汽车结构的有限元计算模型
基于有限元模型的汽车车身强度分析与优化设计
![基于有限元模型的汽车车身强度分析与优化设计](https://img.taocdn.com/s3/m/ecc67b9fc0c708a1284ac850ad02de80d4d806b9.png)
基于有限元模型的汽车车身强度分析与优化设计引言:汽车车身设计是整车设计中至关重要的一环。
汽车车身不仅是汽车的“外衣”,还承担着对乘员安全和行驶稳定性的极其重要的作用。
车身的强度是确保车辆在各种复杂工况下保持结构稳定、寿命可靠的关键因素。
基于有限元模型的汽车车身强度分析与优化设计具有重要的意义。
1. 有限元分析在汽车车身设计中的应用有限元分析是一种基于力学原理和数值计算方法的数值模拟技术。
它可以将复杂的连续体结构离散为有限个单元,通过求解单元之间的相互作用力,得到结构的应力、应变等力学参数。
在汽车车身设计中,有限元分析可以有效地评估车身的强度、刚度、振动特性等。
2. 汽车车身强度分析的主要内容汽车车身强度分析主要分为静态强度分析和动态强度分析两个方面。
2.1 静态强度分析静态强度分析是对车身在静态加载条件下进行强度评估。
通过有限元分析,可以得到车身各部分的应力分布情况和最大应力值,进而判断车身是否足够强度。
在静态强度分析中,需要考虑的因素包括车身的受载状态、材料的力学性质、载荷的大小和方向等。
2.2 动态强度分析动态强度分析是对车身在动态加载条件下进行强度评估。
在实际使用中,汽车车身会受到各种道路激励和振动的影响,因此需要对车身进行动态强度分析。
通过有限元分析,可以得到车身在不同工况下的应力变化规律和疲劳寿命,进而优化车身结构设计,提升车身的抗疲劳能力。
3. 汽车车身设计的优化方法基于有限元模型的汽车车身优化设计可以通过调整车身结构和材料等手段来提升车身的强度和刚度。
3.1 结构优化在车身结构优化中,可以通过增加加强筋、设置补强板和优化焊缝位置等方式来提升车身的强度。
通过有限元分析,可以评估不同优化方案的效果,并选择最佳方案进行实施。
3.2 材料优化材料的选择对车身的强度和轻量化设计起着重要作用。
目前,高强度钢材和铝合金等轻量化材料正在被广泛应用于汽车车身设计中。
基于有限元分析,可以评估不同材料对车身强度的影响,并选择合适的材料进行使用。
有限元建模方法
![有限元建模方法](https://img.taocdn.com/s3/m/e505221c55270722192ef709.png)
却未 在与 枝群 头芳 独同 欢温 笑暖
固定端杆件的受力 a-工程系统;b-有限元模型
却未 在与 枝群 头芳 独同 欢温 笑暖
4、建立有限元模型的一般过程
却未 在与 枝群 头芳 独同 欢温 笑暖
二、车架基本结构
车架是一个大型复杂的装配体,很难把所有的结构建 立有限元模型,因而在尽可能反映车身结构主要力学特性, 保证结构同样准确的前提下,对构件进行相应的简化。省 略车架构件中对车架的整体振型影响丌大的小尺寸结构, 比如弹簧吊耳,拉支架,焊接线夹等。忽略车架的焊缝及 所有工艺孔,将所有倒角和过渡圆角简化为直角等,简化 后的车架装配图。
却未 在与 枝群 头芳 独同 欢温 笑暖
2).单元数据
(1)单元编号 (2)组成单元的节点编号 (3)单元材料特性值 (4)单元物理特性值 定义单元本身的物理特性和辅助几何参数,如弹簧单元 的刚度系数、间隙单元的间距、集中质量单元的质量、板 壳单元厚度和曲率半径等。 (5)一维单元的截面特性值 截面特性包括截面面积、惯性矩、极惯性矩、弯心位置、 剪切面积比等,截面特性通常由定义的截面形状和大小由 软件自动求出。 (6)相关几何数据 描述单元本身的一些几何特征,如单元材料的主轴方向、 梁单元端节点的偏移量和截面方位、刚体单元自由度释放 码等。
却未 在与 枝群 头芳 独同 欢温 笑暖
三、车架有限元分析及结果
却未 在与 枝群 头芳 独同 欢温 笑暖
四、总结
本文在以往对越野车车架,轻型货车车架和电动汽车车 架实例的基础上,利用有限元软件Hypermesh建立车架有 限元模型。再利用Nastran求解器对车架进行自由模态分 析,得到车架结构的固有频率和振型模态分析结果丌仅反 映了结构的动态特性,而且可以帮助设计人员在后续设计 中尽量避开这些频率或最大限度地减小对这些频率的激励, 从而减少共振和噪声,提高整车的平顺性和舒适性,同时 为结构的进一步改进提供理论依据。
车架有限元分析
![车架有限元分析](https://img.taocdn.com/s3/m/237363c66137ee06eff91879.png)
以ANSYS软件为分析工具对从国外引进的某重型车的车架进行了有限元分析、模态分析和以路面谱为输入的随机振动分析,通过用壳单元离散车架及MPC单元模拟铆打传力建立计算模型,研究该车架静、动态性能,了解该车架的优缺点。
车架是汽车的重要组成部分,在汽车整车设计中占据着重要位置,车架结构设计历来为广大汽车厂商所重视。
本文以某汽车公司从欧洲引进的某重型车车架为研究对象,对该车架结构的动、静态特性进行分析计算,消化、吸收欧洲的先进技术并在此基础上进行自主创新设计。
分析手段主要是通过建立正确的有限元分析模型,对车架进行典型工况的静态分析、模态分析和路面不平度引起的随机振动分析,以此了解车架的静态和动态特性,了解该车架的优越性能及其不足之处,为新车架的改型设计提供依据。
1 有限元分析模型的建立该车架为边梁式,由两根位于两边的纵梁和若干根横梁组成,用铆接或焊接方式将纵梁和横梁联接成坚固的刚性结构,纵梁上有鞍座,其结构如图1所示。
由于车架是由一系列薄壁件组成,有限元模型采用壳单元离散能详细分析车架应力集中问题,可以真实反映车架纵、横梁联接情况,是目前常采用的一种模型。
该车架是多层结构,纵梁断面为槽形,各层间用螺栓或铆钉联接,这种结构与具有连续横截面的车架不同,其力的传递是不连续的。
该车架长7m,宽约0.9 m,包括双层纵梁、横梁、外包梁、背靠梁、鞍座、飞机板、铸铁加强板、发动机安装板、三角支撑板和后轴等部分。
考虑到车架几何模型的复杂性,可在三维CAD软件UG里建立车架的面模型,导人到Hypermesh 软件中进行网格划分等前置处理,然后提交到ANSYS解算。
车架各层之间的铆钉联接,可以用Hypermesh-connectors中的bar单元来模拟铆钉联接,对应的是ANSYS的MPC单元,因车架各层间既有拉压应力,又有剪应力,故MPC的类型应选择Rigid Beam方式。
由于该车是多轴车,为超静定结构,为了得到车架结构的真实应力分布,必须考虑悬挂系统的变形情况。
汽车有限元法概述
![汽车有限元法概述](https://img.taocdn.com/s3/m/833cf95e5e0e7cd184254b35eefdc8d376ee1427.png)
汽车有限元法概述有限元法(Finite Element Method,FEM)是一种工程数值分析方法,广泛应用于汽车工程领域,用于模拟和预测汽车结构在受力下的行为和性能。
本文将对汽车有限元法进行概述。
有限元法的基本原理是将连续结构离散化为有限个子结构,每个子结构称为有限元。
每个有限元内的应力和变形可以用简单的方程表示。
