电力电缆故障探测测距与定点方法

合集下载

电力电缆故障定位的步骤和原理

电力电缆故障定位的步骤和原理

电力电缆故障定位的步骤和原理造成电缆故障的原因是复杂的。

要想对故障点进行快速判断,就需要对电缆的工作环境以及常见原因有所了解,这也是减少电缆故障的一个重要途径。

常见的故障原因主要包括外力破坏、电缆质量、电缆中间头制作不达标、管理存在问题、自然现象造成的损伤以及电缆生产质量等。

因故障导致供电中断后,测试人员应合理选择仪器和测试方法快速寻找故障点。

故障点查找的步骤是先故障分析再测距,最后精确定位。

1、故障分析故障分析是了解故障电缆的基本信息,对其进行综合分析,包括敷设方式、电缆长度、型号、走向,以及接头的位置、长度、预留地点、发生故障前运行状况等,了解路径的施工情况,对故障电缆的类型进行初步判断,对其进行绝缘测试。

发生故障后,可在敷设人员处获得施工详细资料,以此来提升故障定位的准确性。

如果不了解电缆的路径和长度,需要在定位时排查清楚,判断故障类型时可借助故障时保护装置动作情况。

2、测距在定位的过程中,测距是最关键的一步,准确的定位是减少检修时间重要途径,特别是在长电缆中,不能准确定位对检修工作的影响更严重。

在实际应用中,为保证测试的准确,可通过多种方法来验证,必要时可通过电桥法或者脉冲电流来验证。

(1)行波法测距原理该方法进行测距中,电缆会从理论上看做均匀长线,以此来对微观传播过程进行分析。

电缆传输线路中的分布参数包括电感元件、电容、电导、电阻等,在任意点的等效电路图中,每个无限小段的电缆传输线路如下图所示:▲均匀长线的等效电路图在长线理论中,影响故障波形分析和性质分析的重要因素包括波的透射和反射、特性阻抗以及波的速度。

其中波速v和特性阻抗分别为:其中C为光速,μ和分别为电缆芯线周围介质的相对导磁系数和相对介电系数。

可看出电波在电缆中的传输速度与芯线材料和界面剂无关,与介电性能相关,不同的绝缘材料中,电波的传输速度有所不同。

特性阻抗为实数,与频率无关。

两种电缆连接时因不同的波阻抗会在连接处存在阻抗不匹配的情形。

电力电缆故障点精确定位的原理及方法

电力电缆故障点精确定位的原理及方法

电力电缆故障点精确定位的原理及方法(一)一、声测法:声测法是电缆故障定点的主要方法,多用于测试高阻、闪络性故障和部分低阻故障。

使用的设备与冲闪法相同,采用声电转换器将很小的震动波转换成电信号进行放大处理,用耳机来侦听,听测出最响点即位故障点位置。

二、声磁同步法:在实际测试中,环境噪声的干扰增加了声测法准确辨别的难度,由于故障点放电时,除了产生放电声外,还会产生高频电磁波向地面传播,通过同时接收声波和电磁波方法来判断当前的声波是否由故障点放电引起,这就是声磁同步法。

它是对声波测试方法的改进,提高抗干扰能力。

定点环境不可避免存在各种连续噪声和脉冲冲击噪声的干扰。

目前单纯的声测法定点仪已经被淘汰,取而代之的是声磁同步法定点仪。

此类仪器通过观察在现场接收电缆被冲击高压击穿时的辐射电磁波和故障点的震动声波同步与否来人为排除现场噪声干扰,利用故障点震动声音的最大点确定精确故障点位置。

尽管此法定点精度不高,一般也能满足要求。

国内大多数厂家生产的定点仪均属此类方法。

少数厂家也在液晶屏幕上显示电磁波与地震波的时间差来精确判断故障点位置,这无疑是一重大改进。

我公司研制生产的DDY-3000数显同步电缆故障定点仪具备了查找电缆路径、声磁同步法和显示声磁时间差法的全部优点,并且将声磁时间差转换为定点探头与电缆故障点的实际距离数,并在液晶屏上直接显示出来。

在液晶屏上利同时显示故障距离、电磁信号大小、声波信号大小、同时具有存储记录功能,在故障点正上方,地震波声音最大(此时的地震波声音大小变化已不重要),读数最小,而且此读数就是故障点距地面的埋设深度。

在故障点正上方,探头无论左右移动还是前后移动,但读数都会变大,尽管地震波声音变化不明显。

也就是说,此功能在现场同时也实现了对电缆路径的精确判断。

所以,DDY-3000数显同步电缆故障定点仪是目前国内同类型产品中功能最全,抗干扰能力最强、定点最准确的电缆故障精确定位仪。

DDY-3000电缆故障定位仪采用本公司所独创的电缆定点新理论。

电力电缆故障探测测距与定点方法

电力电缆故障探测测距与定点方法

电力电缆故障探测测距与定点方法摘要:电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行。

因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。

文章分析了电力电缆故障的原因及分类,探讨了电力电缆的故障测距与定点方法。

关键词:电力电缆;故障测距;故障定点;引言随着我国经济建设的高速发展,我国的城市电网改造工作大力地开展。

由于电力电缆应用成本的下降,以及电力电缆自身所具有的供电可靠性高、不受地面、空间建筑物的影响、不受恶劣气候侵害、安全隐蔽耐用等特点,因而获得了越来越广泛的应用。

然而,与架空输电线路相比,虽然电力电缆的上述优点却为后期电缆的维护工作特别是故障测距与定位带来了较大的难度,尤其电缆长度相对较短、线路故障不可观测性等特点都决定了电缆线路要求有更精确的故障测距方法。

