人员疏散

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模论文

题目:人员疏散

小组成员

完成日期:2012,05,24

摘要

分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。

关键字

人员疏散流体模型距离控制疏散过程

一.问题的提出

教学楼人员疏散时间预测

学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。

二.模型的分析与建立

我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设:

1.疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;

2.疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;

3.在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配

4.人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。

以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。

三.教学楼模型的简化与计算假设

1.我校1号教学楼为一幢七层教学楼,中间连接着3号的食堂建筑,每层有若干教室,除二楼和七楼,其它每层都有两个大教室。3号为食堂,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将每层楼的5

个小教室(40人)和两个大教室(100人)简化为6个教室。经测量,走廊的总长度为72米,走廊宽为1.8米,单级楼梯的宽度为0.3米,每级楼梯共有26级,楼梯口宽2.0米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为100/4=25米。

对火灾场景做出如下假设:

1.火灾发生在第二层的2号教室;

2.全校师生1500人

3.发生火灾时全体师生都在,这样这层楼共有1500人;

4. 教学楼内安装有集中火灾报警系统,但没有应急广播系统;

5.从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败;

2.对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.

3.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第n个人的疏散时间t1 可表示为:

t1=t2+d1/v1+t3 1

1式中, t2为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间;d1为第n 段的长度; v1为该人在第n 段的平均行走速度;t3 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。

4.假设二层的2号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到2号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五、六层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,七楼为《工业控制电路与分析》,和608、609班相重复。故下面重点讨论二,三,四,五,六楼的人员疏散.

5.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料1、2、3 ,提出人员疏散的主要参数可用下图表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1

人/m2时,采用0.6m/s的疏散速度,通过走廊所需时间为120s ,通过大厅所需时间为12s ;当人流密度小于1人/m2 时,疏散速度取为1.2m/s,通过走廊所需时间为60s,通过大厅所需时间为6s。

人员疏散的若干主要参数

6.提出,下楼梯的人员流量f与楼梯的有效宽度w和使用楼梯的人数p有关,其计算公式为:

f=p/w 2

式中,流量f 的单位为(人/s) , w 的单位为mm。此公式的应用范围为

0. 1 < p/ w < 0. 55 。

这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。

四.结果与讨论

在整个疏散过程中会出现如下几种情况:

(1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程;

(2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程;

(3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程;

(4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程;

(5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。

起火教室内的人员密度为100/125 = 0.8 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为1.1m/ s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为:

f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) 3

式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在24.3s 内才能完全疏散完毕。

设人员按照4.1 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1.2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为20.8s。在此阶段, 将要使用二楼楼梯的人数为100人。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为0.5人/(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第178.1s(120+24.3+20.8+13)时,着火的2号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。

起火后178.1s ,起火楼层其它两个教室(即1和3号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在208.1s他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为:

p1 = 100 ×2 =200 (人) (4)

此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/w =200/1700=0.12,可以使用公式2计算二楼楼梯口的疏散流量f1 , 即:

相关文档
最新文档