通过求解这些方程,可以推导出整个结构的应力和变形情况。
汽车有限元法主要有以下几个步骤:1.建模:将汽车的零部件、结构和系统进行建模,将其分割成有限元。
这个过程需要根据实际情况选择适当的网格划分和元素类型。
常见的元素包括线元素、面元素和体元素。
建模的准确性和合理性对于后续的分析和计算结果具有重要影响。
2.边界条件:确定模型的边界条件,包括支撑条件和外部加载条件。
支撑条件包括固定支撑和弹性支撑。
外部加载条件包括重力、加速度、风压等。
准确描述和设置边界条件是模拟计算的关键步骤。
3.材料特性:为每种材料分配相应的材料特性参数。
常见的材料特性包括弹性模量、泊松比、材料密度等。
这些参数将决定材料在受力下的行为和响应。
4.模拟计算:利用有限元软件对建模后的汽车结构进行计算和模拟。
通过求解每个有限元的位移和应变,再结合材料特性进行力学分析,得到汽车结构在受力下的应力和变形情况。
5.结果评估:根据计算得到的应力和变形结果,对汽车结构的强度、刚度、耐久性等性能进行评估和分析。
如果发现问题或不合理现象,可以进行模型修正和参数优化,以提高结构的性能。
在汽车工程领域,有限元法主要应用于以下几个方面:1.结构强度分析:通过有限元法,可以对汽车结构的强度进行评估和分析。
例如,分析车身在碰撞时的变形情况,以及主要部件在受力下的应力情况。
2.动态响应分析:有限元法可以模拟汽车在动力加载下的振动和动态响应情况。
例如,模拟车辆在行驶过程中的悬挂系统振动,以及发动机振动对车身的影响。
3.疲劳寿命评估:通过有限元法,可以分析汽车结构在复杂工况下的疲劳寿命。
基于有限元法的车架轻量化设计和仿真分析
![基于有限元法的车架轻量化设计和仿真分析](https://img.taocdn.com/s3/m/ffc26bf60408763231126edb6f1aff00bed570fc.png)
基于有限元法的车架轻量化设计和仿真分析有限元法在车架轻量化设计和仿真分析中是一种常用的工具。
该方法基于数学模型,将结构划分成一系列小的单元,通过计算每个单元的应力、变形等物理量,反推得到整个结构的力学性能。
在车架轻量化方面,有限元法可以帮助我们快速地找到轻量化的设计方案,并通过仿真分析验证其性能,从而提高车架的安全性和可靠性。
首先,在轻量化设计中,我们需要寻找轻量化的潜在方案。
有限元法可以帮助我们划分车架结构,并计算不同部件的受力情况。
通过对受力情况的分析,我们可以找到那些不必要的部件或重量过剩的区域,从而进行删减。
例如,我们可以尝试使用高强度材料或降低材料使用量等方式来达到轻量化的目的。
其次,在设计轻量化方案后,需要通过仿真分析来验证其性能。
在有限元法中,我们可以将车架结构的物理特性输入到数学模型中,并通过计算得出其应力分布、变形情况等。
通过这种方式,我们可以在实际试验之前,快速地评估轻量化方案的性能,并进行修改和优化。
最后,有限元法还可以帮助我们改进设计方案,以进一步提高车架的性能。
例如,在仿真分析中,我们可以调整材料的类型和厚度,以达到更好的性能。
我们还可以通过优化部件的形状和尺寸,来减少结构的应力集中和变形等问题。
总之,有限元法在车架轻量化设计和仿真分析中是一种非常有效的工具。
通过使用该方法,我们可以快速地找到轻量化方案,并通过性能仿真进行验证和优化,最终提高车架的安全性和可靠性。
为了能更清楚地了解车架轻量化设计和仿真分析的数据,我们可以以一辆小型轿车为例,尝试列出相关数据并进行分析。
首先,我们需要了解该汽车原始的车架结构的总重量、尺寸和材料类型及数量等情况。
假设该汽车的车架总重量为1000千克,尺寸为4000毫米长、1500毫米宽和1500毫米高,使用的材料为钢材和铝材,其中钢材使用量为80%。
我们可以看到,该车架的重量相对较高,需要进行轻量化设计。
接下来,我们可以通过有限元法对该车架进行轻量化设计。
重型载货汽车车架结构的有限元仿真及优化
![重型载货汽车车架结构的有限元仿真及优化](https://img.taocdn.com/s3/m/a5c6972526d3240c844769eae009581b6bd9bda5.png)
优化方案
优化方案
根据有限元仿真结果,针对重型载货汽车车架结构的薄弱环节和潜在问题, 提出以下优化方案:
优化方案
1、结构改进:对车架结构进行优化设计,减少不必要的焊接部位,增加结构 强度。例如,采用局部加强板或增加加强筋等方式对车架关键部位进行加固。
优化方案
2、材料替换:采用高强度材料替代传统钢材,如铝合金、高强度钢等,以减 轻车架重量,提高抗疲劳性能。
优化方案
3、尺寸调整:通过对车架结构的关键部位进行尺寸调整,优化结构布局,提 高承载能力。例如,调整横梁和纵梁的长度、宽度和高度等参数,以改善车架的 抗弯和抗扭性能。
优化方案
4、增加附件:如加强板、减震器等附件,提高车架的抗载荷能力和减震效果。
优化效果
优化效果
实施上述优化方案后,重型载货汽车车架结构的效果显著。以下是优化效果 的几个方面:
结论
结论
本次演示通过对重型载货汽车车架进行有限元分析,了解了车架的应力、应 变分布情况,并提出了优化建议。这些建议对于提高车架的承载能力和稳定性具 有重要意义。在实践中,可以根据具体需求和条件,综合考虑选择适合的优化措 施。有限元分析作为一种有效的数值模拟方法,可以为重型载货汽车车架的设计 和优化提供重要参考。
1、结构强度提高:通过结构改进和材料替换,车架的强度得到了显著提高, 能够有效应对各种复杂工况下的载荷。
优化效果
2、重量减轻:采用高强度材料和尺寸调整,车架重量得到了显著减轻,从而 提高整车的燃油经济性。
优化效果
3、疲劳性能改善:优化后的车架结构具有更好的抗疲劳性能,减少了车辆在 使用过程中的断裂等现象。
Байду номын сангаас
参考内容
引言
汽车结构有限元分析
![汽车结构有限元分析](https://img.taocdn.com/s3/m/49af47a6f524ccbff12184b2.png)
汽车结构的常规有限元分析本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。
范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。
汽车是艺术和技术的结合。
一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。
在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。
采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。
1. 与产品研发同步的5个有限元分析阶段在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段:第0阶段:对样车进行试验和分析;第1阶段:概念设计阶段的分析;第2阶段:详细设计阶段的分析;第3阶段:确认设计阶段的分析;第4阶段:产品批量生产后改进设计的分析。
有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。
