广西河池市中考数学试卷(解析版)

合集下载

(精品中考卷)广西河池市中考数学真题(解析版)

(精品中考卷)广西河池市中考数学真题(解析版)

2022年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

请用2B铅笔将答题卡上对应题目的答案标号涂黑。

)1. 如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A. +20元B. ﹣20元C. +30元D. ﹣30元【答案】B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:“正”和“负”相对,所以如果+50元表示收入50元,那么支出20元表示为﹣20元.故选:B.【点睛】此题考查的是正数和负数的定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2. 下列几何体中,三视图的三个视图完全相同的几何体是( )A. B.C. D.【答案】D【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A.三棱柱的俯视图与主视图和左视图都不同,故此选项错误;B.圆柱的俯视图与主视图和左视图不同,故此选项错误;C.圆锥的俯视图与主视图和左视图不同,故此选项错误;D.球的三视图完全相同,都是圆,故此选项正确.故选:D.【点睛】本题主要考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.3. 如图,平行线a ,b 被直线c 所截,若∠1=142°,则∠2的度数是( )A. 142°B. 132°C. 58°D. 38°【答案】A【解析】 【分析】根据两直线平行,同位角相等即可求解.【详解】解:∵a b ∥,∴21142∠=∠=︒,故选A .【点睛】本题考查了平行线的性质,掌握两直线平行同位角相等是解题的关键. 4. 下列运算中,正确的是( )A. x 2+x 2=x 4B. 3a 3•2a 2=6a 6C. 6y 6÷2y 2=3y 3D. (﹣b 2)3=﹣b 6 【答案】D【解析】【分析】根据合并同类项,单项式乘以单项式,单项式除以单项式,积的乘方运算法则逐项分析判断即可求解.【详解】解:A. x 2+x 2=2x 2,故该选项不正确,不符合题意;B. 3a 3•2a 2=6a 5,故该选项不正确,不符合题意;C. 6y 6÷2y 2=3y 4,故该选项不正确,不符合题意;D (﹣b 2)3=﹣b 6,故该选项正确,符合题意. 故选D .【点睛】本题考查了整式的混合运算,掌握相关运算法则是解题的关键.5. 希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是().A. 92B. 91.5C. 91D. 90【答案】B【解析】 【分析】根据加权平均数的计算公式,用95分,90分,91分别乘以它们的百分比,再求和即可.【详解】解:根据题意得95209030+=⨯%+⨯%91⨯50%91.5.即小强这学期的体育成绩是91.5.故选:B .【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.6. 多项式244x x +﹣因式分解的结果是( )A. x (x ﹣4)+4B. (x +2)(x ﹣2)C. (x +2)2D.(x ﹣2)2【答案】D【解析】【分析】根据完全平方公式进行因式分解即可.【详解】解:()22442x x x +=-﹣.故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.7. 东东用仪器匀速向如图容器中注水,直到注满为止.用t 表示注水时间,y 表示水面的高度,下列图象适合表示y 与t 的对应关系的是( )A. B.C.D.【答案】C【解析】【分析】根据题目中图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8. 如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A. AB=ADB. AC⊥BDC. AC=BDD. ∠DAC =∠BAC【答案】C【解析】【分析】根据菱形的性质逐项分析判断即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∠DAC=∠BAC,故A、B、D选项正确,不能得出AC BD=,故C选项不正确,故选:C.【点睛】本题考查了菱形的性质,掌握菱形的性质是解题的关键.9. 如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A.12m-<< B.12m>- C. 0m< D.的12m <- 【答案】D【解析】【分析】根据第三象限点的特征,横纵坐标都为负,列出一元一次不等式组,进而即可求解.【详解】解:∵点P (m ,1+2m )在第三象限内,∴0120m m <⎧⎨+<⎩①②, 解不等式①得:0m <, 解不等式②得:12m <-, ∴不等式组的解集为:12m <-, 故选D .【点睛】本题考查了第三象限的点的坐标特征,一元一次不等式组的应用,掌握各象限点的坐标特征是解题的关键.10. 如图,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,∠ABC =25°,OC 的延长线交PA 于点P ,则∠P 的度数是( )A. 25°B. 35°C. 40°D. 50°【答案】C【解析】 【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】 AC AC = ,∠ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.11. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x .则所列方程为( )A. 30(1+x )2=50B. 30(1﹣x )2=50C. 30(1+x 2)=50D. 30(1﹣x 2)=50【答案】A【解析】【分析】根据题意和题目中的数据,可以得到()230150x +=,从而可以判断哪个选项是符合题意的.【详解】解:由题意可得,230(1)50x +=, 故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题.12. 如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C ''' .在此旋转过程中Rt ABC 所扫过的面积为( )A. 25π+24B. 5π+24C. 25πD. 5π【答案】A【解析】 【分析】根据勾股定理定理求出AB ,然后根据扇形的面积和三角形的面积公式求解.【详解】解:∵90ACB ∠︒=,6AC =,8BC =,∴10AB ===,∴Rt ABC 所扫过的面积为2901016825243602ππ⋅⋅+⨯⨯=+. 故选:A .【点睛】本题主要考查了旋转的性质,扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解答的关键.二、填空题(本大题共4小题,每小题3分,共12分。

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2 0 2 0中数学真卷2020年广西河池市中考数学试卷(含答案解析)注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 清将答案正确填写在答题卡上一、单选题I.在-2, 0, I, 2这四个数中,为负数的是()A. -2B. 0D. 22.如图,a〃b, Nl=80。

,则匕2的大小是(A. 80。

B. 90°3. 卜,列单项式中,与3『b 为同类项的是(A. -orbB. ab 24. 如图,该凡何体的主视图是()C. 100°)C. 3abD. 110Q D. 3A ▽ B.口5.下列运算正确的是()A. &+功= 5ab B. a 1 ^a 2 =a yC・ a 3 - a 2 = a 56.下列调查中,最适合采用全面调查的是()D. (a-b)? =a 2"D 口A.端午节期间市场上粽子质量C.央视春节联欢晚会的收视率 B.某校九年级三班学生的视力D.某品牌手机的防水性能7.如图,要判定ABCD 是菱形,需要添加的条件是()BDA.AB = ACB. BC=CDC. AC=BDD. AB=BC 8.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是)A. X>-1B. x<3C. -I<x<3D.-1 <x<31 29.分式方程一 =1——的解为( x-2 x-2)A. x = —3 B. X = 1C・ x = 5 D.无解10.如图,在。

O 中,OA_LBC, ZAOB = 50°,则ZADC 的大小为()B. 25° C. 50° D.l(X)cIh 关于反比例函数y =二的图象,下列说法正确的是< )A.经过点(2,3)B.分布在第二、第四象限关于直线了=工对称 D. x 越大.越接近x 轴12.如图,等边A48C 的边长为2, 0A 的半径为I, D 是BC 上的动点,DE 与。

【解析版】2020年广西省河池市中考数学试卷

【解析版】2020年广西省河池市中考数学试卷

∴BC=

=,
∵S△OBC= ×OB×OC= ×BC×OH,
∴OH=


∵cos∠OBC=

∴ =,
∴BH=

∴BD=2BH=

∵CG∥OD,


∴=

∴CG= . 26.(12 分)在平面直角坐标系 xOy 中,抛物线与 x 轴交于(p,0)8
C.88,85
D.88,88
【解答】解:将数据 85,90,89,85,98,88,80 按照从小到大排列是:80,85,85,
88,89,90,98,
故这组数据的众数是 85,中位数是 88,
故选:B.
9.(3 分)观察下列作图痕迹,所作 CD 为△ABC 的边 AB 上的中线是( )
故答案为 35. 18.(3 分)如图,在 Rt△ABC 中,∠B=90°,∠A=30°,AC=8,点 D 在 AB 上,且 BD
= ,点 E 在 BC 上运动.将△BDE 沿 DE 折叠,点 B 落在点 B′处,则点 B′到 AC 的
最短距离是

【解答】解:如图,过点 D 作 DH⊥AC 于 H,过点 B′作 B′J⊥AC 于 J.
把 A(﹣1,2)与 C(1,﹣2)代入得:

解得:

则一次函数解析式为 y=﹣2x. 故答案为:(1)(2,3);(2)(1,﹣2);(3)y= ;(4)y=﹣2x.
22.(8 分)(1)如图(1),已知 CE 与 AB 交于点 E,AC=BC,∠1=∠2.求证:△ACE≌△BCE. (2)如图(2),已知 CD 的延长线与 AB 交于点 E,AD=BC,∠3=∠4.探究 AE 与 BE 的数量关系,并说明理由.