另一方面,电力电缆作为整个电力系统的重要组成部分,一旦发生故障将直接影响着整个电力系统的安全运行,并且如故障发现不及时,则可能导致火灾、大规模停电等较大的事故后果。

因此,如何快速、准确地查找电缆故障,减少故障修复费用及停电损失,成为电力工程领域与研究界日益关注的问题。

1电力电缆故障原因及类型1.1电力电缆故障原因随着电缆数量的增多及运行时间的延长,由于电缆绝缘老化特性等因素,故障发生概率大大增加。

电缆故障点的查找与测量是通讯和电力供应畅通的有力保障,但是因为电缆线路的隐蔽性、个别运行单位的运行资料不完善以及测试设备的局限性,使电缆故障的查找非常困难。

尤其是在狂风、暴雨等恶劣天气中,给故障的查找、维修带来了很大不便。

了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

电缆发生故障的原因是多方面的,常见的几种主要原因包括:1.1.1机械损伤。

主要由于电缆安装敷设时不小心造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。

电缆故障精确定点的四大方法

电缆故障精确定点的四大方法

电缆故障精确定点的四大方法
电缆故障精确定点通常按以下4个步骤的顺序进行:
1、判断故障点类型
根据故障的性质,电缆故障可以分为低电阻接地或短路故障,高电阻接地或短路故障、断线故障、断线并接地故障和闪络性故障。

2、根据故障类型选择合适方法及相应的仪器
针对不同的故障类型采用不同的测试方法对其进行测试。

例如针对高阻故障可以使用冲闪法来定位故障位置。

3、粗测定位
粗测定位方法有电桥法、波反射法两种。

目前波反射法定位仪较普及。

但是有几种电缆故障很难用波反射法查找,比如高压电缆护套绝缘缺陷点、钢带铠装低压力缆、pvc电缆和短电缆都无法被定位。

另外,一些高阻击穿点在冲击电压下无法击穿,也难以定位。

4、精确定点。

电缆故障可以采用以下四大方法进行精确定点:
(1) 声测法:它是由高压脉冲发生器对故障电缆放电,故障点产生电弧,并产生放电声音,在电缆直埋情况下,产生地震波,定点仪的声测探头拣拾地震波信号并放大后通过耳机或表头输出。

(2) 跨步电压法:它主要针对对电缆外护套绝缘有要求的外护套接地故障定点,现在对部分直埋的无铠装的低压电缆、电线芯线接地故障、也可以采用跨步电压法定点。

(3) 电磁法及音频法:用电磁波定点或采用音频法定点,即是利
用电缆故障的前后点电磁波信号或音频信号的变化来确定故障点。

(4) 声磁同步法:是将声测法与电磁波法综合应用。

电力电缆技术及应用5.3电缆路径查寻及故障精确定点课件

电力电缆技术及应用5.3电缆路径查寻及故障精确定点课件

2、电缆线路鉴别
当音频信号源开机后,发出1kHz或10kHz的音频信号,在待鉴别的 电缆处,用专用接收机、探测线圈和耳机在现场收听。当探测线圈环绕 待测电缆转动时,耳机中的音频信号有明显的强弱变化。
在采用第一种接法时,当探测线圈分别在两相接入信号的导体的上 下方时,音频信号为最强。
在采用第二种接法时,当探测线圈靠近接入信号的导体时音频信号 为最强。
3、电缆故障的精确定点
(a)副磁场 离故障点较远
3、电缆故障的精确定点
(b)正磁场 离故障点较近 图5-14 电缆故障点放电产生的典型磁场和声音波形
3、电缆故障的精确定点
3)音频信号法 此方法主要是用来探测电缆的路径走向。在电缆两相间或者相和金 属护层之间(在对端短路的情况下)加入一个音频电流信号,用音频信 号接收器接收这个音频电流产生的音频磁场信号,就能找出电缆的敷设 路径;在电缆中间有金属性短路故障时,对端就不需短路,在发生金属 性短路的两者之间加入音频电流信号后,音频信号接收器在故障点正上 方接收到的信号会突然增强,过了故障点后音频信号会明显减弱或者消 失,用这种方法可以找到故障点。
这样并能与邻近电缆的工频电流、零序电流和高次谐波电流所产生 的干扰信号相区别,从而确定接入音频信号的电缆是否为需要检修的电 缆。
2、电缆线路鉴别
3)利用脉冲磁场方向鉴别电缆 在需鉴别电缆的对端做一个相对地间隙模拟故障,然后通过高压信 号发生器向电缆中施加高压脉冲信号,把感应线圈分别放在各条电缆的 两侧,磁场方向发生变化的电缆就是作业电缆。
2、电缆线路鉴别
2)音频信号鉴别法 电缆路径探测仪由音频信号源、通用接收机、探测线圈组成。 接入音频信号有两种方法。 一种是将音频信号源的输出端与电缆一端的两相导体连接,将电缆 另一端的两相导体跨接,或三相短路接地。 另一种接法是将音频信号接在电缆一相导体与接地的金属护套之间 ,在另一端也将该相导体与金属护套连接。