有限元分析和试验分析是互相结合和验证的。
在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。
2. 有限元分析的关键环节――建立合理的有限元模型有限元模型的建立是有限元分析的关键环节。
通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。
前处理自动生成的网格可能存在问题。
建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。
在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。
在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。
汽车座椅有限元建模与计算
![汽车座椅有限元建模与计算](https://img.taocdn.com/s3/m/be12d1791711cc7931b71601.png)
收稿日期:2004-07-22作者简介:王宏雁(1962-),女,黑龙江哈尔滨人,工学博士,副教授.E 2mail :why 2sos @汽车座椅有限元建模与计算王宏雁,张 丹(同济大学汽车学院,上海 200092)摘要:采用“壳-体单元相结合”的方法建立座椅计算机辅助分析(CAE )模型.利用Ansys 软件计算了座垫弹性,与座椅试验的力-变形曲线对比,以验证建模与材料定义的正确性.另外还利用正面模拟碰撞中乘员的运动响应,分析了座椅材料的软硬程度对乘员伤害指标的影响.关键词:汽车座椅;有限元;建模;计算中图分类号:U 270.2 文献标识码:A 文章编号:0253-374X (2004)07-0947-05Modeling and Simulation with Finite ElementMethod in Vehicle SeatsW A N G Hong 2yan ,ZHA N G Dan(College of Automobiles ,Tongji University ,Shanghai 200092,China )Abstract :Establish the computer 2aided engineering model of car seat with the methods “shell and solid elements combining ”,calculate the elasticity of seat with pared with the “force 2distortion ”curve of seat test ,we examine the validity of modeling and the definition of materials.The influence of seat softness to the injury index of the driver in frontal crash is also discussed.Key words :car seat ;finite element method ;model building ;simulation 汽车座椅不仅要能够支撑乘员身体的重量,减轻乘员的疲劳以满足主动安全性要求,还要求能与安全带和安全气囊匹配,对乘员定位,缓解碰撞的强度,使乘员的损伤指标达到最小,以满足被动安全性要求[1].在汽车碰撞安全性模拟分析过程中,乘员约束系统的作用不可忽视,所以作为系统因素之一的汽车座椅的建模方法以及它对碰撞模拟分析精度的影响值得探讨.1 座椅模型的建立在整个有限元求解过程中最重要的环节是有限元前处理模型的建立.这一般包括几何模型、网格划分、添加约束与载荷以及定义材料等.它直接影响着碰撞仿真的计算精度和效率.建模的基本原则是准确性,为了保证计算精度,模型必须能够如实反映座椅的几何特性和力学特性.为了提高模拟计算的效率,在建模时还必须考虑单元类型、数量和质量等因素.座椅有限元模型的建立原则为(1)在保证计算目的和精度的条件下,适当简化模型.(2)合理选择单元类型,减少输入数据量和计算时间.(3)合理控制单元大小,相应分配模型单元数.1.1 壳单元的选取第32卷第7期2004年7月同济大学学报(自然科学版)JOURNAL OF TON G J I UN IVERSITY (NATURAL SCIENCE )Vol.32No.7 J ul.2004壳单元的选取应从精度、效率以及对几何型面进行离散化时的方便性和准确性加以考虑.H Y2 PERM ESH软件提供了103,104,106,108号等多种壳单元类型,座椅骨架有限元模型通常采用三角形(103号)和四边形(104号)壳单元.从几何模拟角度看,采用三角形单元进行空间型面离散化,较为灵活、方便、准确,尤其易于逼近复杂的过渡面,在许多CAD/CAM软件中常常采用三角形单元,用作基本的离散化单元,但在有限元分析中,三角形单元的计算精度和准确度较差[2].四边形单元具有较高的精度和准确度,可以有效保证座椅有限元模拟计算与实车碰撞结果的一致性,但四边形单元的计算效率比较低,需要较长机时才能完成模拟计算.建立座椅有限元模型时,尽量采用了四边形单元,尤其是对于座垫、靠背、底座骨架等关键受力部位,全部采用四边形单元划分网格;个别尺寸、形状变化较大的区域,如座椅侧两表面相交处,采用了少量三角形单元.三角单元的比例控制在占总单元数的10%以下(如图1).1.2 体单元的选取H YPERM ESH软件提供了204,206,208,210,215,220等多种体单元类型,根据国外体单元建模经验与笔者的研究结果,座垫、靠背和头枕泡沫的建模选用六面体单元(208号),质量较四面体单元好,而且计算速度快(如图2).图1 骨架底板CAE模型Fig.1 CAE model of skeletonplate图2 座椅头枕CAE模型Fig.2 CAE model of headrest1.3 单元质量的控制根据经验和计算精度的要求,确定控制单元质量原则,见表1.表1 单元质量原则T ab.1 Principle of element qu ality壳单元体单元共用参数warpage(翘曲度)<5.0°<5.0°aspect(单元长宽比)<5.0<5.0 skew(弯曲度)<60.0°<60.0°Length(单元长度)>7.5mm>20mm Jacobian(雅克比)>0.7>0.7tet collapse>0.5 tetra AR<5.0对四边形单元min angle(最小角度)>45°max angle(最大角度)<135°对三角形单元min angle(最小角度)>20°max angle(最大角度)<120°对四边形单元面min angle(最小角度)>45°max angle(最大角度)<135°对三角形单元面min angle(最小角度)>20°max angle(最大角度)<120° 座椅有限元模型如图3~5所示.1.4 模型各部分的连接座椅骨架部分构件是通过焊接装配的,这就涉及到零件焊接工艺的模拟.目前,在有限元计算中对焊接的模拟主要有杆单元连接法、公用单元法和公用节点法等3种比较成熟的方法,如图6~8所示. 