2024年广西中考数学试卷正式版含答案解析

2024年广西中考数学试卷正式版含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. 北京−4.6℃B. 上海5.8℃C. 天津−3.2℃D. 重庆8.1℃2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B.C. D.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 0.849×109B. 8.49×108C. 84.9×107D. 849×1064.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾.如图是燕尾榫的带榫头部分,它的主视图是( )A. B. C. D.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13C. 12D. 236.如图,2时整,钟表的时针和分针所成的锐角为( )A. 20°B. 40°C. 60°D. 80°7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为(2,1),则点Q的坐标为( )A. (3,0)B. (0,2)C. (3,2)D. (1,2)8.激光测距仪L 发出的激光束以3×105km/s 的速度射向目标M ,t s 后测距仪L 收到M 反射回的激光束.则L 到M 的距离d km 与时间t s 的关系式为( )A. d =3×1052tB. d =3×105tC. d =2×3×105tD. d =3×106t9.已知点M(x 1,y 1),N(x 2,y 2)在反比例函数y =2x 的图象上,若x 1<0<x 2,则有( )A. y 1<0<y 2B. y 2<0<y 1C. y 1<y 2<0D. 0<y 1<y 210.如果a +b =3,ab =1,那么a 3b +2a 2b 2+ab 3的值为( )A. 0B. 1C. 4D. 911.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. x 3+x 4+x 5=1B. x 3+x 4+x 5=100C. 3x +4x +5x =1D. 3x +4x +5x =10012.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点.连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10二、填空题:本题共6小题,每小题2分,共12分。