电力电缆故障的探测

电力电缆故障的探测

电力电缆故障的探测姓名:XXX部门:XXX日期:XXX电力电缆故障的探测在电网中为了提高供电可靠率,必须增加变电所的出线回路数。

要解决线路走廊与城市规划之间的矛盾,有利于美化城市并与周围环境相协调。

在中、低压配网中已大量采用电力电缆供电,在一些高新技术开发区内已见不到架空线,全部采用电缆供电。

电力电缆万一发生故障就不像架空线方式发生故障后那么容易发现故障点。

1、原因分析电力电缆发生故障的主要原因为:外力破坏、市政建设时野蛮施工;电力电缆施工时没有严格按工艺要求而留下的隐患;电缆老化便绝缘性能降低;大气过电压、操作过电压等。

电力电缆的故障按其性质可分为:开路故障;低阻故障;高阻故障;闪络故障和封闭故障。

按故障的状态可分为:接地故障;短路故障;断线故障;混合故障。

按故障的类别可分为:单相故障;两相故障;三相故障等。

电力电缆故障的探测一般要经过诊断、测距、定点三个步骤。

首先要确定电力电缆故障的性质、状态、类别和故障的严重程度,以确定选择故障的探测方法,达到修复恢复供电之目的。

2、故障的诊断当电力电缆发生故障后,首先根据变电站的继电保护装置动作情况和信号回路所示信号初步判断电缆故障的性质、状态和类别。

进行常规的绝缘电阻试验和“导通试验”。

电力电缆故障的测距方法有:(1)电桥法:将被测电力电缆的故障相与一根非故障相在电缆终端处短接,在电力电缆的始端用单臂电桥接至故障相与被短接的非故障相,测得非故障相的电阻加上故障相故障点之后的电阻之和与故障相故第 2 页共 5 页障点之前电阻之比,根据电缆长度就可以计算出终端至故障点的距离。

(2)低压脉冲反射法:测试时向电力电缆的故障相注入——低压脉冲,该脉冲沿电力电缆传播到阻抗不匹配点——即故障点(为短路点、断线点、接地点等)时,脉冲产生反射回送到测试点由仪器记录下来,根据发射脉冲与反射脉冲的往返时间差和脉冲在电力电缆中传播的波速度,便可计算出故障点离测试点的距离。

(3)脉冲电压法:是利用直流高压或脉冲高压信号击穿电力电缆的故障点,通过记录放电电压脉冲在测试点与故障点往返的时间计算出故障点的距离。

电力电缆故障探测的几种方法

电力电缆故障探测的几种方法

电力电缆故障探测的几种方法一故障性质的确定电缆故障的探测方法取决于故障性质,电缆的故障大致可分如下两类第一类。

因缆芯的连续性受到破坏,形成断线和不完全断线。

第二类。

因缆芯之间或缆芯对外皮间的绝缘受到破坏,形成短路接地或闪络击穿。

有时也发生间有两种情况的混合式故障,但通常以第一类故障为多,其中短路接地又有高阻接地和低阻接地之分。

判断故障方法可用兆欧表进行。

现在一段测量电缆各芯间和对地的绝缘电阻,在将领一段短路,测量有无断线。

二测量故障点距离的方法电缆故障确定之后,要根据不同的故障选择适当的方法,测定从电缆一端故障点的距离,其方法如下1、直流电桥法直流电桥是至今仍广泛应用的一种测距方法。

基于电缆沿线均匀,电缆长度与缆芯电阻成正比的特点,并根据惠斯登电桥的原理可将电缆短路接地,故障点两侧的环线电阻引入直流电桥,测量其比值,由测得的比值和电缆全长,可算出测量端到故障点的距离,其接线图如下:利用直流电桥法可测的故障及测量方法如下。