公用节点法是一种比较简单的焊接模拟方法,即在焊点位置将所对应的2个零件的单元节点连接起来,两单元公用同一节点,从而模拟焊点的连接功能.杆单元连接法是指在焊点位置采用一无质量的849 同济大学学报(自然科学版)第32卷 刚性杆单元将对应位置的2个节点连接起来.刚性的杆单元约束住所连接的节点,使其具有相同的自由度,以模拟实际焊点的焊接功能,并且还可以定义杆单元承受的轴向力极限和剪切力极限,当超过极限力时,杆单元的约束功能消失,从而模拟焊点失效.公用单元法则可以单独定义公用单元的材料特性,以模拟实际焊接处的金属材料特性,同时也可定义相应的焊接失效条件,因此,这种方法可以对焊点实现精确的模拟,但是工作量十分巨大,不仅需要对焊点作专门的材料试验,而且在有限元网格处理方面也具有一定的难度.比较3种焊接模拟方法,公用单元法虽然最精确,但工作量过于巨大,而且相应的试验会大大增加研究的时间和费用,对本课题而言不适合;公用节点法精度次之,相对也较为简单,零件模型之间吻合精度较高,因公用节点产生的单元翘曲问题比较少,所以在座椅各部分连接时选用了这种方法.1.5 计算模型的定义本课题选用了PAM2CRASH软件进行模拟碰撞分析,所以在它的前处理软件中建立座椅的计算模型.1.5.1 材料参数选择座垫泡沫选用21号材料(elastic foam with hys2 teresis);座椅外包层选用103号材料(iterative elas2 tic plastic);座椅骨架壳单元采用100号材料(null material for shell element),具体参数参考国外公司提供的数据.1.5.2 接触定义人体模型与座椅的接触采用“面对面”方式,即利用软件提供的33号surface/surface接触,对假人臀部和座垫上表面之间的接触、假人背部和靠背内侧表面之间的接触作定义.座椅泡沫自接触(seat2 self)采用边缘处理自接触方式,即软件所提供的36号(self impacting with edge treatment)接触.2 座椅有限元模型的验证通过网格划分和结构连接,将整个座椅离散为4079个壳单元,2955个体单元,建立了完善的座椅CAE模型(见图9).由于座椅CAE模型是经一些简化后得到的,简化过程是否合理,各部分连接是否恰当,尤其是材料的定义是否准确,直接关系到后期碰撞模拟的真实性和可靠性.所以,必须对座椅CAE模型进行静态计算验证.厂方提供了座椅的加载与变形试验曲线,因此,模型静态计算验证实际就是利用软件进行加载与变形的模拟,考察计算数据是否与实际试验结果相符.本课题采用了Ansys软件.对单元进行定义,包括单元类型、实常数、材料特性等.其中骨架和外包壳单元选用Shell63号单元,泡沫体单元选用Solid 45号单元,见图10.根据座椅通常受力情况,对座垫内固定区域加949 第7期王宏雁,等:汽车座椅有限元建模与计算 载,见图11,每个节点受力均匀.加载节点数为132;面积为400mm ×400mm ;载荷以50N 为步长,从10N 依次增加至650N ,每次加载位置不变.对比计算与试验结果可知:模拟计算结果与试验曲线总的走势基本相符.但在同一载荷作用下,模拟计算的座椅泡沫变形量比真实座椅产生的变形要大一些.在载荷为600N 时,最大相对误差为29.8%(见图12).说明模型对座垫泡沫材料的定义偏软.图12 计算结果与试验曲线对比Fig.12 Curve comparison betw een simulation and test3 座椅材料的软硬程度对碰撞安全性分析的影响 如前所述,在座椅的计算模型建立过程中,座椅材料的定义由于没有试验条件,所以参考了国外汽车公司的试验和经验数据,静态计算结果也表明,所定义的材料偏软.因此必须对材料参数是否会影响最终的整车乘员约束系统的运动响应模拟分析精度[3]进行研究.笔者通过对比不同的座垫泡沫材料在碰撞时对乘员造成的伤害指标,来验证座垫泡沫材料定义的可靠性.根据国家标准,选取假人头部伤害指标I HIC 值、胸部综合加速度a 3ms 、大腿轴向受力F 等3项伤害指标作为评价标准.应用Pam 2crash 软件输入现有座椅泡沫材料,进行正面模拟碰撞,得到乘员的3项伤害指标.然后,用乘员的定位参数定义,在不改变乘员初始定位H 点坐标的前提下,改变座椅座垫泡沫的材料特性,保持应变相同,分别将应力值增加至原来的2倍或者减少至原来的1/2,再次进行模拟碰撞,得到乘员的伤害指标与原来的数值进行比较.3种不同材料对乘员的伤害指标的变化规律,见图13~15.图13 I HIC 值及加速度曲线Fig.13 Curve of I HIC and acceleration59 同济大学学报(自然科学版)第32卷 图14 a 3ms 值及加速度曲线Fig.14 Curve of a 3ms andacceleration图15 腿部受力曲线Fig.15 Axial force curve of the leg 通过以上3种指标的比较,可以看出它们的最大峰值和出现的时间历程都相差无几,由此可知:若座椅泡沫材料相同,仅它的软硬程度不同,对于正面模拟碰撞中乘员的伤害程度的影响很小.其原因在于:座椅的软硬程度的改变,主要影响到了乘员在垂直方向受到的作用力,对正面碰撞过程中乘员由于惯性产生的纵向运动影响不大.图16所示的是在正面碰撞过程中,座椅受最大纵向碰撞力和乘员重力作用下的变形模拟情况.图16 70ms 时座椅变形形状Fig.16 Deform shape at 70ms4 结论采用“体-壳”结合的方法对汽车座椅进行有限元建模的研究是成功的,经试验验证和计算研究这种方法独特且有效,所建模型合理可靠.总的来说,座椅在整车运算过程中,值得注意的因素是体单元质量,提高六面体单元的比例能保证运算的稳定性;其次是材料的定义问题,应与静态试验结果尽量吻合,运算更合理.参考文献:[1] 姚卫民,孙丹丹.汽车座椅系统安全性综述[J ].汽车技术,2002,(8):5-8.[2] 高广军.有限元三维实体与壳单元的组合建模问题研究[J ].中国铁道科学,2002,23(3):52-54.[3] 龚 剑,张金换,黄世霖,等.PAM 2CRASH 碰撞模拟中主要控制参数影响的分析[J ].振动与冲击,2002,21(3):18-20.(编辑:张 弘)159 第7期王宏雁,等:汽车座椅有限元建模与计算。
基于ANSYS的某汽车悬架有限元分析
![基于ANSYS的某汽车悬架有限元分析](https://img.taocdn.com/s3/m/5a3b0a06bf1e650e52ea551810a6f524ccbfcb2e.png)
基于ANSYS的某汽车悬架有限元分析
有限元分析是一种数值模拟方法,可以将连续体结构离散化为大量的
小单元,并通过求解线性方程组来确定每个单元的位移和应力。
这种方法
可以用于模拟复杂的工程结构和系统,例如汽车悬架系统。
在进行汽车悬架有限元分析时,首先需要对悬架系统进行几何建模。
根据实际情况,可以使用CAD软件绘制悬架系统的几何模型,并将其导入
到ANSYS中。
接下来,需要定义悬架系统的材料属性。
根据实际材料的力学特性和
性能指标,可以为不同的零件指定适当的材料属性。
