异.因此可以设想它们的解也应该有一定的联系.我们试图利用方程(2)的通解(3)的形式去求出方程(1)的通解.显然,如果(3)中C 恒保持常数,它必不可能是(1)的解.我们设想:在(2)中,将常数C 换成x 的待定函数)(x u ,使它满足方程(1),从而求出)(x u .该方法称为常数变易法.为此,令⎰=-dx x P ue y )( , (4) 于是 ⎰-⎰'=--dx x P dx x P e x uP e u dxdy)()()(. (5)将(4)和(5)代入方程(1)得230)()()()()()(x Q ue x P e x uP e u dx x P dx x P dx x P =⎰+⎰-⎰'---,即 )()(x Q e u dx x P =⎰'-,⎰='dxx P e x Q u )()(. 两边积分,得 ⎰+⎰=C dx e x Q u dxx P )()(.把上式代入(4),便得非齐次线性方程(1)的通解⎪⎭⎫⎝⎛+⎰⎰=⎰-C dx e x Q e y dxx P dx x P )()()(. (6)将(6)式改写成两项之和⎰⎰⎰+⎰=--dx e x Q e Ce y dx x P dx x P dx x P )()()()(. 上式右端第一项是对应的齐次线性方程(2)的通解,第二项是非齐次线性方程(1)的一个特解.由此可知,一阶非齐次线性方程通解等于对应的齐次方程的通解与非齐次方程的一个特解之和.例 1 求方程25)1(12+=+-x x y dx dy 的通解.解 这是一个一阶非齐次线性方程.先求对应的齐次方程的通解.012=+-y x dx dy , 变量分离,得12+=x dxy dy , 两边积分,得 1ln 1ln 2ln C x y ++=,即 2)1(+=x C y (1C C ±=).用常数变易法,把()x u C 换成,即令2)1(+=x u y , (7)那么 )1(2)1(2+++'=x u x u dxdy, 代入所给非齐次方程,得21)1(+='x u .两边积分,得 C x u ++=231(32). 在把上式代入(7)式,即得所求方程的通解为⎥⎦⎤⎢⎣⎡+++=C x x y 232)1(32)1(.231例2 求方程1)1()1(++=-+n x x e ny dxdyx 的通解,这里n 为常数. 解: 将方程改写为 n x x e y x ndx dy )1(1+=+-, (8)首先,求齐线性方程 01=+-y x ndx dy 的通解,从dx x n y dy 1+=得到齐线性方程的通解为 n x C y )1(+=.其次,应用常数变易法求非齐线性方程的通解.为此,在上式中把C 看成为x 的待定函数)(x u ,即n x x u y )1)((+=, (9)微分之,得到)()1()1()(1x u n n x dxx du dx dy n n -+++=. (10) 以(9)及(10)代入(8),得到x e dx x du =)(, 积分之,求得 C e x u x ~)(+=,因此,以所求的)(x C 代入(9),即得原方程的通解)~()1(C e x y x n ++=. 这里C ~是任意常数 二 、 伯努利方程形如n y x Q y x P dxdy)()(=+ )1,0(≠n (11) 的方程叫做伯努利方程.当0=n 或1=n 时,这是线性微分方程.当1,0≠≠n n 时,这方程不是线性的,但是通过变量的代换,便可把它化为线性的.事实上,以n y 除方程(10)的两边,得)()(1x Q y x P dxdyyn n=+--. (12) 容易看出,上式左端第一项与)(1ny dxd -只差一个常数因子n -1,因此,我们令 n y z -=1,那么dxdy y n dx dz n --=)1(. 用)1(n -乘方程(12)的两端,再通过上述变换便得线性方程)()1()()1(x Q n z x P n dxdz-=-+.232求出这方程的通解后,以z y n 代-1,便可得到伯努利方程(11)的通解.此外,当0>n 时,方程还有解0=y .例3 求方程2)(ln y x a xydx dy =+, 的通解.解 以2y 除方程的两边,得x a y xdx dy y ln 112=+--. 即 x a y xdx y d ln 1)(11=+---.令1-=y z ,则上述方程成为x a z xdx dz ln 1-=-, 这是一个线性方程,它的通解为⎥⎦⎤⎢⎣⎡-=2)(ln 2x a C x z .以1-y 代z ,故得所求方程的通解为1)(ln 22=⎥⎦⎤⎢⎣⎡-x a C yx .此外,方程还有解0=y .在上节中,对于齐次方程⎪⎭⎫⎝⎛='x y y ϕ,我们通过变量变换xu y =,把它化为变量可分离的方程,然后分离变量,经积分求得通解.在本节中,对于一阶非齐次线性方程)()(x Q y x P y =+',我们通过解对应的齐次线性方程找到变量变换⎰=-dxx P ue y )(,利用这一代换,把非齐次线性方程化为变量可分离的方程,然后经积分求得通解.