2024届广西河池市凤山县重点中学中考联考数学试题含解析

2024届广西河池市凤山县重点中学中考联考数学试题含解析

2024届广西河池市凤山县重点中学中考联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是( )A .10B .11C .12D .132.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是⊙O 优弧弧AB 上一点,连接AC 、B C ,如果∠P=∠C ,⊙O 的半径为1,则劣弧弧AB 的长为( )A .13π B .14π C .16π D .112π 3.1﹣2的相反数是( ) A .1﹣2B .2﹣1C .2D .﹣14.如图,正方形ABCD 内接于圆O ,AB =4,则图中阴影部分的面积是( )A .416π-B .816π-C .1632π-D .3216π-5.下列说法不正确的是()A.选举中,人们通常最关心的数据是众数B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定D.数据3,5,4,1,﹣2的中位数是46.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )A.8×1012B.8×1013C.8×1014D.0.8×10137.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB8.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180m1的该市居民家庭按第一档水价交费;②年用水量不超过240m1的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150~180m1之间;④该市居民家庭年用水量的众数约为110m1.其中合理的是( )A.①③B.①④C.②③D.②④9.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A .若2AD >AB ,则3S 1>2S 2 B .若2AD >AB ,则3S 1<2S 2C .若2AD <AB ,则3S 1>2S 2D .若2AD <AB ,则3S 1<2S 210.计算(1-1x )÷221x x x-+的结果是( )A .x -1B .11x - C .1x x - D .1x x- 二、填空题(本大题共6个小题,每小题3分,共18分) 11.分解因式:2a 4﹣4a 2+2=_____.12.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.13.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.14.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下: 种子粒数 100 400 800 1 000 2 000 5 000 发芽种子粒数 85 318 652 793 1 604 4 005 发芽频率0.8500.7950.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).15.有一组数据:3,a ,4,6,7,它们的平均数是5,则a =_____,这组数据的方差是_____.16.在平面直角坐标系中,抛物线y=x 2+x+2上有一动点P ,直线y=﹣x ﹣2上有一动线段AB ,当P 点坐标为_____时,△PAB 的面积最小.三、解答题(共8题,共72分) 17.(8分)计算:8﹣|﹣2|+(13)﹣1﹣2cos45°18.(8分)如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,DG ⊥AC 于点G ,交AB 的延长线于点F .(1)求证:直线FG 是⊙O 的切线; (2)若AC=10,cosA=,求CG 的长. 19.(8分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C 的半径为5,P 为C 上一动点.()1点B ,C 的坐标分别为B(______),C(______); ()2是否存在点P ,使得PBC 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由;()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.20.(8分)在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.写出乙同学在数据整理或绘图过程中的错误(写出一个即可);甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为;该班学生的身高数据的中位数是;假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?21.(8分)阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).22.(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.23.(12分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.24.已知反比例函数的图象经过三个点A (﹣4,﹣3),B (2m ,y 1),C (6m ,y 2),其中m >1. (1)当y 1﹣y 2=4时,求m 的值;(2)如图,过点B 、C 分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上,若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).参考答案一、选择题(共10小题,每小题3分,共30分) 1、B 【解题分析】根据统计图中的数据可以求得本班的学生数,从而可以求得该班这些学生一周锻炼时间的中位数,本题得以解决. 【题目详解】 由统计图可得,本班学生有:6+9+10+8+7=40(人),该班这些学生一周锻炼时间的中位数是:11,故选B.【题目点拨】本题考查折线统计图、中位数,解答本题的关键是明确题意,会求一组数据的中位数.2、A【解题分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【题目详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.3、B【解题分析】根据相反数的的定义解答即可.【题目详解】根据a的相反数为-a即可得,1 1.故选B.【题目点拨】本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.4、B【解题分析】连接OA 、OB ,利用正方形的性质得出OA=ABcos45°=22,根据阴影部分的面积=S ⊙O -S 正方形ABCD 列式计算可得. 【题目详解】 解:连接OA 、OB ,∵四边形ABCD 是正方形, ∴∠AOB=90°,∠OAB=45°, ∴OA=ABcos45°=4×222 所以阴影部分的面积=S ⊙O -S 正方形ABCD =π×(22-4×4=8π-1. 故选B . 【题目点拨】本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式. 5、D 【解题分析】试题分析:A 、选举中,人们通常最关心的数据为出现次数最多的数,所以A 选项的说法正确;B 、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B 选项的说法正确;C 、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,所以C 选项的说法正确;D 、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D 选项的说法错误. 故选D .考点:随机事件发生的可能性(概率)的计算方法 6、B 【解题分析】80万亿用科学记数法表示为8×1. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.7、A【解题分析】根据三角形中位线定理判断即可.【题目详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、B【解题分析】利用条形统计图结合中位数和中位数的定义分别分析得出答案.【题目详解】①由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),45×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),∴0.355×100%=7%≠5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120-150之间,故此选项错误;④该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B.【题目点拨】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键.9、D 【解题分析】根据题意判定△ADE ∽△ABC ,由相似三角形的面积之比等于相似比的平方解答. 【题目详解】∵如图,在△ABC 中,DE ∥BC ,∴△ADE ∽△ABC ,∴2112BDES AD S S SAB=++(), ∴若1AD >AB ,即12AD AB >时,11214BDES S S S ++>, 此时3S 1>S 1+S △BDE ,而S 1+S △BDE <1S 1.但是不能确定3S 1与1S 1的大小, 故选项A 不符合题意,选项B 不符合题意. 若1AD <AB ,即12AD AB <时,11214BDES S S S ++<, 此时3S 1<S 1+S △BDE <1S 1,故选项C 不符合题意,选项D 符合题意. 故选D . 【题目点拨】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形. 10、B 【解题分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得. 【题目详解】解:原式=(x x -1x )÷()2x 1x-=x 1x -•()2x x 1-=1x 1-,故选B .【题目点拨】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.二、填空题(本大题共6个小题,每小题3分,共18分)11、1(a +1)1(a ﹣1)1.【解题分析】原式提取公因式,再利用完全平方公式分解即可.【题目详解】解:原式=1(a 4﹣1a 1+1)=1(a 1﹣1)1=1(a +1)1(a ﹣1)1,故答案为:1(a +1)1(a ﹣1)1【题目点拨】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式.12、50【解题分析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【题目详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【题目点拨】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.13、11【解题分析】根据无理数的性质,得出接近无理数的整数,即可得出a ,b 的值,即可得出答案.【题目详解】∵a <b ,a 、b 为两个连续的整数,∴a =5,b =6,∴a +b =11.故答案为11.【题目点拨】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.14、1.2【解题分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【题目详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【题目点拨】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.15、5 1.【解题分析】∵一组数据:3,a ,4,6,7,它们的平均数是5,∴346755a ++++=⨯,解得,5a =, ∴2222221[(35)(55)(45)(65)(75)]5s =-+-+-+-+-=1. 故答案为5,1.16、(-1,2)【解题分析】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P 点,然后求得平移后的直线,联立方程,解方程即可.【题目详解】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P 点,设平移后的直线为y=-x-2+b ,∵直线y=-x-2+b 与抛物线y=x 2+x+2相切,∴x 2+x+2=-x-2+b ,即x 2+2x+4-b=0,则△=4-4(4-b )=0,∴b=3,∴平移后的直线为y=-x+1,解212y x y x x -+⎧⎨++⎩==得x=-1,y=2, ∴P 点坐标为(-1,2),故答案为(-1,2).【题目点拨】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P 点是解题的关键.三、解答题(共8题,共72分)17、2+1 【解题分析】 分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案. 详解:原式=22﹣2+3﹣2×22=22+1﹣2=2+1.点睛:本题主要考查了实数运算,正确化简各数是解题的关键.18、(3)证明见试题解析;(3)3.【解题分析】试题分析:(3)先得出OD ∥AC ,有∠ODG=∠DGC ,再由DG ⊥AC ,得到∠DGC=90°,∠ODG=90°,得出OD ⊥FG ,即可得出直线FG 是⊙O 的切线.(3)先得出△ODF ∽△AGF ,再由cosA=,得出cos ∠DOF=;然后求出OF 、AF 的值,即可求出AG 、CG 的值.试题解析:(3)如图3,连接OD ,∵AB=AC ,∴∠C=∠ABC ,∵OD=OB ,∴∠ABC=∠ODB ,∴∠ODB=∠C ,∴OD ∥AC ,∴∠ODG=∠DGC ,∵DG ⊥AC ,∴∠DGC=90°,∴∠ODG=90°,∴OD ⊥FG ,∵OD 是⊙O 的半径,∴直线FG 是⊙O 的切线;(3)如图3,∵AB=AC=30,AB 是⊙O 的直径,∴OA=OD=30÷3=5,由(3),可得:OD ⊥FG ,OD ∥AC ,∴∠ODF=90°,∠DOF=∠A ,在△ODF 和△AGF 中,∵∠DOF=∠A ,∠F=∠F ,∴△ODF ∽△AGF ,∴,∵cosA=,∴cos ∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC ﹣AG=30﹣7=3,即CG 的长是3.考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.19、(1)B (1,0),C (0,﹣4);(2)点P 的坐标为:(﹣1,﹣2)或(115,225-4535﹣4)或(﹣4535﹣4);(155+ 【解题分析】试题分析:(1)在抛物线解析式中令y =0可求得B 点坐标,令x =0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC =5,BP 2的值,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP = =2,设OC =P 2E =2x ,CP 2=OE =x ,得到BE =1﹣x ,CF =2x ﹣4,于是得到FP 2,EP 2的值,求得P 2的坐标,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP ,由OB =OA ,BE =EP ,推出OE =12AP ,可知当AP 最大时,OE 的值最大. 试题解析:(1)在2449y x =-中,令y =0,则x =±1,令x =0,则y =﹣4,∴B (1,0),C (0,﹣4); 故答案为1,0;0,﹣4;(2)存在点P ,使得△PBC 为直角三角形,分两种情况:①当PB 与⊙相切时,△PBC 为直角三角形,如图(2)a ,连接BC ,∵OB =1.OC =4,∴BC =5,∵CP 2⊥BP 2,CP 25∴BP 2=25,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP ==2,设OC =P 2E =2x ,CP 2=OE =x ,∴BE =1﹣x ,CF =2x ﹣4,∴324BE x CF x -=- =2,∴x =115,2x =225,∴FP 2=115,EP 2=225,∴P 2(115,﹣225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2); ②当BC ⊥PC 时,△PBC 为直角三角形,过P 4作P 4H ⊥y 轴于H ,则△BOC ∽△CHP 4,∴44P H P C CH OB OC BC == =55,∴CH =355,P 4H =455,∴P 4(455,﹣355﹣4); 同理P 1(﹣455,355﹣4); 综上所述:点P 的坐标为:(﹣1,﹣2)或(115,225-)或(455,﹣355﹣4)或(﹣455,355﹣4); (1)如图(1),连接AP ,∵OB =OA ,BE =EP ,∴OE =12AP ,∴当AP 最大时,OE 的值最大,∵当P 在AC 的延长线上时,AP 的值最大,最大值=55+,∴OE 的最大值为552+.故答案为552+.20、 (1) 乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一);(2)120°;(3)160或1;(4)35. 【解题分析】 (1)对比图①与图②,找出图②中与图①不相同的地方;(2)则159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.【题目详解】解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一) (2)根据频数分布直方图中每一组内的频数总和等于总数据个数;将甲的数据相加可得10+15+20+10+5=60;由题意可知159.5﹣164.5这一部分所对应的人数为20人,所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,故答案为120°;(3)根据中位数的求法,将甲的数据从小到大依次排列,可得第30与31名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160或1.故答案为160或1;(4)列树状图得:P(一男一女)=1220=35.21、(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解题分析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC ,∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM ,∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF ,∴∠MCD=∠ACF ,∴∠FCM=∠ACB=∠ABC ,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF ,∵CF=CF ,CG=CM ,∴△CFG ≌△CFM ,∴FG=FM ,∵ED=DM ,DF ⊥EM ,∴FE=FM=FG ,∵AE=AG ,AF=AF ,∴△AFE ≌△AFG ,∴∠EAF=∠FAG=12m°. 点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.22、(1)D (2,2);(2)22,0M a ⎛⎫-⎪⎝⎭;(3)1【解题分析】(1)令x=0求出A 的坐标,根据顶点坐标公式或配方法求出顶点B 的坐标、对称轴直线,根据点A 与点D 关于对称轴对称,确定D 点坐标.(2)根据点B 、D 的坐标用待定系数法求出直线BD 的解析式,令y=0,即可求得M 点的坐标.(3)根据点A 、B 的坐标用待定系数法求出直线AB 的解析式,求直线OD 的解析式,进而求出交点N 的坐标,得到ON 的长.过A 点作AE ⊥OD ,可证△AOE 为等腰直角三角形,根据OA=2,可求得AE 、OE 的长,表示出EN 的长.根据tan ∠OMB=tan ∠ONA ,得到比例式,代入数值即可求得a 的值.【题目详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+- ∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得:2{22a k b k b -=+=+ ,解得:{22k a b a==- ∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a- ∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭ (3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得:2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形.∵OA=2∴21a +)11a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a ---=,BE=2-a ∵∠OMB=∠ONA∴tan∠OMB=tan∠ONA∴AE BEEN CM=,即222121aaaaa-=--⎛⎫⎪+⎝⎭解得:a=12+或a12=-∵抛物线开口向下,故a<0,∴ a=12+舍去,a12=-【题目点拨】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.23、(1)证明见解析;(2)-2.【解题分析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.24、(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解题分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,1),点P 在x轴上,即可求出点P的坐标.【题目详解】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=,∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,1),点P在x轴上,∴点P坐标为(﹣2m,1)或(6m,1).【题目点拨】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.。

广西河池市中考数学试题(word版,含答案)

广西河池市中考数学试题(word版,含答案)

2019年中考数学试题(广西河池卷)(本试卷满分120分,考试时间120分钟)1.在一2,— 1,1 , 2这四个数中,最小的是【考生7. 下列运算正确的是【、选择题(本大题共 12小题,每小题3分,共 36分。