然后,需要对悬架系统施加边界条件和载荷。
边界条件可以用来限制
模型的自由度,例如固定一些节点或面。
载荷可以是静态载荷(例如汽车
自重),也可以是动态载荷(例如行驶过程中的路面不平),这些载荷将
模拟汽车悬架系统在不同工况下的受力情况。
最后,通过求解有限元模型的线性方程组,可以获得悬架系统在不同
工况下的位移、应力分布等结果。
通过对这些结果的分析,可以评估悬架
系统的刚度、强度和振动特性,并进行必要的优化和改进。
汽车悬架有限元分析可以帮助工程师更好地理解悬架系统的工作原理
和性能特点。
通过这种方法,可以提前评估悬架系统在设计和制造阶段的
性能,并进行必要的改进,从而提高汽车的悬挂舒适性、稳定性和安全性。
总而言之,基于ANSYS的汽车悬架有限元分析是一种有效的工程方法,可以帮助工程师评估和改进汽车悬架系统的性能。
通过这种分析方法,可
以为汽车制造商和设计师提供有关悬架系统的有价值的设计数据,以改进
汽车的悬挂系统。
汽车车桥结构有限元分析
![汽车车桥结构有限元分析](https://img.taocdn.com/s3/m/7c55b7064b73f242336c5f53.png)
汽车车桥结构有限元分析作者:何钦章来源:《科学与财富》2018年第18期摘要:为分析某重型车车桥的静强度和振动特性,应用有限单元法对其进行数值模拟。
采用有限元分析工具ABAQUS对三种典型工况下的车桥进行了静强度分析,对其动态特性进行了自由模态分析。
分析结果表明,车桥结构的静强度和动态特性均满足设计要求。
关键词:ABAQUS;车桥;有限元;模态分析有限元分析软件ABAQUS可帮助设计人员快速地对车桥结构设计的合理性做出判断。
根据分析计算结果,针对不同设计要求,提出相应的改进措施。
根据经验和理论研究,引起车桥破坏的主要原因是作用在桥壳上的、由路面不平度引起的冲击力和各种复杂工况下的作用力。
本文主要针对最大垂直力工况、最大制动力工况和最大侧向力工况三种典型工况下的静强度进行分析,并对其振动特性进行了分析。
一、有限元模型的建立车桥CAD模型来自UG建模,几何模型见图1。
为了简化计算,假定材料各向同性且不考虑钢板弹簧座与车桥的连接关系,也不考虑轴颈与轴承的装配关系,即单独将车桥隔离出来,将车桥轴颈处的滚动轴承简化为对相应位置处节点的约束,并按图2(a)所示的位置施加约束,并进行后续分析。
利用专业有限元前处理工具Hypermesh进行结构离散,并在易产生应力集中部位加密网格。
给网格赋予车桥材料属性(材料为16Mn,密度7.833×10-9t/mm3、弹性模量2.1×105MPa、泊松比0.3、屈服极限420MPa),施加相应约束,得到离散后网格模型如图2(b)所示。
二、静力分析静力分析包括最大垂直力、最大制动力和最大侧向力三个工况。
已知条件:车轴满载轴荷13t,车轮间距1.84m。
由于车桥自重远小于满载轴荷,在静力计算中未考虑车桥自重。
1.工况一(最大垂直力工况)最大垂直力工况是汽车在路过不平路面受到冲击载荷的工况,不考虑制动和侧向力。
冲击载荷为满载轴荷的2.5倍,平均作用在两个钢板弹簧座处。
有限元分析技术在电动汽车结构设计中的应用
![有限元分析技术在电动汽车结构设计中的应用](https://img.taocdn.com/s3/m/db50e4c7900ef12d2af90242a8956bec0875a55d.png)
有限元分析技术在电动汽车结构设计中的应用在当今的汽车市场中,电动汽车已成为一种非常受欢迎的选择。
事实上,在全球范围内,越来越多的消费者倾向于购买电动汽车,并将其用于日常出行。
因此,汽车制造商需要采用新的设计技术来确保电动汽车的安全和可靠性。
有限元分析技术正是一种在电动汽车结构设计中应用广泛的新技术。
有限元分析技术是一种通过数学模型将复杂的结构分解为许多小的元素的技术。
这些元素是相互连接的,通过计算每个元素的应力和变形,可以计算整个结构的行为。
在电动汽车结构设计中,有限元分析技术可以用于强度、刚度、疲劳寿命、碰撞安全等方面的分析。
首先,在电动汽车的设计和开发过程中,有限元分析技术可以帮助工程师进行结构强度和刚度的分析。
电动汽车的底盘和车身结构需要具有高强度和高刚度,以保证安全和驾驶品质。
通过有限元分析技术,工程师可以模拟汽车在各种条件下的力学特性,并通过计算每个元素的应力和变形来确定结构的强度和刚度。
这种分析可以帮助工程师在设计阶段发现和修复结构中的弱点,并更好地优化设计。
其次,疲劳寿命也是电动汽车结构设计中需要考虑的一个重要因素。
在电动汽车的使用中,由于电动汽车的电池重量和结构设计,车身会承受更大的负荷。
因此,有限元分析技术可以用于预测汽车的疲劳寿命和寿命下降的原因。
通过这种分析,工程师可以在设计阶段发现潜在的问题,并优化结构来避免寿命损失。
第三,在电动汽车的设计和开发过程中,碰撞安全也是不可忽视的一个问题。
有限元分析技术可以用于模拟汽车在碰撞过程中的应力和变形,从而提前发现和解决碰撞安全问题。
这种分析可以帮助工程师确定各个部件的应力和应力分布,确保汽车能够在不同的碰撞条件下保持安全。
同时,有限元分析技术还可以用于优化碰撞防护装置的设计,提高碰撞安全性。
总之,有限元分析技术是电动汽车结构设计中的一项重要技术。
通过这种技术,工程师可以模拟电动汽车在各种情况下的力学特性,并确定结构的强度、刚度、疲劳寿命和碰撞安全等方面的特性。
基于ANSYS的汽车发动机连杆的有限元分析
![基于ANSYS的汽车发动机连杆的有限元分析](https://img.taocdn.com/s3/m/9566e881d4bbfd0a79563c1ec5da50e2524dd1b3.png)
基于ANSYS的汽车发动机连杆的有限元分析有限元分析(Finite Element Analysis,简称FEA)是一种应用数值计算方法的工程分析技术,可以用于解决各种工程问题。
在汽车发动机设计中,使用有限元分析可以帮助工程师了解和优化发动机组件的力学性能。
本文将基于ANSYS软件,介绍如何进行汽车发动机连杆的有限元分析。
一、建模和几何参数定义:在进行有限元分析之前,首先需要将连杆的几何形状转化为虚拟模型。
一般来说,使用CAD软件绘制连杆的草图,并根据设计要求对连杆进行几何尺寸和参数的定义。
对于汽车发动机连杆而言,常见的几何参数包括连杆长度、大端和小端直径、连杆的截面形状等。
在绘制草图时,应注意考虑到实际的工程要求和设计限制。
二、材料定义和材料力学参数:在有限元分析中,连杆的材料定义至关重要。
一般来说,连杆材料应具有优异的强度和刚度,以应对高速旋转和高温的工作环境。
一般常用的连杆材料包括铸铁、铝合金、钛合金等。
在模型中定义连杆的材料属性,常用的材料力学参数有弹性模量、泊松比、屈服强度和断裂韧性等。
这些参数将作为材料的基本力学性能指标,用于后续的有限元分析计算。
三、网格划分和单元选择:在进行有限元分析之前,需要将连杆的几何模型划分成一系列小的有限元网格。
这一步骤称之为网格划分。
在网格划分时,需要根据设计要求和实际需求选择适当的网格类型。
对于连杆而言,常用的网格类型有四面体网格、六面体网格和四边形网格等。