对于伯努利方程n y x Q y x P y )()(=+',我们通过变量变换z yn=-1,把它化为线性方程,然后按线性方程的解法求得通解,可见,以上方程都是通过变量变换化为可求解方程来求解的,该方法适合很多特殊方程求解.233第五节 可降阶的高阶微分方程从这一节起,我们讨论二阶及二阶以上的微分方程,即所谓的高阶微分方程,对于有些高阶微分方程,我们可以通过变量变换将它化成较低阶的方程来求解.下面以二阶微分方程为例来介绍:二阶微分方程的一般形式为0),,,(='''y y y x F或者),,(y y x f y '=''一般来说,二阶微分方程要比一阶微分方程的求解复杂一些.但是对于某些二阶微分方程来说,如果我们能设法作变量代换把它从二阶降至一阶,那么就有可能应用前面几节中所讲的方法来求出它的解了.下面介绍三种容易降阶的二阶微分方程的求解方法. 一、()x f y =''型的微分方程形如)(x f y ='' (1)的方程,右端仅含有自变量x .两端同时积分一次,就化为一阶方程1)(C dx x f y +='⎰再积分一次,得到通解21])([C dx C dx x f y ++=⎰⎰一般地对())(x f y n =求解,只需对方程两端积分n 次. 例1 求解方程x e x y -+=''2s i n .解 对所给的方程连续积分两次,得12cos 21C e x y x +--='-, 212sin 41C x C e x y x +++-=-所求的通解为212s i n 41C x C e x y x +++-=-. 例2 求微分方程x ey xc o s 2-='''.的通解.解 对所给方程连续积分三次,得C x e y x+-=''sin 212, 22cos 41C Cx x e y x+++=',23432212sin 81C x C x C x e y x ++++= ⎪⎭⎫ ⎝⎛=21C C .所求的通解为32212sin 81C x C x C x e y x ++++=.二、),(y x f y '=''型的微分方程形如),(y x f y '='' (2)的方程,右端不显含未知函数y .这时,只要令,p y ='那么p dxdpy '=='' 而方程(2)就化为),(p x f p ='.这是一个关于变量p x 、的一阶微分方程,再按一阶方程求解.设其通解为),(1C x p ϕ=.但是dxdyp =,因此又得到一个一阶微分方程 ),(1C x dxdyϕ=. 对它进行积分,便得方程(2)的通解为⎰+=21),(C dx C x y ϕ.例3 求微分方程y x y x '=''+2)1(2,满足初始条件,10==x y 30='=x y的特解.解 所给方程是),(y x f y '=''型的.令,p y ='代入方程并分离变量后,有dx x x p dp 212+=. 两边积分,得C x p ++=)1ln(ln 2,235即 )1(21x C y p +='=. ()C e C ±=1 由条件30='=x y ,得31=C ,所以 )1(32x y +='. 两边再积分得 233C x x y ++=. 又由条件,10==x y 得12=C ,于是所求的特解为133++=x x y .三、),(y y f y '=''型的微分方程形如),(y y f y '='' (3)的方程,其中不明显地含自变量x .这时,只要令p y =',并利用复合函数的求导法则把y ''化为对y 的导数,即dydppdx dy dy dp dx dp y =⋅=='' 这样方程(3)就成为),(p y f dydpp=. 这是一个关于变量p y ,的一阶微分方程,再按一阶微分方程求解.设它的通解为 ),(1C y p y ϕ==', 分离变量并积分,便得方程(3)的通解为⎰+=21),(C x C y dyϕ.例4 求微分方程02='-''y y y的通解.解 所给方程是),(y y f y '=''型的.令 p y =',则236dydp p y ='', 代入原方程,得02=-p dydpyp. 在0≠y 、0≠p 时,约去p 并分离变量,得ydyp dp =. 两边积分,得C y p +=ln ln ,即 y C p 1=,或y C y 1'= )(1C e C ±=. 再分离变量并两端积分,便得所求方程的通解为2'1ln C x C y +=,或 xC1e C y 2= )2'=(2C e C ±.第六节 二阶线性微分方程一、二阶常系数齐次线性微分方程二阶齐次线性微分方程的形式为0)()(=+'+''y x Q y x P y . (1)如果)()(x Q x P y y 、的系数、'均为常数,则(1)式为0=+'+''qy y p y , (2)其中q p 、是常数,则称(2)为二阶常系数齐次线性微分方程.如果q p 、不全为常数,称(1)为二阶变系数齐次线性微分方程.下面我们主要研究二阶常系数齐次线性微分方程的解法.关于方程(2),我们不加证明地给出二阶常系数齐次线性微分方程的有关定理: 定理1 (解的叠加定理)如果21y y 、是方程(2)的两个解,那么2211y C y C y +=也是(2)的解,其中21,C C 是任意常数.237定理2 如果21y y 、是方程(2)的两个不成比例的特解(即常数≡/21y y ),则2211y C y C y +=就是方程(2)的通解,其中21,C C 是任意常数.