1)单相接地的测量。

将电桥的测量端子分别接往故障缆芯和完好缆芯,这两芯的另端跨线短接构成环线,于是电桥本身有两臂,故障点两侧的缆芯环线电阻构成另两臂。

2)两相短路或短路接地的测量。

其方法与单相接地基本相同。

两相短路时的测量电流不经过地线成回路,而是经过相间故障点构成回路。

故障相缆芯接往电桥,其一相的末端与完好相短路构成环线,接入两个臂,另一相与电池E串联。

3)三相短路或短路并接地的故障测量。

测量方法与单相接地相同。

2脉冲法。

脉冲法能较好的解决高阻及闪络性故障的探测。

其方法有如下两种。

1)低压脉冲反射法。

是向故障电缆发射低脉冲的测距方法。

可以用来探测断线和低阻断路故障。

2)高压脉冲反射法。

主要用来探测高阻型短路或接地故障及闪络性故障。

这些故障通常发生在中间头或终端头。

高压脉冲法是一种无需烧穿故障点的测量方法。

三定点定点的方法如下1)声测法。

声测法灵敏可靠,较为常用。

除接地电阻特别低(小于500Ω)的接地故障外都能适用。

电力电缆故障测试及定位方法浅析

电力电缆故障测试及定位方法浅析

电力电缆故障测试及定位方法浅析摘要:电力电缆作为电力系统的重要组成部分,一旦发生故障将直接影响到电力系统的安全运行和生产、生活的正常供应。

本文针对电力电缆的常见故障所产生的原因和故障类型,综述了目前在电缆故障测试中采用的各种常用方法和测试流程,总结归纳了如何对应不同类型的故障采用合适的测试方法,并对电力电缆故障定位的新技术及其特点进行了简述。

关键词:电缆故障行波测距定位新技术前言:电力电缆供电以其安全、可靠、有利于厂矿布局,近年来在公司的供电系统中得到了广泛的应用。

但是电力电缆一般都埋在地下,一旦发生故障,如何快速、精确的定位故障点是处理故障、及时恢复供电的关键所在。

通常要经过诊断、测距(预定位)、定点(精确定位)三个步骤来查明故障点。

只有采用合适的故障测试方法,才能尽可能快速、准确地找到故障点,减少因停电造成的损失。

一,电力电缆的故障类型及诊断造成电力电缆故障的原因有很多,比如:机械损伤、绝缘受潮、绝缘老化变质、过电压、材料缺陷、电缆绝缘物流失、设计和制作工艺不良以及护层腐蚀等。

按照故障的性质一般分为低阻(短路)故障和断路故障;高阻泄露故障和闪络型故障两大类。

按照故障出现的部位,通常可将故障类型大致分为断线故障、主绝缘故障和护层故障。

断线一般是由于故障电流过大而烧断电缆芯线或外界机械破坏等原因造成的,其测试比较简单。

主绝缘故障根据故障电阻和击穿间隙的情况,通常将主绝缘故障分为低阻、高阻及闪络性故障。

低阻故障与高阻故障的区分界限一般取电缆本身波阻抗的l0倍,但在实际测试工作中并不要求很严格地区分。

闪络性故障的故障点电阻极高,可给故障电缆施加到较高的电压,故障点才闪络击穿。

预防性试验中所发生的故障多属于这种情况。

高压单芯电缆的护层故障在性质上与主绝缘故障类似,但由于该故障发生在金属护层与大地之间,因而其测试方法与主绝缘故障测试有很大不同。

因护层故障在供电正常运行时故障现象不明显,且在公司供电系统中无相应的检测设备监控电力电缆运行时的各项实时参数,故在本文中不做探讨。

电缆故障的分析与探测定位处理

电缆故障的分析与探测定位处理

电缆故障的分析与探测定位处理作为连接各种电气设备、传输和分配电能的电力电缆,以其安全、维护工作量少,稳定性高,有利于提高电能的质量等优点,已经得到越来越广泛的应用。

目前,电力电缆所产生的故障在所有供电故障中占了相当大的比重。

如何快速、准确地确定故障点位置和判断出故障类型已成为电力电缆使用和运行过程中十分关键的技术之一。

1. 电缆故障原因电缆故障的最直接原因是绝缘降低而被击穿。

导致绝缘降低的因素很多,根据实际运行经验,归纳起来不外乎以下几种情况:1.1机械损伤安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;直接受外力损坏:在安装后电缆路径上或电缆附近进行城建施工,使电缆受到直接的外力损伤:间接受外力损坏:行驶车辆的震动或冲击性负荷会造成地下电缆的铅(铝)包裂损;因自然现象造成的损伤:如中间接头或终端头内绝缘胶膨胀而胀裂外壳或电缆护套;因电缆自然行程使装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体。

1.2绝缘受潮绝缘受潮后引起故障。

造成电缆受潮的主要原因有:因接头盒或终端盒结构不密封或安装不良而导致进水;电缆制造不良,金属护套有小孔或裂缝;金属护套因被外物刺伤或腐蚀穿孔;1.3绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。

当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。

过热会引起绝缘老化变质。

电缆内部气隙产生电游离造成局部过热,使绝缘碳化。

电缆过负荷是电缆过热很重要的因素。

安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、穿在干燥管中的电缆以及电缆与热力管道接近的部分等都会因本身过热而使绝缘加速损坏。