划分后的网格中的每个单元都将代表连杆的一个局部区域,通过对每个单元进行力学计算,可以得到连杆在整个工作过程中的承载能力和应力分布情况。
四、加载和边界条件定义:在有限元分析中,需要对模型施加适当的加载和边界条件来模拟实际工作情况。
对于汽车发动机连杆而言,常见的加载和边界条件有定常和动态载荷、热载荷和流体载荷等。
例如,在连杆的大端和小端分别施加适当的载荷,以模拟发动机工作时的受力情况。
同时,还需要定义边界条件,如固定轴承的位置,以模拟实际组装情况。
有限元法在汽车行业中的应用
![有限元法在汽车行业中的应用](https://img.taocdn.com/s3/m/b2fe38ed941ea76e58fa0419.png)
有限元法在汽车行业中的应用【摘要】:汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。
在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。
【关键词】:汽车;技术;应用在当前的工程技术领域中有越来越多的复杂结构,包括复杂的几何形状、复杂的载荷作用和复杂的支撑约束等。
当对这些复杂问题进行静、动态力学性能分析时, 往往可以很方便地写出基本方程和边界条件, 但却求不出解析解。
这是因为大量的工程实际问题非常复杂, 有些构件的形状甚至不可能用简单的数学表达式表达, 所以就更谈不上解析解了。
对于这类工程实际问题, 通常有两种分析和研究途径: 一是对复杂问题进行简化, 提出种种假设, 最终简化为一个能够处理的问题。
这种方法由于太多的假设和简化, 将导致不准确乃至错误的答案。
另一种方法是尽可能保留问题的各种实际工况, 寻求近似的数值解。
在众多的近似分析方法中, 有限元法是最为成功和运用最广的方法。
1. 汽车结构有限元分析汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。
在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。
由于要完成各自独特的功能, 它们的结构各不相同, 并且都比较复杂。
一些结构件的工作条件比较恶劣, 长期在振动和冲击载荷下工作。
寻求有关这些结构件正确而可靠的设计和计算方法, 是提高汽车的工作性能及可靠性的主要途径之一。
在汽车结构分析中, 有限元法由于其能够解决结构形状和边界条件都非常任意的力学问题的独特优点而被广泛使用。
各种汽车结构件都可应用有限元法进行静态分析、固有特性分析和动态分析; 并且从原来对工程实际问题的静态分析为主转化为要求以模态分析和动态分析为主。
也可根据工程实际结构的特点要求进行非线性分析。
具体地说, 汽车结构有限元分析的应用体现于: 一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度、稳定性分析; 二是在汽车的计算机辅助设计和优化设计中, 用有限元法作为结构分析的工具; 三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态, 进一步计算出各构件的动态响应, 较真实地描绘出动态过程, 为结构的动态设计提供方便有效的工具。
汽车结构有限元分析03单元类型及单元分析
![汽车结构有限元分析03单元类型及单元分析](https://img.taocdn.com/s3/m/25cf2ff2fe4733687f21aa8b.png)
目前使用的梁单元除一次梁单 元外,还有二次梁单元、曲梁单 元和锥梁单元等。二次梁单元是 由三个节点确定的抛物线,曲梁 单元是由两个节点决定的、具有 曲率半径的圆弧,而锥梁单元则 是采用两个节点处截面积不等的 线性梁。
汽车结构有限元分析03单元类型及单 元分析
上述在局部坐标系中得出的杆单元或梁 单元刚度矩阵,由于整体结构中各杆梁位 置不同、倾角不同,有限元模型要求一个 单元在整体坐标系中能够任意定位,这就 需要建立两种坐标系下的转换关系。对平 面桁架、空间桁架、平面刚架与空间刚架, 都需要建立这种坐标变换关系。
形函数的构成要分成八个角点的形函 数和各棱边中节点的形函数两种情况表述。 其表达式如下:
汽车结构有限元分析03单元类型及单 元分析
由空间弹性力学几何方程,得应变表达式: 由空间弹性力学物理方程,单元内的应力可以
表示成: 单元刚度矩阵为 :
汽车结构有限元分析03单元类型及单 元分析
实体单元可以直接利用三维CAD所做好的 实体模型,所以非常容易理解。实体单元能够 适用于所有的结构,但其节点数或单元数可能 非常之多。虽然板梁结构都可以采用实体单元 建模,但对于符合板或梁形式的结构还是采用 梁单元或板壳单元为佳,其精度完全满足工程 结构设计要求。采用实体单元分析所花费时间 一般较采用梁单元与板单元为多,另外三维网 格调整是比较困难的,用板梁单元建立的模型, 截面内力容易判断,在初期设计阶段,更易于 评价计算结果。
05-01车辆结构有限元静力学分析分析
![05-01车辆结构有限元静力学分析分析](https://img.taocdn.com/s3/m/ad757c532b160b4e767fcf4c.png)
二、汽车驱动桥桥壳的有限元分析
分析结果如下:
三、支架有限元分析
支架用于支撑邮箱、散热器、蓄电池、 工具箱等。支架与车架的连接方式可以通过 螺栓连接,在分析过程中需要用到抽取中面、 简化成板壳结构、螺栓连接等有限元建模技 术。
三、支架有限元分析
如车架有限元分析的建模:
考虑到整个车架基本 上都是由钢板冲压、焊接 而成,这里主要用板壳模 拟车架,只有铰接轴套管、 铰接轴销轴、平衡悬架处 的平衡轴和前悬架的前后 支架采用体来建立模型。
二、汽车驱动桥桥壳的有限元分析
操作步骤: 1.打开软件导入axle_housing.x_t,进行前处理; 2.打开静态分析,设定并分配零部件材料; 3.建立试验块与桥壳总成的接触关系; 4.划分网格(尽量采用Hex_domain); 5一端全约束、另一端放松轴向;在板簧面施加载荷 12000*2.5=30000 N,单边15000 N; 6.求解应力和变形; 7.后处理。
三、支架有限元分析
分析中难点:
三、支架有限元分析
难点2,建立接触
三、支架有限元分析
难点3.约束
三、支架有限元分析
分Hale Waihona Puke 结果三、支架有限元分析解决办法
三、支架有限元分析
改进后的分析结果
一、结构有限元静力学分析基础
汽车零部件的许用应力和安全系数: 3)对于扭转许用应力,安全系数n1≧1.5 则有: [τ]=τs/n1 若τs不能查到,可由下面的公式进行估算: [τ]=0.58σs/n1
二、汽车驱动桥桥壳的有限元分析
驱动桥桥壳是汽车上主要承载结构件, 由于其形状复杂,采用传统的工程力学方法 只能根据经验进行设计,很难确保设计是否 合理。一般需要通过桥壳总成疲劳台架试验 来确认设计的合理性。
汽车结构有限元分析
![汽车结构有限元分析](https://img.taocdn.com/s3/m/d19c4ef204a1b0717fd5dd79.png)