在这里我们之所以要求21,y y 不成比例,是因为如果有21Cy y =,那么就可推出()2212211y C C C y C y C y +=+=,即通解2211y C y C y +=中的两个任意常数变成一个.根据定理2,要求(2)的通解,只要设法先求出它的两个解21,y y ,且常数≡/21y y ,则2211y C y C y +=就是方程(2)的通解.仔细观察方程(2)可知,它的解应该具有各阶导数都只相差一个常数因子的性质,因此我们推测方程(2)的解是指数函数.取rx e y =(r 为常数),选取适当的r ,使它满足方程(2),则rx e y =就是方程(2)的解. 将rx e y =代入方程(2),得到0)(2=++rx e q pr r .由于0≠rxe,所以02=++q pr r . (3)由此可见,只要r 满足代数方程(3),函数rx e y =就是微分方程(2)的解.我们把代数方程(3)叫做微分方程(2)的特征方程.特征方程(3)是一个二次代数方程,其中r r 、2的系数及常数项恰好依次是微分方程(2)中y y '''、及y 的系数.特征方程(3)的两个根21r r 、可以用公式2422,1qp p r -±-=求出.它们有三种不同的形式:(i )当042>-q p 时,21,r r 是两个不相等的实根:2421q p p r -+-=,2422q p p r ---=(ii )当042=-q p 时,21,r r 是两个相等的实根:221pr r -==238(iii )当042<-q p 时,21,r r 是一对共轭复根:,1βαi r += ,2βαi r -=其中 ,2p-=α 242p q -=β. 相应地,微分方程(2)的通解也就有三种不同的情形.分别讨论如下: (ⅰ)特征方程有两个不相等的实根:21r r ≠. 微分方程(2)有两个解x r x r e y e y 2121==、,并且12y y 不是常数,因此微分方程(2)的通解为 x r x r e C e C y 2121+=.(ⅱ)特征方程有两个相等的实根:21r r =. 这时,微分方程(2)有一个解.11x r e y =下面求出微分方程(2)的另一个解2y ,并且要求12y y 不是常数. 设)(12x u y y =,)(12x u e y x r =即,代入微分方程(2),可得 0)(=''x u因为这里只要得到一个不为常数的解,所以不妨选取x u =,由此得到微分方程(2)的另一个解.21x r xe y =从而微分方程(2)的通解为x r x r xe C e C y 1121+=即 ()xr e x C C y 121+=(ⅲ) 特征方程有一对共轭复根:)0(,21≠-=+=ββαβαi r i r . 这时,微分方程(2)有两个解()()x i xi e y ey βαβα-+==21, ,并且12y y 不是常数.但它们是复值函数形式.为了得出实值函数形式,我们先利用欧拉公式θθθsin cos i ei +=,21,y y 把改写为()),sin (cos 1x i x e e e e y x x i x x i ββαβαβα+=⋅==+ ())sin (cos 2x i x e e e e y x x i x x i ββαβαβα-=⋅==--.239由于复值函数21y y 与之间成共轭关系,因此,取它们的和除以2就得到它们的实部;取它们的差除以2i 就得到它们的虚部.根据方程(2)有关解的定理,所以实值函数,cos )(21211x e y y y x βα=+=x e y y i y x βαsin )(21212=-=还是微分方程(2)的解,且x xe xe y y x x βββααcot sin cos 21==不是常数,所以微分方程(2)的通解为)sin cos (21x C x C e y x ββα+=.综上所述,求二阶常系数齐次线性微分方程0=+'+''qy y p y , 的通解的步骤如下:第一步 写出微分方程(2)的特征方程02=++q pr r . 第二步 求出特征方程(3)的两个根21,r r .第三步 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解:例1 求微分方程032=-'-''y y y 的通解. 解 所给微分方程的特征方程为0322=--r r ,其根3,121=-=r r 是两个不相等的实根,因此所求通解为x x e C e C y 321+=-.例2 求方程0222=++s dt dsdts d 满足初始条件2400-='===t t s s 、的特解.解 所给微分方程的特征方程为2400122=++r r ,其根121-==r r 是两个相等的实根,因此所求微分方程的通解为t e t C C s -+=)(21,将初始条件2400-='===t t s s、代入通解,得41=C ,22=C于是所求特解为t e t s -+=)24(.