1.4过电压过电压主要是指大气过电压(雷击)和电缆内部过电压。

对实际故障进行的分析表明,许多户外终端头的故障是由大气过电压引起的。

过电压使电缆绝缘层击穿,形成故障,击穿点一般是存在材料缺陷。

电缆故障定位仪操作方法

电缆故障定位仪操作方法

电缆故障定位仪操作方法一、准备工作1.确定故障段:根据故障报修单、初步现场勘测及故障形态判断,确定故障段的大致位置。

二、器材准备1.电缆故障定位仪:检查仪器是否正常运行,仪器的电量是否充足。

2.测试电缆:检查测试电缆是否损坏,有无短路、断路等故障。

三、现场操作1.连接测试电缆:将测试电缆的各个接线头与故障定位仪的相应接口连接,并确保连接牢固。

2.配置参数:根据故障段的特点和实际情况,在仪器上合理配置参数,包括电压、测试距离、标定点等信息。

3.寻找地线:使用故障定位仪自带的寻地功能,找出测点的地线位置,并连接好地线。

4.设定测试距离:根据实际情况设定测试距离,同时要确保测试距离不要过远,以免影响测试结果的准确性。

5.开始测试:启动故障定位仪,开始测试。

通过监测仪器显示的波形数据,判断电缆的故障类型,并确定故障位置。

6.分析数据:根据波形数据的变化情况,结合故障段的实际情况,进行数据分析,确定故障位置和故障类型。

7.定位故障:找到波形数据异常的点位,即为故障点位。

根据实际情况,使用故障定位仪提供的测距功能,对故障点位进行定位。

8.故障处理:根据定位的具体位置,采取相应的故障处理措施。

如果是线缆破损等故障,可以采用修复或更换线缆的方式解决。

四、注意事项1.操作人员必须具备一定的电力知识和操作经验。

2.在使用故障定位仪之前,必须确保仪器和测试设备处于良好的状态,避免因为仪器故障导致测试结果不准确。

3.在操作过程中,要仔细观察仪器的显示和波形变化,及时调整参数,以获得准确的测试结果。

4.在进行地线连接时,务必确保连接牢固可靠,以避免误操作或意外事故发生。

5.在测试过程中,要注意安全,避免电击等危险。

在需要进行高压测试时,必须采取必要的防护措施。

以上是电缆故障定位仪的操作方法,通过合理的使用和准确的操作,可以快速、准确地定位电力电缆故障,提高故障排除效率,保障电力系统的正常运行。

电力电缆故障分析与探测论文

电力电缆故障分析与探测论文

电力电缆故障分析与探测论文电力电缆故障分析与探测论文论文关键词:电缆故障探测;测距;定点;电缆故障测试仪论文摘要:本文综述了电缆故障的探测方法与仪器。

首先列举了电缆故障探测的传统方法并分析了传统方法的不足,然后介绍了电缆故障探测的新方法及其特点。

随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。

电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。

一、电缆故障探测的传统方法(一)电缆故障测距的传统方法电缆故障测距的传统方法主要有以下四种:电桥法:这是电力电缆的测距的经典方法。

该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。

但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。

脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。

测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。

利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。

该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的'位置。

脉冲电压法。

该方法可用于测量高阻与闪络故障。

首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。

脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。

但缺点是:①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻的详细步骤

10kv电力电缆故障测寻详细步骤
一、确定故障类型
在进行故障测寻之前,首先要确定故障的类型,如开路、短路、断路等。

可以通过测量电缆的绝缘电阻和导体电阻等参数,初步判断故障的性质和程度。

二、预定位
预定位是初步确定故障的大致位置,常用的方法有:
1. 电桥法:通过测量电缆线路的电阻和电容,计算出故障点到测试点的距离。

该方法简单可靠,但精度较低。

2. 脉冲法:通过向电缆发送高压脉冲信号,根据反射回来的脉冲信号时间差,计算出故障点的距离。

该方法精度较高,但需要较高的测试设备和经验。

三、精确定位
精确定位是在预定位的基础上,进一步精确确定故障点的位置。

常用的方法有:
1. 音频法:通过听取电缆中声音的差异,判断故障点的位置。

该方法简单易行,但需要经验丰富的操作人员。

2. 声磁同步法:通过测量电缆中的声音和磁场信号,利用时间差原理确定故障点的位置。

该方法精度较高,但需要特殊的测试设备。

四、修复故障
根据故障的性质和程度,可以采用不同的修复方法。

常用的方法有:1. 直通接法:对于短路、断路等简单故障,可以直接将电缆两头连
接在一起,恢复正常的电气性能。

2. 绕接法:对于损坏较轻的故障点,可以采用绕接的方式进行修复。

3. 替换法:对于损坏严重的电缆段,需要整段替换电缆。

五、测试验收
修复完成后,需要对电缆进行测试验收,确保故障已经完全排除,电缆电气性能恢复正常。

测试内容包括绝缘电阻、导体电阻、耐压试验等。

验收合格后,方可投入使用。

电力电缆故障探测

电力电缆故障探测

电力电缆故障查找方法与应用电力电缆具有供电安全可靠,受自然气象条件影响少,运行和维护成本相对较少等优点,但在实际的运行中由于城市的施工,电缆附件安装工艺不良,长期过负荷运行等因素致使电缆发生故障,影响供电安全。