)每小题都给出代号为D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷上将选定的答案代号涂黑。

2.如图,直线a // b ,直线c 与a 、b 相交,/1 = 70 ,则/ 2的大小是【A . 20 °B . 50 °C . 70D . 110°4 . 2019年河池市初中毕业升学考试的考生人数约为 3.2万名,从中抽取 300名考生的数学成绩进行分析,在本次调查中,样本指的是【 A . 300名考生的数学成绩B . 300C . 3.2万名考生的数学成绩D . 300 名5.把不等式组[x > 一1x <1的解集表示在数轴上,正确的是【a__.__cD .'6. 一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长 是【 】A . 6cmB . 12cmC . 18cmD . 36cm3.如图所示的几何体,其主视图是【3x8.如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

将△ ACB 绕点C 按顺时针方向旋转到UACB •的位置,其中AC 交直线AD 于点E , AB •分别交直线AD 、AC 于 点F 、G ,则在图(2)中,全等三角形共有 【】 A . 5对B . 4对C . 3对D . 2对9. 如图,O O 的弦AB 垂直半径 OC 于点D ,/ CBA = 30 ° OC = 3J 3cm ,则弦AB 的长 为【 】9 3A . 9cmB . 3v3 cmC . — cmD . ----------------- cm2210.如图,AB 为O O 的直径,C 为O O 外一点,过点 C 作的O O 切线,切点为 B ,连结AC交O O 于D ,/ C = 38°点E 在AB 右侧的半圆上运动(不与 A 、B 重合),则/ AED 的大 小是【】11. 如图,在直角梯形 ABCD 中,AB=2 , BC=4 , AD=6 , M 是CD 的中点,点 P 在直角梯 形的边上沿 A T B T C ^M 运动,则厶APM 的面积y 与点P 经过的路程x 之间的函数关系用 图象表示是【】12.已知二次函数 y - -x 2 • 3x --,当自变量x 取m 对应的函数值大于0,设自变量分别 5取m — 3, m + 3时对应的函数值为 y !, 丫2,则【】A . y i > 0, y 2>0B . y i >0, y 2 v 0C . y i < 0, y 2>0D . y i v0, y 2< 0A . x 2 x 3 =x 5=X 8C . x 6 -■x 2A . 19 °B . 38 °C . 52°D . 76y 54 3 21C二、填空题(本大题共6小题,每小题3分,共18分。

广西河池市中考数学真题试题(含解析)

广西河池市中考数学真题试题(含解析)

广西河池市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.计算3-4,结果是()A. B. C. 1 D. 72.如图,∠ = 20°,要使a∥b,则∠2的大小是()A. 0B. 0C. 00D. 203.下列式子中,为最简二次根式的是()A.2B. 2C.D. 24.某几何体的三视图如图所示,该几何体是()A. 圆锥B. 圆柱C. 三棱锥D. 球5.不等式组22的解集是()A. 2B.C. 2D. 26.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A. 53,53B. 53,56C. 56,53D. 56,567.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠ ∠B. ∠ ∠C.D.8.函数y=x-2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 410.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A. 1B. 2C.D. 211.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. 0B. 20C. 2 0D. 012.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)的解为______.13.分式方程214.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=______.15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是______.16.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB= °,则∠P=______°.17.如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是______.18.a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是______.三、计算题(本大题共1小题,共6.0分)19.计算:30+-()-2+|-3|.2四、解答题(本大题共7小题,共60.0分)20.分解因式:(x-1)2+2(x-5).21.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.22.如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东 0°方向上,向东前进120m到达C点,测得A在北偏东 0°方向上,求河的宽度(精确到0.1m).参考数据:2≈ . ,≈ . 2.23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?25.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F= 5°,求CF的长.26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=2与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.答案和解析1.【答案】A【解析】解:3-4=-1.故选:A.有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.【答案】D【解析】解:如果∠2=∠ = 20°,那么a∥b.所以要使a∥b,则∠2的大小是 20°.故选:D.根据同位角相等,两直线平行即可求解.本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.【答案】B【解析】解:A、原式=,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2,不符合题意;故选:B.利用最简二次根式定义判断即可.此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.【答案】A【解析】解:由已知三视图得到几何体是以圆锥;故选:A.由已知三视图得到几何体是圆锥.本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.【答案】D【解析】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】D【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.根据众数和中位数的定义求解可得.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.【答案】B【解析】解:一次函数y=x-2,∵k=1>0,∴函数图象经过第一三象限,∵b=-2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k <0,函数经过第二、四象限.9.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AB∥BC,AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BFC=∠AEB,∴∠BFC=∠ABF,故图中与∠AEB相等的角的个数是2.故选:B.根据正方形的性质,利用SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠AEB,进一步得到∠BFC=∠ABF,从而求解.本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,∴∠ABC= 20°,∠BAC=∠BCA= 0°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,即∠ABC= 20°,∠BAC=∠BCA= 0°,于是AG=AC=,AB=2,本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.【答案】C【解析】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2-4ac>0,故本选项正确,不符合题意;C、由对称轴为x=-=1,得2a=-b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(-1,0),所以a-b+c=0,故本选项正确,不符合题意.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.【答案】B【解析】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B 符合题意,选项A不合题意.本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.【答案】x=3【解析】解:去分母得:x-2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】25【解析】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.直接利用位似图形的性质进而分析得出答案.此题主要考查了位似变换,正确得出对应边的比值是解题关键.15.【答案】2【解析】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是=,故答案为:.利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.此题主要考查了概率公式,关键是掌握概率的计算方法.16.【答案】76【解析】解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°-∠OAB=90°- °=52°,∴∠P= 0°-52°-52°= °;故答案为:76.由切线的性质得出PA=PB,PA⊥OA,得出∠PAB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠PAB=90°-∠OAB=52°,再由三角形内角和定理即可得出结果.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.17.【答案】y=2x-4【解析】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x-4.故答案为:y=2x-4.过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.18.【答案】6【解析】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵20 9÷ = ,因此a2017=a3=6.故答案为:6.由任意三个相邻数之和都是15,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.此题主要考查了规律型:数字的变化类,关键是找出第1、4、 …个数之间的关系,第2、5、 …个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.19.【答案】解:原式=1+22-4+3=22【解析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).【解析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.此题主要考查了公式法分解因式,正确运用公式是解题关键.21.【答案】解:(1)如图所示;AC.(2)OE∥AC,OE=2理由如下:∵AD平分∠BAC,∠BAC,∴∠BAD=2∠BOD,∵∠BAD=2∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,AC.∴OE∥AC,OE=2【解析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.【答案】解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan 0°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan 0°=AD.∴BC =BD -CD =2AD =120, ∴AD =103.9.∴河的宽度为103.9米.【解析】过点A 作AD ⊥直线BC ,垂足为点D ,在Rt △ABD 和Rt △ACD 中,通过解直角三角形可求出BD ,CD 的长,结合BC=BD-CD=120,即可求出AD 的长.本题考查了解直角三角形的应用-方向角问题,利用解直角三角形结合BC=BD-CD=120,找出关于AD 的长的一元一次方程是解题的关键.23.【答案】解:(1)本次调查的样本容量 0÷ 0%= 00(人),b =100-10-30-20=40(人),a = 0÷ 00= 0%,c =20÷ 00=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人)答:估计该校参加音乐兴趣班的学生400人.【解析】(1)本次调查的样本容量 0÷ 0%= 00(人),b=100-10-30-20=40(人),a= 0÷ 00= 0%,c=20÷ 00=20%;(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人).本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.【答案】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:0 0 20 0 50 0, 解得:, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:( 00× + 00× )× 0=1800, 解得:x =9,答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.【答案】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,∠ ∠∠ ∠ ,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F= 5°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=2OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD= 0°,∴∠OBH= 0°,∴OH=2OB=1,∴OG=2,∴CF=CG=OC+OG=2+2.【解析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH= 0°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y= 2.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=-x+8,∵C,C′关于BD对称,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,2).∴C′(0,2(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.综上所述,满足条件的m的值为3或12.【解析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

2020年广西河池中考数学试卷附答案解析版

2020年广西河池中考数学试卷附答案解析版

() D.20 元
()