例3 求微分方程052=+'-''y y y 的通解. 解 所给方程的特征方程为,0522=+-r r其根i r 212,1±=为一对共轭复根.因此所求通解为)2sin 2cos (21x C x C e y x +=.二、二阶常系数非齐次线性微分方程二阶常系数非齐次线性微分方程的一般形式是),(x f qy y p y =+'+'' (4) 其中q p 、是常数,0)(≠x f .当0)(=x f 时,(4)可写为0=+'+''qy y p y . (5)叫作方程(4)对应的二阶常系数齐次线性微分方程.关于方程(4)的通解,我们不加证明地给出如下定理:定理3 如果*y 是方程(4)的一个特解,Y 是方程(4)对应的齐次方程(5)的通解,则方程(4)的通解为*+=y Y y .由上述定理3可知,求二阶常系数非齐次线性微分方程(4)的通解,归结为求对应的齐次线性方程(5)的通解和非齐次方程(4)本身的一个特解.由于二阶常系数齐次线性微分方程的通解的求法已得到解决,所以这里只需讨论求二阶常系数非齐次线性微分方程的一个特解*y 的方法.本节介绍当方程(4)中的()x f 取两种常见形式时求*y 的方法.这种方法的特点是不用积分就可以求出*y 来,这种方法叫做待定系数法.)(x f 的两种形式是241(1)x m e x P x f λ)()(=,其中λ是常数,)(x P m 是x 的一个m 次多项式:m m m m m a x a x a x a x P ++⋅⋅⋅++=--1110)(.(2)]sin )(cos )([)(x x P x x P e x f n l x ωωλ+=,其中ωλ、是常数,)()(x P x P n l 、分别是x 的l 次、n 次多项式,其中有一个可为零.下面分别介绍)(x f 为上述两种形式时*y 的求法.1.)()(x P e x f m x λ=型我们知道,方程(4)的特解*y 是使(4)成为恒等式的函数.怎样的函数能使(4)成为恒等式呢?因为(4)式右端)(x f 是多项式)(x P m 与指数函数x e λ的乘积,而多项式与指数函数乘积的导数仍然是同一类型,因此,我们推测x e x Q y λ)(=*(其中)(x Q 是某个多项式)可能是方程(4)的特解.把"'***y y y 及、代入方程(4),然后考虑能否选取适当的多项式)(x Q ,使x e x Q y λ)(=*满足方程(4).为此将,)(x e x Q y λ=*[])()(x Q x Q e yx '+='*λλ, [])()(2)(2x Q x Q x Q e yx ''+'+="*λλλ 代入方程(4)并消去x e λ,得 )()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ. (6)推导可知如下结论:如果x m e x P x f λ)()(=,则二阶常系数非齐次线性微分方程(4)具有形如x m k e x Q x y λ)(=* (7)的特解,其中)(x Q m 是与)(x P m 同次m (次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为10、或2. 上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(7)式中的k 是特征方程含根λ的重复次数(即若λ不是特征方程的根,k 取为0;若λ是特征方程的s 重根,k 取为s ).例1 求微分方程1332+=-'-''x y y y 的一个特解.解 这是二阶常系数非齐次线性微分方程,且函数)(x f 是x m e x P λ)(型(其中0,13)(=+=λx x P m ).与所给原方程对应的齐次线性微分方程为032=-'-''y y y ,242它的特征方程为0322=--r r .有两个实根3,121=-=r r ,由于这里0=λ不是特征方程的根,所以应设特解为10b x b y +=*.把它代入原方程,得13323100+=---x b b x b ,比较两端x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b 由此求得31,110=-=b b .于是求得一个特解为 31+-=*x y . 例2 求微分方程x xe y y y 265=+'-''的通解.解 所给方程也是二阶常系数非齐次线性微分方程,且型是x m e x P x f λ)()((其中)2,)(==λx x P m . 与所给原方程对应的齐次线性微分方程为065=+'-''y y y ,它的特征方程为0652=+-r r ,有两个实根3,221==r r ,于是与所给方程对应的齐次方程的通解为x x e C e C Y 3221+=.由于2=λ是特征方程的单根,所以应设*y 为x e b x b x y 210)(+=*,把它代入所给原方程,得x b b x b =-+-10022,比较等式两端同次幂的系数,得⎩⎨⎧=-=-0212100b b b , 解得1,2110-=-=b b .