如何快速查找故障点,恢复电缆正常供电,是运行维护人员面临的一个挑战。

笔者总结多年的工作经验,给出以下分享。

电力电缆故障点查找一般分四步骤进行:1.故障类型判断2.故障点预定位3.路径确认4.精确定点一、故障类型判断故障判断:用万用表、兆欧表测量电缆的故障电阻,并根据故障电阻大小,判断电缆的故障性质;进一步了解该故障的原因、电缆敷设环境及运行情况等。

电缆故障类型可分为以下5种:1、开路(断线)故障:电缆有一芯或多芯导体断裂或者金属护层断裂。

断线故障一般都伴有经电阻接地的现象。

2、短路故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻低于10Ω,其中电缆的一芯或多芯对地绝缘电阻低于10Ω的故障也叫死接地故障。

3、低阻故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于10Ω,不高于200Ω(非标准值)。

4、高阻泄露性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻大于200Ω。

5、高阻闪络性故障:电缆的一芯或多芯对地绝缘电阻或者线芯之间绝缘电阻非常高,但对电缆进行耐压试验时,当电压加到某一数值,突然出现绝缘击穿的现象。

二、故障点预定位上述故障类型分类的目的是为了选择合适的测试方法,目前电缆故障测距的常用方法主要有电桥法和波反射法(脉冲法)两种。

1、电桥法:测距方法是基于电缆沿线均匀,电缆长度与缆芯电阻成正比的特点。

并根据惠斯通电桥的原理,将电缆短路接地故障点两侧的环线电阻引入电桥回路,测量其比值。

由测得的比值和已知的电缆全长,计算出测量端到故障点的距离。

此方法需要一个截面相同长度相等的完好的相线作为测试辅助相。

适用于短路、低阻与高阻泄露性故障。

2、波反射法(脉冲法):又分为低压脉冲法、二次(多次)脉冲法、脉冲电流法。

电力电缆故障定位方法

电力电缆故障定位方法

电力电缆故障定位方法
电力电缆是电力网络中重要的设备之一,它负责将发厂生产的电能传输至消费者处。

由于电力电缆在电力系统中的重要地位,为了保障电力网的安全和稳定运行,对其进行有效的故障定位处理就显得尤为重要。

电力电缆故障定位主要通过触发方式和距离方式来定位故障点。

中,触发法的原理是,当电力电缆出现故障时,故障电流会形成一个新的闭合电路,使得距离故障点较近的保护装置触发,从而推知故障点位置。

距离法则有三种定位方法:第一种是配对计时定位,它利用保护装置在故障发生后触发的不同量度来推知故障点距离保护装置
的距离;第二种是计算法定位,即利用保护装置和故障点之间的特定关系,将保护装置的触发时间转换成故障点的位置;第三种是信号传输法定位,它是利用定位仪发射的特殊电磁、声音信号传输至故障处,并采集反射回来的信号,在计算机中经过处理,从而准确定位故障点。

电力电缆故障定位在实践中仍难免存在差错,因此,在实际应用中应当做好预防措施,包括:第一,定期对电力电缆进行检测和维护,尽可能避免电力电缆发生故障;第二,正确使用保护装置,确保在故障发生后及时触发;第三,利用信号传输定位技术,在进行故障定位时,可以获得更高的精度;第四,要合理使用定位仪,以降低定位仪出错的几率。

以上所述只是电力电缆故障定位全貌的简要介绍,虽已经有不少技术手段来帮助电力电缆故障定位,但仍有许多方面可以加以改进,
比如采用更新颖的信号传输技术,提高故障定位的可靠性和精度。

只要不断吸收新技术,并结合已有手段,就能有效地帮助电力电缆故障的定位,进而提高电力网络的安全。

电缆故障测试方法与定位

电缆故障测试方法与定位

电缆故障测试方法与定位电缆是现代化社会中常见的一种重要用电设备,在各种场合下广泛应用,起到连接供电和传输数据的作用。

然而,由于长期使用以及周围环境因素的影响,电缆难免会出现各种故障,如接头断裂、绝缘老化等,这些故障无疑对电缆的正常运行产生了负面影响。

因此在电缆投入使用前要进行各种试验以保证电缆质量的可靠性,同时在使用期间也需要进行定期的维护和检查,及时发现故障并解决问题。

一、电缆故障的类型1.线路短路线路短路是指由于功率线被树枝、鸟类、小动物或其他物体占据或緊贴导线,或由于某些原因,使得接触有无的金属物体形成的故障。

若线路短路情况严重,破坏性也会比较大。

2.接地故障接地故障是指电力线路中出现导体(接地线路除外)接触地体或与一处接地电阻不良的故障。

接地故障可分为铜柱接地故障和直接接地故障。

3.绝缘故障绝缘故障属于比较常见的故障类型,主要有:接头故障、绝缘老化、部分放电、闪络现象等。

二、电缆故障的测试方法电缆故障测试首先要对故障类型进行分析,然后进行测试。

按照故障类型的不同,测试时所需的仪器和方法也会不同。

在传统的电力行业中,进行电缆故障检测与定位,主要采用以下几种检测方法:1.耐压试验耐压试验是指在一定时间内对电缆进行一定的电块应力,以检测电缆绝缘特性是否达到规范要求,并且判断电缆所具有的耐受外部作用的能力。