A.同位角
C.同旁内角
题 3. 若 y 2x 有意义,则 x 的取值范围是
A. x>0
B. x≥0
4.下列运算,正确的是
A. aa a2

C. 2a a a
5.下列立体图形中,主视图为矩形的是
B.内错角 D.邻补角
C. x>2
B. a2 3 a3
D.a2 a 3a
毕业学校
姓名
考生号
绝密★启用前

2020 年广西省河池市初中学业水平考试
数学
注意:

1. 本试题卷分第Ⅰ卷和第Ⅱ卷,满分为 120 分,考试用时 120 分钟。
2. 考试必须在答题卡上作答,在.本.试.题.卷.上.作.答.无.效.。考试结束,将本试题卷和答
题卡一并交回。
第Ⅰ卷(选择题,共 36 分)
OE 的长是
.
三、解答题(本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或
运算步骤.请将解答写在答题卡上对应的答题区域内。) 19.(6 分)计算: (3)0 8 (3)2 4 2 .
2 20.(6 分)先化简,再计算: a2 a 1 ,其中a 2 .
a2 2a 1 a 1


23.(8 分)某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了 50
名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累

计了 40 名参赛学生的成绩,余下 10 名参赛学生的成绩尚未累计,这 10 名学生成绩
如下(单位:分):75,63,76,87,69,78,82,75,63,71.
.

广西河池市中考数学试题含答案

广西河池市中考数学试题含答案

广西河池市中考数学试题一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷将选定的答案代号涂黑.1.(3分)﹣3的绝对值是( )A .﹣3B .13-C .13D .3 2.(3分)如图,AB ∥CD ,CB ⊥DB ,∠D =65°,则∠ABC 的大小是( )A .25°B .35°C .50°D .65°3.(3分)下列计算,正确的是( )A .3412x x x ⋅=B .336()x x =C .22(3)9x x = D .22x x x ÷=4.(3分)一个几何体的三视图如图所示,这个几何体是( )A .棱柱B .圆柱C .圆锥D .球5.(3分)下列事件是必然事件的为( ) A .明天太阳从西方升起B .掷一枚硬币,正面朝上C .打开电视机,正在播放 “河池新闻”D .任意一个三角形,它的内角和等于180°6.(3分)不等式组21521x x +≤⎧⎨+>⎩的解集是( ) A .﹣1<x <2 B .1<x ≤2 C .﹣1<x ≤2 D .﹣1<x ≤37.(3分)下列方程有两个相等的实数根的是( )A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=8.(3分)将抛物线2y x =向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--9.(3分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD =48°,则∠BAC 的大小是( )A .60°B .48°C .30°D .24°10.(3分)如图,用一张半径为24cm 的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm ,那么这张扇形纸板的面积是( )A .240πcm 2B .480πcm 2C .1200πcm 2D .2400πcm 211.(3分)反比例函数1m y x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >212.(3分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A.6 B.8 C.10 D.12二、填空题(本大题共6小题,每小题3分,满分18分)请把答案填在答题卷指定的位置上.13.(3分)计算:1273⨯= .14.(3分)如图,在△ABC中,D.E分别是AB、AC的中点,若BC=10,则DE= .15.(3分)方程233x x=-的解是.16.(3分)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有人.17.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A ′的坐标是.18.(3分)如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则11AM AN+= .三、解答题(本大题共8小题,满分66分)请在答题卷指定的位置上写出解答过程.19.(6分)计算:1292cos60--++-.20.(6分)先化简,再求值:2(3)(3)(1)x x x -+++,其中2x =.21.(8分)如图,在△ABC 中,∠ACB =90°,AC =BC =AD .(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.22.(8分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?23.(8分)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a = ,b = ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.24.(8分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y (元)关于购买量x (盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?25.(10分)如图,AB 为⊙O 的直径,CO ⊥AB 于O ,D 在⊙O 上,连接BD ,CD ,延长CD 与AB 的延长线交于E ,F 在BE 上,且FD =FE .(1)求证:FD 是⊙O 的切线;(2)若AF =8,tan ∠BDF =14,求EF 的长.26.(12分)如图1,抛物线223y x x =-++与x 轴交于A ,B ,与y 轴交于C ,抛物线的顶点为D ,直线l 过C 交x 轴于E (4,0).(1)写出D 的坐标和直线l 的解析式;(2)P (x ,y )是线段BD 上的动点(不与B ,D 重合),PF ⊥x 轴于F ,设四边形OFPC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点Q 在x 轴的正半轴上运动,过Q 作y 轴的平行线,交直线l 于M ,交抛物线于N ,连接CN ,将△CMN 沿CN 翻转,M 的对应点为M ′.在图2中探究:是否存在点Q ,使得M ′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.河池数学中考试题答案第Ⅰ卷(选择题,共36分)一、选择题(本题共12小题,每小题3分,共36分)1. D2. A3. C4. B5. D6. C7. C8. B 9. D 10. A 11. B 12. A二.填空题(本大题共6小题,每小题3分,共18分) 13. 3 . 14. 5 .15. 9 .16. 800 .17. (5,2) .18. 1 .三.解答题(本大题共8小题,满分66分)19. 解:原式=2+3+12-12=5 20.解:原式=9-x 2+1+2x+x 2=2x+10当x=2时,原式=2×2+10=1421.解:(1)(2)作图如下(3)△ACE ≌△ADE,△ACE ≌△CFB证明:△ACE ≌△ADE∵AE 是∠A 的平分线,∴∠CAE=∠DAE,又AC=AD,AE 为公共边,∴△ACE≌△ADE(SAS).22·解:(1)设第一次购进电风扇x台,则第二次购进x-10台,由题意可得:150x=180(x-10),解得x=60,所以第一次购进电风扇60台,则第二次购进50台.(2)商场获利为:(250-150)·60+(250-180)·50=9500(元)所以当商场以250元/台的售价卖完这两批电风扇,商场获利9500元.23.解:(1)众数是一组数据中出现最多的数,所以a=8;b=10+6+6+9+10+4+5+7+10+810=7.5.(2)①一班的平均分比二班高,所以一班成绩比二班号;②一班学生得分的方差比二班小,说明一班成绩比二班好.(3)1男1女两位同学的概率P=36=12.24.解:(1)太阳花:y=6x;10x(0≤x≤20)绣球花:y= ;200+8(x-20)(20<x)(2)设购买绣球花x盆,则购买太阳花90-x盆.根据题意可得:90-x≤x2,解得60≤x≤90,结合(1)中的结果,y总=6·(90-x)+200+8(x-20),得y总=2x+580,当x=60时,即购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.答: 购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.25. (1)证明:连接OD,∵CO⊥AB,∴∠E+∠C=90°,∵∠DFO为△EFD的外角,且FD=FE,∠ODC为△EOD的外角,且OD=OC,∴∠DFO=∠E+∠EDF=2∠E,∠DOF+∠E=∠ODC=∠C,得∠DOF+∠E+∠DFO=∠C+2∠E,即∠DOF+∠DFO=∠C+∠E=90°,∴FD是⊙O的切线.(2)解:连接AD,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD ∽△FDA, ∴DF AF =BD AD , 在Rt △ABD 中,tan ∠A=tan ∠BDF=BD AD =14,∴DF 8=14,∴DF=2,∴EF=2.26、【答案】(1)D (1,4),334y x =-+;(2)S =292x x -+(13x ≤≤),S 最大值为8116;(3)Q 的坐标为(32,0)或(4,0).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.分类讨论;5.存在型;6.压轴题.。

2024年广西中考数学试题(解析版)

2024年广西中考数学试题(解析版)