有限元分析1.有限元法可以分为两类,即线弹性有限元法和非线性有限元法.其中线弹性有限元法是非线性有限元法的基础,二者不但在分析方法和研究步骤上有类似之处,而且后者常常要引用前者的某些结果.2.有限元的数学及力学思想答:有限元法作为结构分析的一种计算方法,从数学的角度看,其基本思想是通过离散化的手段,将偏微分方程或者变分方程换成代数方程求解;从力学的角度看,其基本思想是通过离散化的手段,将连续体划分成有限个小单元体并使他们在有限个节点相互连接。
在一定精度要求下,用有限个参数来描述每个单元的特性,而整个连续的力学特性能够可以认为是这些小单元体力学特性的总和,从而建立起连续的力的平衡关系。
3.有限元模型:有限元模型是真实系统理想化的数学抽象.由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷.4.有限元法:是以力学理论为基础,随着力学\数学和计算机科学相结合而发展起来的一种数值计算方法.5.传统结构设计流程:设计----建模----测试---再设计.(1)作很大简化,计算精度差;(2)结构尺寸与重量偏大;(3)结构局部强度或刚度不足;(4)设计周期长,试制费用高6.现代产品设计:Design(CAD)----Virtual Test(CAE)---Build---T est---Redesign。
有限元法是CAE的核心部分7.汽车结构有限元分析的内容:(1)零部件及整车的疲劳分析,估计产品的寿命,分析部件损坏的原因;(2)结构件、零部件的强度、刚度和稳定性分析(3)结构件模态分析、瞬态分析、谐响应分析和响应谱分析;(4)车身内的声学设计,车身结构模态与车身内声模态耦合;(5)汽车碰撞历程仿真和乘员安全保护分析(被动安全性);(6)结构件、零部件的优化设计(质量或体积为目标函数);(7)车身空气动力学计算,解决高速行驶中的升力、阻力和湍流问题8.汽车结构有限元分析的流程:(1)制定方案;(2)建立结构模型;(3)划分有限元模型;(4)有限元模型检查;(5)加载和增加约束条件;(6)求解计算;(7)结果分析。
车架有限元建模及模态分析
![车架有限元建模及模态分析](https://img.taocdn.com/s3/m/e977174bcf84b9d528ea7a6a.png)
万方数据54汪伟等:车架有限元建模及模态分析第11期不会出现模型几何变形或信息丢失的问题,在几何模型导入出现问题时,通用的IGES格式往往可以获得较好的效果。
如还有变形或信息丢失,则要在Hypermesh中对模型进行修复。
3.2车架网格划分车架结构基本对称,为了减少网格划分的工作量,仅保留几何模型的一半,在此基础上建立有限元模型。
车架零件大部分由薄板冲压而成,厚度都在5ram以下,因而可以选择使用壳单元来模拟车架结构部件。
对于车架力学分析而言,通常单元基本尺寸选择在10ram自由为宜。
因此利用Hypennesh的MidSurface中面抽取功能,对车架中的薄壁件抽取中面。
之后需要在I-IyperMesh的GeometryCleanup功能下进行几何清理和修复,补面、消除错位和小孔,压缩相邻曲面之间的边界,消除不必要细节,以提网格划分的质量。
对车架进行模态分析,所以必须设定材料的属性,其中弹性模量E=2.07e+5MPa,材料的泊松比为0.3,密度为7.8e-gT/mm3。
对于车架来说,基本部是焊接和螺栓的连接方式。
各零件的连接都使用刚性连接单元rigids。
单元类型和大卅叹寸计算精度有很大的影响。
由于车架结构主要是薄壁金属件,故单元类型以四边形黄弹元为主,对四边形单元形状如长宽比、翘曲度、最大角和最小角等都做出了严格的规定。
由于三角形单元比四边形单元的刚度大,会影响计算精度,故要严格控制三角形单元的个数,—般情况下,整个模型最好,I、于10%,最多不超过15n/o。
装配完后的车架模型,共有74061个节点,网格单元68084,其中三角形单元有1869个,占整个网格数比重的2.7%,连接单元数为4431个,如图l所示。
图1完整的车架有限元模型图3.3各零件之间的连接定义有限元模型要涉及到不同部件之间的连接问题,仿真分析应该对各种联接加以准确描述。
实际的物理联接方式一般为焊接、铆接、螺栓联接等。
对于车架来说,基本都是焊接和螺栓的连接方式,焊接又分为点焊和缝焊。
汽车驱动桥壳的有限元建模与分析_第三章驱动桥壳有限元模型的建模_36_63
![汽车驱动桥壳的有限元建模与分析_第三章驱动桥壳有限元模型的建模_36_63](https://img.taocdn.com/s3/m/fd6530faaef8941ea76e0563.png)
29第三章 驱动桥壳有限元模型的建模 作为MSC.NASTRAN 的前后处理器,MSC.PATRAN 是工业领域最著名的并行框架式有限元前后处理和分析系统。
在驱动桥壳几何模型的基础上,本章将探讨应用MSC.PATRAN 建立驱动桥壳有限元模型的问题。
3.1 导入驱动桥壳几何模型到MSC.PATRAN中 3.1.1 驱动桥壳几何模型的存储 前一章已经采用CAD 软件Pro/E 建立了所研究驱动桥壳的几何模型,为将几何模型导入到MSC.PATRAN 中,需要将在Pro/E 中建立的几何模型存成一定格式的数据。
STEP 格式是国际标准化组织(ISO )于1984 年提出的关于产品数据的交换标准,全称是“产品模型数据交换标准(Standard for Exchange of Product Model Data )”。
与IGES 数据格式相比,STEP 数据格式模型的数据不易丢失,导入速度较快,因此,将在Pro/E 中建立的几何模型存成STEP 数据格式。
图3-1 New Database对话框 图3-2 New Model Preference菜单 3.1.2 MSC.PATRAN模型数据库文件的建立 (1)启动MSC.PATRAN ,选择“File ”菜单中的“New ”命令,或直接在工具栏上单击按钮 ,出现图3-1所示对话框;30(2)在文件名输入框中输入:CA141_Housing.db ,单击“OK ”按钮确认,即建立新的PATRAN 模型数据库文件,如图3-1所示;(3)建立新的数据库文件后,会出现New Model Preference 菜单,使菜单的内容与图3-2所示一致,单击“OK ”按钮确认。
3.1.3 驱动桥壳几何模型的导入 (1)由MSC.PATRAN 菜单File/Import 打开输入模型对话框,在“Object ”中选择“Model ”,在“Source”中选择“STEP”,即确定模型导入的数据格式是STEP 格式,如图3-3所示;(2)在“File Type ”中选择AP203类型;(3)选择要输入的文件,单击“Apply ”按钮,输入几何模型;(4)MSC.PATRAN 弹出一个模型输入统计报告,导入完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CAD技术的发展使三维设计和虚拟装配成为现实
自20世纪80年代开始,在基于特征的CAD技术中,可 以建立全参数驱动的三维模型,并以此为基础,对整 体设计和部件进行有限元分析、运动分析、装配的干 涉检查和NC自动编程等。
CAE技术使结构分析和运动校核可以在设计阶段完成, 避免了反复实验和试制!