2.直流电阻测试直流电阻测试主要用于检测电缆导体在外部电化学作用和机械损伤等不利因素下所表现的零部件的连续性。

3.时域反射法TDR时域反射法TDR测试是利用测试仪器向电缆发射一定的电磁脉冲,当波形遇到缺陷时,电磁波反射回来,从而根据反射波的走时和衰减情况来确定电缆中的故障点。

4.局部放电测试局部放电测试的主要目的是通过检测电缆中的局部放电信号来发现电缆绝缘中的问题和缺陷。

三、电缆故障的定位方法1.电缆反向法电缆反向法的原理是在电缆故障的两端依次数出故障距离,从而确定电缆故障的位置。

该方法需要在一端进行直流电压或交流电源测试。

电力电缆故障检测及精确定位方法的研究

电力电缆故障检测及精确定位方法的研究

电力电缆故障检测及精确定位方法的研究作者:何淮淼来源:《中国集体经济》2011年第12期摘要:目前,电缆线路大多都敷设在电缆沟内或埋在地下,电力电缆运行过程中,由于绝缘老化变质、过热、过电压、机械损伤、腐蚀、绝缘受潮等原因,会产生各种的故障,需要进行故障分析来找出发生故障的位置。

文章主要在电力电缆故障定位方法及如何快速检测进行探讨,以供同行借鉴。

关键词:电力电缆故障;故障测距;精确定点一、前言电缆故障测试一般要经过故障性质诊断、故障测距、精确定点三个步骤。

故障性质诊断是电缆故障测试的初始步骤,主要是确定故障类型以选择相应的故障测距和精确定点方法;故障测距是在一定误差范围内确定故障点的位置,其精确程度与电缆故障能否快速排除有直接关系,也是国内外专家学者研究得最多的方面;精确定点是根据故障测距的结果,找出故障点精确位置的过程。

近年来,随着小波分析应用的广泛,国内学者提出了许多基于小波分析的故障测距方法,取得了很多有价值的成果,但还存在着一些尚未解决的问题,因此,还需要进行新方法的研究,以提高故障测距精确度,加快电缆故障的排除。

二、电力电缆故障常见原因了解电缆故障的原因,对于减少电缆的损坏,快速地判定出故障点是十分重要的。

电缆发生故障的原因是多方面的,常见的几种主要原因如下:(一)机械损伤很多故障是由于电缆安装敷设时造成的机械损伤或安装后靠近电缆路径作业造成的机械损伤而直接引起的。

(二)绝缘老化变质电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。

当绝缘介质电离时,气隙中产生臭氧、腐蚀绝缘,绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。

过热会引起绝缘老化变质。

造成电缆过热的因素有多方面。

内因主要是电缆绝缘内部气隙游离造成局部过热,从而使绝缘炭化;外因是电缆过负荷产生过热。

安装于电缆密集地区、电缆沟及电缆隧道等通风不良处的电缆、套管中的电缆,以及电缆与热力管道接近的部分等,都会因本身过热而使绝缘加速损坏。

电缆线路电缆故障的精确定点的四种方法

电缆线路电缆故障的精确定点的四种方法

电缆线路电缆故障的精确定点的四种方法电缆故障的精确定点是故障探测的关键。

目前,比较常用的方法是冲击放电声测法及主要用于低阻故障定点的音频感应法。

实际应用中,往往因电缆故障点环境困素复杂,如振动噪声过大、电缆埋设深度过深等,造成定点困难,成为快速找到故障点的主要矛盾。

1、声测法直接通过听故障点放点的声音信号或看故障点放电的声音信号所转换的其他可视信号来找到故障点的方法称为声测定点法。

声测法是目前电缆故障测试中应用最广泛而又最简便的一种方法,95%以上的电缆故障都用此法进行定点,很少发生判断错误。

声测定点主要是利用故障点的放电声音定点,使用可调压的高压设备,使故障点击穿放电,故障间隙放电时产生的机械振动,传到地面,便听到“啪、啪”的声音,利用这种现象可以十分准确地对电缆故障进行定点。