2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是()A. B. C. D.【答案】A 【解析】【分析】本题考查了温度的比较以及正负数的概念,熟悉掌握概念是解决本题的关键.0℃以下记为负数,0℃以上记为正数,温度都小于0℃时,绝对值最大的,温度最低.【详解】解:∵ 4.6 4.6-=, 3.2 3.2-=,4.6 3.2>,∴ 4.6 3.2 5.88.1-<-<<,∴气温最低的是北京.故选:A.2.端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是()A. B. C. D.【答案】B 【解析】【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A.不是轴对称图形,故不符合题意;B.是轴对称图形,故符合题意;C.不是轴对称图形,故不符合题意;D.不是轴对称图形,故不符合题意;故你:B.3.广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为()A.90.84910⨯B.88.4910⨯ C.784.910⨯ D.684910⨯【答案】B 【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,na a n ⨯≤<为整数,进行表示即可.【详解】解:88490000008.4910=⨯;故选B.4.榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5.不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A.1B.13C.12D.23【答案】D 【解析】【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有213+=种等可能的结果,其中取出白球的情况有2种,∴23P =;故选D.6.如图,2时整,钟表的时针和分针所成的锐角为()A.20︒B.40︒C.60︒D.80︒【答案】C 【解析】【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C.7.如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为()A.()3,0 B.()0,2 C.()3,2 D.()1,2【答案】C【解析】【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 的坐标为()3,2,故选:C.8.激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为()A.53102d t⨯= B.5310d t=⨯ C.52310d t=⨯⨯ D.6310d t=⨯【答案】A 【解析】【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:55131031022d t t =⨯⨯=⨯⋅,故选:A.9.已知点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,若120x x <<,则有()A.120y y <<B.210y y << C.120y y << D.120y y <<【答案】A 【解析】【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点()11,M x y ,()22,N x y 在反比例函数图象上,则满足关系式2y x=,横纵坐标的积等于2,结合120x x <<即可得出答案.【详解】解: 点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,∴112x y =,222x y =,120x x <<,∴10y <,20y >,∴120y y <<.故选:A.10.如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A.0B.1C.4D.9【答案】D 【解析】【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b++=++()2ab a b =+213=⨯9=;故选D.11.《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为()A.1345x x x ++= B.100345x x x++=C.3451x x x ++= D.345100x x x ++=【答案】B 【解析】【分析】本题考查了一元一次方程的应用,根据“第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱”列方程即可.【详解】解:根据题意,得100345x x x++=,故选:B.12.如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为()A.1B.2C.5D.10【答案】C 【解析】【分析】先证明四边形AECG 是平行四边形,得出AG CE ∥,同理AF BH ∥,则可证四边形MNPQ 是平行四边形,利用平行线分线段成比例可得出DQ PQ =,AM QM =,证明()SAS ADG BAH ≌得出DAG ABH ∠=∠,则可得出90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,得出平行四边形MNPQ 是矩形,证明()AAS ADQ BAM ≌,得出DQ AM =,进而得出DQ AM PQ QM ===,得出矩形MNPQ 是正方形,在Rt ADQ △中,利用勾股定理求出25QM =,然后利用正方形的面积公式求解即可.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别为各边中点,∴12CG DG CD AH ===,12AE AB =,∴DG CG AE ==,∴四边形AECG 是平行四边形,∴AG CE ∥,同理DF BH ,∴四边形MNPQ 是平行四边形,∵AG CE ∥,∴1DQ DGPQ CG==,∴DQ PQ =,同理AM QM =,∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =,∴()SAS ADG BAH ≌,∴DAG ABH ∠=∠,∵90DAG GAB ∠+∠=︒,∴90ABH GAB ∠+∠=︒,∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =,∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C.【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13.已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.【答案】35【解析】【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14.大的整数是__.【答案】2(答案不唯一)【解析】【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.的大小,再找出符合条件的整数即可.【详解】解:134<< ,12∴<<,∴符合条件的数可以是:2(答案不唯一).故答案为:2.15.八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.【答案】80【解析】【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16.不等式7551x x +<+的解集为______.【答案】<2x -【解析】【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17.如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm.【答案】【解析】【分析】本题考查了平行四边形的判定,菱形的判定和性质,菱形的周长,过点A 作AM BC ⊥于M ,AN CD ⊥于N ,由题意易得四边形ABCD 是平行四边形,进而由平行四边形的面积可得AM AN =,即可得到四边形ABCD 是菱形,再解Rt ADN △可得sin 60ANAD ==︒,即可求解,得出四边形ABCD 是菱形是解题的关键.【详解】解:过点A 作AM BC ⊥于M ,AN CD ⊥于N ,则90AND ∠=︒,∵两张纸条的对边平行,∴AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,又∵两张纸条的宽度相等,∴AM AN =,∵··ABCD S BC AM CD AN == ,∴BC CD =,∴四边形ABCD 是菱形,在Rt ADN △中,60ADN ∠=︒,3cm AN =,∴sin 6032AN AD ===︒,∴四边形ABCD的周长为4=,故答案为:18.如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .【答案】353【解析】【分析】本题考查的是二次函数的实际应用,设抛物线为()254y a x =-+,把点70,4⎛⎫⎪⎝⎭,代入即可求出解析式;当0y =时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=,解得:9100a =-,∴抛物线解析式为:()2954100y x =--+;当0y =时,()29540100x --+=,解得,153x =-(舍去),2353x =,即此次实心球被推出的水平距离OM 为35m 3.故答案为:353三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19.计算:()()2342-⨯+-【答案】8-【解析】【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20.解方程组:2321x y x y +=⎧⎨-=⎩【答案】212x y =⎧⎪⎨=⎪⎩【解析】【分析】本题考查的是二元一次方程组的解法,直接利用加减消元法解方程组即可.【详解】解:2321x y x y +=⎧⎨-=⎩①②,+①②得:24=x ,解得:2x =,把2x =代入①得:12y =,∴方程组的解为:212x y =⎧⎪⎨=⎪⎩.21.某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.【答案】(1)众数为1、中位数为2、平均数为1.9(2)估计为“优秀”等级的女生约为50人【解析】【分析】(1)根据平均数、中位数、众数的定义求解即可;(2)算出样本的优秀率,再估计总体的优秀人数.【小问1详解】解:女生进球数的平均数为()1011826334151 1.920⨯⨯+⨯+⨯+⨯+⨯+⨯=(个),女生进球数的中位数是第10个和第11个成绩的平均数,即2222+=(个),女生进球个数为1个的人最多,故众数是1个;【小问2详解】解:3112005020++⨯=(人),答:估计为“优秀”等级的女生约为50人.【点睛】本题考查了中位数,众数,平均数,用样本件估计总体,掌握中位数,平均数、众数的定义以及优秀率的求法是解题的关键.22.如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.【答案】(1)见详解(2)【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 为半径画弧,分别交AB ,AC 于点D ,E,作直线DE ,则直线l 即为所求.(2)连接BE ,由线段垂直平分线的性质可得出BE AE =,由等边对等角可得出45EBA A ∠=∠=︒,由三角形内角和得出90BEA ∠=︒,则得出ABE 为等腰直角三角形,再根据正弦的定义即可求出BE 的长.【小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE 如下图:∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,∴2sin 2BE A AB ==,∴22822BE AB =⋅=⨯=【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.23.综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【解析】【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把0.01%d =后,0.2%d =前代入0.50.5d d w=+前后,再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后得.0.50.2%0.01%05w=+⨯,解得9.5w =.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后,∴0.50.2%0.04%0.52d ⨯==+后,第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后,∴0.50.04%0.008%0.52d ⨯==+后,而0.008%0.01%<,∴进行两次漂洗,能达到洗衣目标;【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24.如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.【答案】(1)证明见解析(2)证明见解析(3)10【解析】【分析】(1)先证明BD CD =,DE EF =,再证明AEF CED △≌△,可得AF CD =,F EDC ∠=∠,再进一步解答即可;(2)如图,连接AD ,证明AD BC ⊥,可得AD 过圆心,结合∥AF BD ,证明AF AD ⊥,从而可得结论;(3)如图,过B 作BQ AC ⊥于Q ,连接OB ,设BQ 3x =,则4AQ x =,可得CQ AC AQ x =-=,求解6105x ==,可得5AB x ==18AD =,设O 半径为r ,可得18OD r =-,再利用勾股定理求解即可.【小问1详解】证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥AF BD ,∴四边形ABDF 是平行四边形;【小问2详解】证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥AF BD ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQ AQ =,设BQ 3x =,则4AQ x =,∴225AC AB AQ BQ x ==+=,∴CQ AC AQ x =-=,∴2210BC BQ CQ =+=,1012=,∴12610510x ==,∴510AB x ==∵AB AC =,12BC =,AD BC ⊥,∴6BD CD ==,∴2218AD AB BD =-=,设O 半径为r ,∴18OD r =-,∴()222186r r =-+,解得:10r =,∴O 的半径为10.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.25.课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5- 15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】【分析】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键:(1)①把4a =-代入解析式,写出函数解析式即可;②将一般式转化为顶点式,进行求解即可;(2)将一般式转化为顶点式,根据二次函数的性质进行解释即可;(3)将一般式转化为顶点式,表示出y 的最大值,再利用二次函数求最值即可.【详解】解:(1)①把4a =-代入223y x ax a =++-,得:()()22244387y x x x x =+⋅-+--=--;∴287y x x =--;②∵()2287423y x x x =--=--,∴当4x =时,y 有最小值为23-;(2)∵,∵抛物线的开口向上,∴当x a =-时,y 有最小值;∴甲的说法合理;(3)正确;∵()222233y x ax a x a a a =+-+-=++-,∴当x a =-时,y 有最小值为23a a -+-,即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭,∴当12a =时,min y 有最大值,为114-.26.如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M '①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.【答案】(1)见解析(2)①180α=︒;②120︒或240︒【解析】【分析】(1)利用线段垂直平分线的性质得出OA OC =,利用等边对等角得出A ACO ∠=∠,结合角平分线定义可得出A ACO OCB ∠=∠=∠,最后根据相似三角形的判定即可得证;(2)先求出30A ACO OCB ∠=∠=∠=︒,然后利用含30︒的直角三角形性质求出2BO =,4AO =,2MO =,利用勾股定理求出AM =AC =A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,则OM A C '''⊥,A C AC ''==,2OM OM '==,根据点到直线的距离,垂线段最短知MN MM '≤,三角形三边关系得出MN OM OM '≤+,故当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,最后根据三角形面积公式求解即可;②先利用三角形三边关系判断出MC A C '''<,MA A C '''<,则当A MC ''△为直角三角形时,只有90A MC ''∠=︒,然后分A 和C '重合,A '和C 重合,两种情况讨论即可.【小问1详解】证明:∵MO 垂直平分AC ,∴OA OC =,∴A ACO ∠=∠,∵CO 平分ACB∠∴ACO OCB ∠=∠,∴A OCB ∠=∠,又B B ∠=∠;∴ABC CBO △∽△;【小问2详解】解:①∵90B Ð=°,∴90A ACO OCB ∠+∠+∠=︒,∴30A ACO OCB ∠=∠=∠=︒,∴1122BO CO AO ==,又6AB AO BO =+=,∴2BO =,4AO =,∵MO 垂直平分AC ,∴122OM AO ==,2AC AM =,∴AM ==,∴AC =取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,∴OM A C '''⊥,43A C AC ''==,2OM OM '==,根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,∴A MC ''△面积的最大值为143432⨯=;②∵246MC MO OC ''≤+=+=,43A C ''=,∴MC A C '''<,同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒,当A 和C '重合时,如图,∵AOC A OA'≌ ∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒,∴120A OA '∠=︒,∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。