驱动桥变有速限器元齿模轮型有限元驱分动析桥模有型限元分析应力云图
➢汽车碰撞有限元建模与仿真
汽车设计中,除了要满足强度和刚度的要求外, 还要进行碰撞实验,使其符合相关法规的要求。
汽车碰撞的两种 研究手段:实验 和有限元仿真
汽车正碰实验
➢汽车碰撞有限元建模与仿真
汽汽车车正侧碰碰仿过真程有与限实元验分结析果与的仿真对比
车有绕纵向x轴转
动的趋势。
MX
Mx
y
x
(3)汽车弯扭组合情况
实际上,由于重力
始终存在,汽车必
z
受弯矩和扭矩,必
须一起考虑!
Mx
x MX
Fz
y
(4)汽车侧向载荷情况
这种情况发生在汽 车转弯(离心力)或 汽车受横风或汽车 滑向路牙时,即受 y轴载荷。
z Fy
x
y
(5-1)汽车纵向载荷——加速情况(后轮驱动)
汽车结构分析方法简述
在汽车结构分析中,解析方法(如材料力学、 弹性力学和结构力学等)只能用于简单的结构 件,如杆、梁、柱以及简单的板壳等,不能解 决汽车中众多复杂零部件的结构分析问题(为 什么?),因此现代汽车设计的技术分析主要 采用有限元等数值方法。
FEM是一种高效、成熟和不断发展的数值方法, 如小波有限元在分析裂纹扩展问题中的应用等 等
新一代的 CAE 技术将不单纯是计算技术,它将和试验 技术紧密地融合在一起,成为工程实用中更加可靠的一 门完整技术。
CAM技术使设计数据直接用于加工,大大缩短了产品 的制造周期。
如,有限元数值模拟板料冲压成形过程,可很好的预 测成形缺陷。
这些技术的广泛应用使汽车产品开发发生了根本性的 变革,使汽车产品也可以按照不断变化的客户需求进 行及时响应,开发一个全新车型的周期已经从4~5年 缩短到18个月左右。
课程名称
车辆有限元分析方法
教材名称
汽车有限元法
汽车结构的有限元计算模型
第一节 概述 第二节 汽车结构计算模型 第三节 载荷与边界约束条件的处理
Over
有限元法(FEM)虽然已很流行, 但无需讳言,对于接触FEM时间 不长的同学们来说,有限元方法 仍难免有些神秘和高深莫测。
此前,我们学习了各种平面和空 间单元,讨论了其位移模式、单 元刚度矩阵的求取以及单元组集 的方法等。对结构有限元分析问 题的运算复杂性和手算低效的矛 盾有了深刻印象和切身感受。
FEM自20世纪40年代始……
FEM应用实例
教学提示:与今后的科研和实际工作关系
作为一种有效的数值方法,在汽车设计中,有 限元分析应用十分广泛。
➢复杂的大型结构件有限元分析
客车车身骨架有限元模型
FEM应用实例 ➢复杂的大型结构件有限元分析
白车身弯曲变形分析结果 白车身有限元模型
FEM应用实例
➢各种零部件的有限元分析 如,悬架各部件(如空气弹簧、钢板弹簧、稳 定杆等)有限元分析
建模和使用软件进行结构分析的三点注意
1为了保证汽车结构具有合理的强度与刚度,要 根据工程力学、汽车理论等基础知识,正确分 析汽车所受各种载荷,再运用FEM的知识,对 汽车结构进行强度和刚度计算和评价。
汽车载荷工况复杂多样,汽车结构分析中一项重 要也是关键的前提条件就是确定计算载荷。
注意点1:分析汽车结构所受载荷要全面
位移云图
空气弹簧有限元分析模型
双有扭限杆应元弹力分簧云析悬图架
➢各种零部件的有限元分析
又如,发动机机体、驱动桥壳、曲轴、差速器 及变速器齿轮等各种零部件的结构分析。
发动机机体实物与有限元模型 柴油机机体有限元分析位移云图
➢各种零部件的有限元分析
又如,发动机机体、驱动桥壳、差速器及变速 器齿轮等各种零部件的结构分析。
现代汽车开发过程(从概念到实物)
在这一过程中,有限元分析充当了重要角色具有不可或缺的作用
效果图
分析 仿真
油泥模型 制作
车身设计 底盘设计
管路布置
样车试制 模具制造
1: 5和1: 三维总布置
1模型
设计
造型设计 总体设计
电器系统 其它系统
设计
详细设计
批量生产
汽车产品数字化开发是建立在计算机辅助技术(CAX) 基础上的,其中,有限元分析充当了重要角色,具有不 可或缺的作用
(重点)
教学要求
明确FEM在现代汽车开发中应 用的广泛性
FEM决不是屠龙妙术,而是一门实用技术
熟悉FEM在汽车结构分析中 的常见应用实例
深刻体会并积极实 践“FEM建模和软 件使用中的三点注
意”
FEM在现代汽车开发过程中的应用
早期的汽车设计和制造主要以经验和科学实验结合。
现代汽车的设计以数字化设计为主,综合应用先进的 计算机辅助技术,如CAD、 CAE(计算机辅助工程)、 CAM,以缩短研发周期,降低设计成本,提高设计质 量。
汽车结构分析方法简述
在汽车结构分析中,解析方法(如材料力学、 弹性力学和结构力学等)只能用于简单的结构 件,如杆、梁、柱以及简单的板壳等,不能解 决汽车中众多复杂零部件的结构分析问题(为 什么?),因此现代汽车设计的技术分析主要 采用有限元等数值方法。
1 弹性力学的基本方程有哪些?
2 从数学上讲,弹性力学问题的求解是哪类问 题?
四轮汽车模型
z
汽车坐标系
C.G.
x
y
C.G.——Center of Gra件质量引起
的载荷,作用在垂
z
直平面(x-z),载
荷沿汽车车架方向
分布,产生绕y轴
的弯矩。
x
y
Fz
(2)汽车扭转情况
由于路面不平或不
对称支承,使作用
z
在同一车轴两车轮
的沿z轴的力不等,
必引起扭矩,使汽
加速时,产生纵向载荷(沿x轴),作用在轮胎与地面接 触点的牵引力和惯性力。 z
随着上机实践的进行,运算复杂 性这一矛盾已迎刃而解。但是…
我们还是不禁要问:FEM真的那 么有用吗?它是屠龙妙术,还是 一种实用技术?它在汽车工程中 真有那么广泛的应用吗?
第一节 概述
本节教学内容
FEM在现代汽车开发中的应用
汽车结构分析方法简述 FEM应用实例
FEM建模和使用软件进 行结构分析的三点注意