因此求得一个特解为243x e x x y 2)121(--=*. 从而所求的通解为 x x x e x x e C e C y 223221)2(21+-+=. 2.[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型 应用欧拉公式和方程(4)有关解的定理,不加证明地可得如下结论:如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶常系数非齐次线性微分方程(4)的特解可设为]s i n c o s )([)2()1(x R x x R e x y m m x k ωωλ+=* (8)其中)(),()2()1(x R x R m m 是m 次多项式,},max{n l m =,而ωλi k +按(或ωλi -)不是特征方程的根、或是特征方程的单根依次取为10或.上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(8)式中的k 是特征方程中含根ωλi +(或ωλi -)的重复次数.例3 求微分方程x x y y 2cos =+''的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且属于[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型(其中0)(,)(,2,0====x P x x P n l ωλ).与所给方程对应的齐次方程为0=+''y y ,它的特征方程为012=+r ,有两个复根i r i r -==21,,由于这里i i 2=+ωλ不是特征方程的根,所以应设特解为x d cx x b ax y 2sin )(2cos )(+++=*.把它代入所给方程,得x x x a d cx x c b ax 2cos 2sin )433(2cos )433=++-+--(.比较两端同类项的系数,得⎪⎪⎩⎪⎪⎨⎧=--=-=+-=-0430304313a d c c b a , 由此解得 94,0,0,31===-=d c b a . 于是求得原方程的一个特解为244 x x x y 2sin 942cos 31+-=*. 以上我们主要介绍了二阶线性微分方程的解法,该方法可以推广到高阶线性微分方程.。
高数下册 第七章 微分方程一、二、三节
∫
∫
M
M0
M = C e−λ t 得ln M = −λ t + lnC, 即
利用初始条件, 利用初始条件 得 C = M0 故所求铀的变化规律为 M = M0 e−λ t .
o
17
t
例5. 设降落伞从跳伞塔下落后所受空气阻力与速度 成正比, 并设降落伞离开跳伞塔时( 速度为0, 成正比 并设降落伞离开跳伞塔时 t = 0 ) 速度为 求 降落伞下落速度与时间的函数关系. 降落伞下落速度与时间的函数关系 dv 解: 根据牛顿第二定律列方程 m = mg − kv dt 初始条件为 v t =0 = 0 对方程分离变量, 然后积分 : 对方程分离变量 得
22
3. 解微分方程应用题的方法和步骤 (1) 找出事物的共性及可贯穿于全过程的规律列方程 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 常用的方法 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例4 , 例 5 ) 3) 根据微量分析平衡关系列方程 ( 如: 例6 ) 根据微量分析平衡关系列方程 微量分析平衡关系 (2) 利用反映事物个性的特殊状态确定定解条件 利用反映事物个性的特殊状态确定定解条件. (3) 求通解 并根据定解条件确定特解 求通解, 并根据定解条件确定特解.
∫
∫
(此处mg − kv > 0)
1 t 足够大时 利用初始条件, 利用初始条件 得 C = − ln( mg ) mg k k v≈ − t mg k (1 − e m ) 代入上式后化简, 代入上式后化简 得特解 v = k 18
的半球形容器, 水从它的底部小孔流出, 例6. 有高 1m 的半球形容器 水从它的底部小孔流出 小孔横截面积 开始时容器内盛满了水, 开始时容器内盛满了水 求水 从小孔流出过程中, 从小孔流出过程中 容器里水面的高度 h 随时间 t 的变 化规律. 化规律 由水力学知, 解: 由水力学知 水从孔口流出的流量为
简单常微分方程
两边积分,得
P ( x ) dxdx C , 代入(4-3),即得 C ( x ) Q( x ) e
一阶线性非齐次微分方程的通解公式:
ye
P ( x )dx
C Q( x )e P ( x )dx dx (4-4)
下一页 返回
(C为任意常数 )
C ( x ) e
P ( x ) dx
P ( x ) e P ( x ) dx C ( x) P ( x ) dx P( x) C ( x) e Q( x )
P ( x ) dx , 即 C ( x ) Q ( x ) e
微分方程;当Q (x) ≠ 0时, 方程(4-1)称为一阶线 性非齐次微分方程.