2021年广西河池市中考数学试卷(解析版)

2021年广西河池市中考数学试卷(解析版)

2021年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

请用2B铅笔将答题卡上对应题目的答案标号涂黑。

)1.(3分)下列4个实数中,为无理数的是()A.﹣2B.0C.D.3.14【解答】解:A.﹣2是整数,属于有理数,故本选项不合题意;B.0是整数,属于有理数,故本选项不合题意;C.是无理数,故本选项符合题意;D.3.14有限小数,属于有理数,故本选项不合题意;故选:C.2.(3分)下列各式中,与2a2b为同类项的是()A.﹣2a2b B.﹣2ab C.2ab2D.2a2【解答】解:2a2b中含有两个字母:a、b,且a的指数是2,b的指数是1,观察选项,与2a2b是同类项的是﹣2a2b.故选:A.3.(3分)如图是由几个小正方体组成的几何体,它的左视图是()A.B.C.D.【解答】解:从左边看,是一列3个小正方形.故选:A.4.(3分)如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是()A.90°B.80°C.60°D.40°【解答】解:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选:B.5.(3分)关于x的一元一次不等式组的解集如图所示,则它的解集是()A.x>1B.x≥1C.x>3D.x≥3【解答】解:由数轴知x>3,故选:C.6.(3分)下列因式分解正确的是()A.a2+b2=(a+b)2B.a2+2ab+b2=(a﹣b)2C.a2﹣a=a(a+1)D.a2﹣b2=(a+b)(a﹣b)【解答】解:A.a2+b2无法分解因式,故此选项不合题意;B.a2+2ab+b2=(a+b)2,故此选项不合题意;C.a2﹣a=a(a﹣1),故此选项不合题意;D.a2﹣b2=(a+b)(a﹣b),故此选项符合题意.故选:D.7.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既是轴对称图形,又是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.8.(3分)甲、乙、丙、丁4名同学参加跳远测试各10次,他们的平均成绩及其方差如表:测试者平均成绩(单位:m)方差甲 6.20.32乙 6.00.58丙 5.80.12丁 6.20.25若从其中选出1名成绩好且发挥稳定的同学参加学校运动会,则应选()A.甲B.乙C.丙D.丁【解答】解:∵甲和丁的平均数比乙和丙的平均数大,∴甲和丁的成绩较好,∵S丁2<S甲2,∴丁的成绩比甲要稳定,∴这四位同学中,成绩较好,且发挥稳定的是丁.故选:D.9.(3分)已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC 【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.10.(3分)关于x的一元二次方程x2+mx﹣m﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数由m的值确定【解答】解:∵Δ=m2﹣4(﹣m﹣2)=m2+4m+8=(m+2)2+4>0,∴方程有两个不相等的实数根.故选:A.11.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法中,错误的是()A.对称轴是直线x=B.当﹣1<x<2时,y<0C.a+c=b D.a+b>﹣c【解答】解:A、对称轴是直线x==,故选项A不符合题意;B、由函数图象知,当﹣1<x<2时,函数图象在x轴的下方,∴当﹣1<x<2时,y<0,故选项B不符合题意;C、由图可知:当x=﹣1时,y=a﹣b+c=0,∴a+c=b,故选项C不符合题意;D、由图可知:当x=1时,y=a+b+c<0,∴a+b<﹣c,故选项D符合题意;故选:D.12.(3分)如图,在边长为4的正方形ABCD中,点E,F分别在CD,AC上,BF⊥EF,CE=1,则AF的长是()A.B.C.D.【解答】解:过F作AB的垂线交AB于N,交CD于M,如图,∵ABCD是正方形,∴∠ABC=∠BCD=∠BNM=90°,AB=BC=CD=4,∴四边形CMNB为矩形,∴MN=BC=4,CM=BN,∵BF⊥EF,∴∠EFB=∠FNB=90°,∴∠FBN+∠NFB=∠NFB+∠EFM,∴∠FBN=∠EFM,∵四边形ABCD是正方形,∴∠ACD=45°,∴∠MFC=∠MCF=45°,∴MF=MC=NB,在△MEF与△NFB中,,∴△MFE≌△NBF(AAS),∴ME=FN,设ME=FN=x,则MC=MF=BN=1+x,∵MN=MF+FN=4,∴1+x+x=4,∴x=,∴FN=,∵四边形ABCD为正方形,MN⊥AB,∴∠NAF=∠NF A=45°,∴FN=AN,∴AF==FN=,故选:B.二、填空题(本大题共6小题,每小题3分,共18分。