对于电缆护层已被烧穿的故障,往往可在地面上用人耳直接听到故障点放电声。

对于护层未烧穿的电缆故障或电缆埋设较深时,地面上能听到的放电声太小,则要使用耳机来监听判断进行定点。

声测法是利用直流高压试验设备向电容器充电、储能,当电压达到某一数值时,经过放电间隙向故障线芯放电。

由于故障点具有一定的故障电阻,在电容器放电过程中,此故障电阻相当于一个放电间隙,在放电时将产生机械振动。

根据粗测时所确定的位置,用拾音器在故障点附近反复听测,找到地面振动最大、声音最大处,即为实际电缆故障点位置。

声测法放电电压的大小,由放电间隙来控制,一般在试验时,将放电间隙调至一定位置,将放电电压控制在20~25KV之间,每隔3~4s放电一次即可。

声测试验中如果采用电容量较大的电容器,则应考虑试验设备的容量问题。

一般以采用2KV·A的试验变压器和2-3KV·A的调压器较好。

硅堆也应采用容量较大的硅堆(如2DL—75KV/1A),以防止烧坏。

声测法的优点是容易理解,便于掌握,可信性较高;缺点就是受外界环境影响较大,受人的经验和测试心态的影响较大。

配电站的电缆故障检测与定位技术

配电站的电缆故障检测与定位技术

配电站的电缆故障检测与定位技术近年来,随着电力行业的快速发展,电缆故障的检测与定位技术在配电站中变得尤为重要。

配电站作为电力系统的重要组成部分,起着传输电能和保障供电的关键作用。

然而,电缆故障问题经常会出现,给配电站的正常运行带来一定的困扰。

因此,针对配电站的电缆故障检测与定位技术的研究变得尤为迫切。

本文将从电缆故障检测的方法和电缆故障定位的技术两方面展开讨论。

首先,电缆故障检测的方法有很多种,其中包括无损检测和有损检测两种主要方法。

无损检测方法主要包括绝缘电阻测量、超声波检测和红外检测等。

绝缘电阻测量是一种常用的无损检测方法,通过测量电缆绝缘电阻的大小,来判断电缆绝缘的好坏。

超声波检测技术则是利用超声波的传播特性,通过测量电缆中的故障声波的传播时间和传播距离,来判断电缆故障的位置和类型。

红外检测技术则是利用红外图像来检测电缆表面的异常温度分布,从而判断电缆是否存在故障。

有损检测方法则是通过对电缆进行开挖和破坏性检测,在电缆表面或电缆内部进行故障检测。

常用的有损检测方法包括剥皮法、暂态回波法和电磁波传播法等。

剥皮法是将电缆的绝缘层剥开,直接观察和检测电缆内部的故障情况。

暂态回波法是通过在电缆两端施加电压脉冲,来观测电缆上的回波信号,从而判断电缆的故障位置和性质。

电磁波传播法则是利用电磁波的传播特性,通过测量电缆上电磁波的传播时间和传播距离,来判断电缆的故障位置和类型。

其次,电缆故障定位的技术是电缆故障检测中的重要环节,它能够准确地确定电缆故障的位置,为电缆的维修提供指导。

目前,常用的电缆故障定位技术主要包括反射法、时域反射法和频域反射法。

反射法是一种经典的故障定位方法,它通过测量电缆端部的反射信号,来得到故障位置的信息。

时域反射法则是利用故障位置处的反射波来进行定位,通过测量反射波到达时间和反射波的幅值,来判断故障位置的准确度。

频域反射法则是利用故障位置处的反射信号在频域上的特征来定位故障位置,通过测量反射信号的频谱分析和幅频特性,来判断故障位置的精确度。

电力电缆故障检测及故障点定位方法解析

电力电缆故障检测及故障点定位方法解析

电力电缆故障检测及故障点定位方法解析摘要:在电力电缆的使用过程中,因受很多因素的影响,电力电缆会经常出现故障,人民生活也受到一定的影响,因此,针对出现故障的电缆进行及时检测、定位、修复和排除故障,让电能顺利输送到千家万户。

本文在介绍电力电缆故障分类和原因的基础上,分析了电力电缆定位的方法,从而提出了相应预防措施。

关键词:电力电缆;故障定位;分析和预防前言:随着社会经济的不断发展,人们对电能需求也越来越大,现代社会对电力传输质量和安全性就提出更高的要求。

但是,电力电缆复杂性越来越高,电缆出现故障现象也变得越明显,所以及时对配电网中的故障电缆进行点位一直是被研究的课题。

因此找到故障定位的方法,准确找出故障点,对保证电力运输畅通有着重要意义。

1 电力电缆故障分类(1)开路故障。

当电缆的绝缘电路负载过大时,电压却不能传输到终端,这样的故障就叫做开路故障。

(2)低阻故障。

这是比较常见的故障,有单相接地、两相或三相短路或接地。

具体表现为电缆芯线连接良好,但是电缆相对地的绝缘电阻低于10Zc(Zc为电缆线路波阻抗,一般不超过40欧姆),能用低压脉冲法测量。

(3)高阻故障。

与低阻故障相反,故障变现为电缆相对地或相间绝缘受损,但是绝缘电阻大于10Zc,不能用低压脉冲发测量。

2 电力电缆故障原因(1)生产质量问题。

电缆材料本事和电缆制造设计终端在制作过程中不可避免存在缺陷,并且受到环境、化学、运输过程中电热等因素影响,从而造成电缆使用前就存在问题。

(2)施工质量问题。

电力电缆没有按照施工设计进行施工,从而造成了线路出现问题。

如:相关安装设备在作业时不小心砸到电缆,或者是由于密封措施不当,导致潮气渗入,都会影响电缆的质量。

(3)管理维护的问题。

当施工结束后,相关部门必须定期的对电缆进行检查维护,对长期过载运转没有做到及时调整;以及长期在有腐蚀性的环境工作;以及在跟热力管道相交接的地方,由于温度过高,没有采取相应的放热措施,这些情况都会造成电缆损坏,影响电力的正常传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档