2 sin2 x 如方程y y ,y (sin x ) y 0 x x
都是一阶线性微分方程,其中第二个是齐次的.
上一页 下一页 返回
1. 一阶线性齐次微分方程
当Q (x) ≡0时,方程(4-1)是可分离变量的. 分离变量,得 两边积分,得
因此,原方程的通解为
1 y sin x C ,C为任意常数 x 将初始条件 ( ) 1代入, 得C , y
1 因此所求特解为 sin x . y x
上一页 下一页 返回
sin x sin x 例7 求方程 ye e y cos x 1 0 的通解.
x
+ e – x是方程 y + 2y + y = 4e x的解.
下一页 返回
上一页
3 ) 例2 验证 y Cx (C为任意常数 是方程3y-xy 0
的通解,并求满足初始条件 y(1) = 1/3 的特解.
微分方程的概念及可分离变量微分方程
C1t
C2
是微分方程
d2 y dt 2
g的通解.
在通解中,利用附加条件确定任意常数的取值,
所得的解称为该微分方程的特解.
这种附加条件称为初始条件.
在案例1中,方程 dy 1 的初始条件为 y 2,
dx x
x1
满足初始条件的特解为y ln x 2.
几何意义: 解的图像:微分方程的积分曲线 通解的图像:积分曲线族
解 记列车制动的时刻为t=0,设制动后ts列车行驶 了s m.由题意知,制动后列车行驶的加速度等于-0. 4
m/ s2 ,即
二阶微分方程
d2s dt 2
0.4
(1)
初始条件为当t=0时,s=0,v ds 20. dt
将方程(1)两端同时对t积分,得
vt
ds dt
0.4t
C1,
(2)
式(2)两端对t再积分一次,得
y
1 2
gt
2
C1t
C2
其中C ,C是两个独立变化的任意常数. 12
案例3 [冷却问题] 将温度1000C的物体,放置在气温300C的环境中
冷 却,求该物体温度变化规律. 冷却定律:物体温度变化率与物体温度变化和环境气温
之差成正比.
解 设放置t时刻物体温度为T(t), 则函数T(t)应满足
dT K (T 30) dt
任意常数的个数与方程的阶数相同
所以,结论成立.
例2
求微分方程
d2 dt
x
2
k
2
x
0k
0
满足初始条件
x t0 A,
dx dt
t0
0 的特解.
解 x C1 cos kt C2 sin kt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 微分方程的基本概念 第二节 可分离变量的微分方程
一、选择题
1. 微分方程y y ='的通解是 ( ) A . y = x ; B . y = Cx ; C . y = e x ; D . y = Ce x .
2. 微分方程0ln =-'y y y x 的满足y (1) = e 的特解为 ( ) A . y = ex ; B . y = e x ; C . y = xe 2x -1; D . y = e ln x .
3. 微分方程dy - 2xdx = 0的解为 ( ) A . y = 2x ; B . y = -x 2; C . y = -2x ; D . y = x 2.
4. 微分方程3)()(432=+'''+'xy y y y 的阶数是 ( ) A . 1; B . 2; C . 3 ; D . 4.
5. 下列函数中, 是微分方程03=-'y y 的通解的是
( ) A . y = e -3x +C ;
B . y = Ce 3x ;
C . y = Ce -3x ;
D . y = Ce x +3.
二、填空题
1. 以12
+=x C
y (C 为任意常数)为通解的微分方程为 .
2. 微分方程1-='y y 的通解为y =___________.
3. 微分方程x d x + y d y = 0的通解为 .
4. 微分方程x e y dx dy
dx
y d =++2)(222的阶数是______________.
三、解答题
1. 求下列微分方程的通解.
(1) 01122=+-+dx )y (x dy )x (y ; (2) 0tan sec tan sec 22=+xdy y ydx x . 2. 求下列微分方程满足所给初始条件的特解 (1) y x e y -='2, 00==x y ; (2) 02=+ydx xdy , 12==x y . 3. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程 4. 求一个微分方程, 使其通解为1)()(2221=-+-C y C x .。