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广西河池卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列各数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【答案】A.【解析】试题分析:A.﹣2<﹣1,故正确;B.0>﹣1,故本选项错误;C.1>﹣1,故本选项错误;D.2>﹣1,故本选项错误;故选A.考点:有理数大小比较.【题文】如图,AB∥CD,∠1=50°,则∠2的大小是()A.50° B.120° C.130° D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.【题文】下列四个几何体中,主视图为圆的是()评卷人得分A. B. C. D.【答案】C.【解析】试题分析:A.主视图是正方形,B.主视图是三角形,C.主视图为圆,D.主视图是矩形,故选C.考点:简单几何体的三视图.【题文】下列长度的三条线段不能组成三角形的是()A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,5【答案】A.【解析】试题分析:A.5+5=10,不能组成三角形,故此选项正确;B.4+5=9>6,能组成三角形,故此选项错误;C.4+4=8>4,能组成三角形,故此选项错误;D.4+3=7>5,能组成三角形,故此选项错误.故选A.考点:三角形三边关系.【题文】下列运算正确的是()A.2a+3b=5ab B.2(2a﹣b)=4a﹣2bC. D.【答案】B.【解析】试题分析:A.2a和3b不是同类项不能合并,故A错误;B.2(2a﹣b)=4a﹣2b,故B正确;C.,故C错误;D.,故D错误.故选B.考点:同底数幂的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方.【题文】如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B.【解析】试题分析:由①得,x>﹣2,由②得,x≤2,故此不等式组的解集为:﹣2<x≤2.故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.【题文】要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是()A.在某中学抽取200名女生B.在某中学抽取200名男生C.在某中学抽取200名学生D.在河池市中学生中随机抽取200名学生【答案】D.【解析】试题分析:要调查河池市中学生了解禁毒知识的情况,就对所有学生进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可.考虑到抽样的全面性,所以应在河池市中学生中随机抽取200名学生.故选D.考点:全面调查与抽样调查.【题文】如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABE,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,∵∠BED=150°,∴∠ABE=∠AEB=30°,∴∠A=180°﹣∠ABE﹣∠AEB=120°.故选C.考点:平行四边形的性质.【题文】二次函数的图象如图所示,则下列结论不正确的是()A.a<0 B.c>0 C.a+b+c>0 D.>0【答案】C.【解析】试题分析:A.抛物线开口方向向下,则a<0,故本选项错误;B.抛物线与y轴交于正半轴,则c>0,故本选项错误;C.当x=1时,y<0,∴a+b+c<0,故本选项正确;D.抛物线与x轴有2个交点,则>0,故本选项错误;故选C.考点:二次函数图象与系数的关系.【题文】如图,在平面直角坐标系中,D为坐标原点,点A的坐标为(1,).将线段OA绕原点0逆时针旋转30°,得到线段OB,则点B的坐标是( )A. (0,2)B. (2,0)C. (1,-)D. (-1,)【答案】A【解析】试题分析:作AC⊥x轴于点C,∵点A的坐标为(1,),∴OC=1,AC=,则OA==2,tan∠AOC==,∴∠AOC=60°,∴将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是(0,2),故选A.考点:坐标与图形变化-旋转.【题文】如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.【题文】如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P 的坐标是()A.(5,3) B.(5,4) C.(3,5) D.(4,5)【答案】D.【解析】试题分析:如图,过P作PC⊥AB于点C,过P作PD⊥x轴于点D,连接PB,∵P为圆心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8﹣2=6,∴AC=BC=3,∴OC=8﹣3=5,∵⊙P与x轴相切,∴PD=PB=OC=5,在Rt△PBC中,由勾股定理可得PC===4,∴P点坐标为(4,5),故选D.考点:切线的性质;坐标与图形性质.【题文】在函数中,自变量x的取值范围是.【答案】x≥1.【解析】试题分析:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.考点:函数自变量的取值范围.【题文】已知关于x的方程的一个根是1,则m=.【答案】2.【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=2,故答案为:2.考点:一元二次方程的解.【题文】同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.【答案】.【解析】试题分析:画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为:.考点:列表法与树状图法.【题文】如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是.【答案】40°.【解析】试题分析:∵∠ABC=50°,∴的度数为100°,∵AB为直径,∴的度数为80°,∴∠BDC=×80°=40°,故答案为:40°.考点:圆周角定理.【题文】对于实数a,b,定义运算“*”:a*b=.例如:因为4>2,所以4*2==8,则(-3)*(-2)=.【答案】-1.【解析】试题分析:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为:-1.考点:实数的运算;新定义.【题文】如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为 cm.【答案】.【解析】试题分析:过D作DH⊥BC,过点A作AN⊥BC于点N,∵AB=AC,∴∠B=∠C=30°,根据折叠可得:DF=BF,∠EDF=∠B=30°,∵AB=AC,BC=12cm,∴BN=NC=6cm,∵点B落在AC的中点D处,AN∥DH,∴NH=HC=3cm,∴DH=3tan30°=(cm),设BF=DF=xcm,则FH=12﹣x﹣3=9﹣x(cm),故在Rt△DFC中,,故,解得:x=,即BF的长为:cm.故答案为:.考点:翻折变换(折叠问题).【题文】计算:.【答案】.【解析】试题分析:根据绝对值,特殊角的三角函数值,二次根式的性质,零指数幂的意义化简即可.试题解析:原式==.考点:实数的运算;零指数幂;特殊角的三角函数值.【题文】先化简,再求值:,其中x=2.【答案】,4.【解析】试题分析:先算乘法,再算减法,最后把x的值代入进行计算即可.试题解析:原式====当x=2时,原式=4.考点:分式的化简求值.【题文】如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB=AD=BC.【解析】试题分析:(1)利用基本作图作BO⊥AC即可;(2)先利用平行线的性质得∠EAC=∠BCA,再根据角平分线的定义和等量代换得到∠BCA=∠BAC,则BA=BC ,然后根据等腰三角形的判定方法由BD⊥AO,AO平分∠BAD得到AB=AD,所以AB=AD=BC.试题解析:(1)如图,BO为所作;(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO 平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.【题文】如图,一次函数y=ax+b(a≠0)的图象与反比例函数(k≠0)的图象交于A(﹣3,2),B (2,n).(1)求反比例函数的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.【答案】(1);(2)y=﹣x+1;(3)﹣3<x<0或x>2.【解析】试题分析:(1)把A坐标代入反比例解析式求出k的值,确定出反比例解析式;(2)把B坐标代入反比例解析式求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(3)根据A与B横坐标,结合图象确定出所求不等式的解集即可.试题解析:(1)把A(﹣3,2)代入反比例解析式得:k=﹣6,则反比例解析式为;(2)把B(2,n)代入反比例解析式得:n=﹣3,即B(2,﹣3),把A(﹣3,2)与B(2,﹣3)代入y=ax+b 中得:,解得:a=﹣1,b=﹣1,则一次函数解析式为y=﹣x+1;(3)∵A(﹣3,2),B(2,﹣3),∴结合图象得:不等式ax+b<的解集为﹣3<x<0或x>2.考点:反比例函数与一次函数的交点问题.【题文】某校八年级学胜在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【答案】(1)作图见解析;(2)中位数为90分,众数为90分;(3)138;(4)他的成绩中游偏下,因为全班的中位数为90分.【解析】试题分析:(1)由统计表得96分的人数为6人,然后补全条形统计图;(2)根据中位数和众数的定义求解;(3)用500乘以样本中96分以上(含96分)的人数所占的百分比即可;(4)把它的成绩与中位数比较可判断他的成绩如何.试题解析:(1)如图:(2)共有40个数据,第20个数和第21个数都为90,所以该班学生成绩的中位数为90分,90出现的次数最多,所以众数为90分;(3)500×≈138,所以估计有138名学生的成绩在96分以上(含96分);(4)小明的成绩为88分,他的成绩中游偏下,因为全班的中位数为90分.考点:条形统计图;用样本估计总体;加权平均数;中位数;众数;数形结合.【题文】某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套?【答案】(1)购买A型桌椅100套,B型桌椅150套;(2)66.【解析】试题分析:(1)设购买A型桌椅x套,B型桌椅y套,根据“A,B型课桌椅共250套”、“A型课桌椅230元/套,B型课桌椅200元/套,付款53000元,”列出方程组并解答(2)设能购买A型课桌椅a套,则根据“最多能购买A型课桌椅多少套”列出不等式并解答即可.试题解析:(1)设购买A型桌椅x套,B型桌椅y套,依题意得:,解得:.答:购买A型桌椅100套,B型桌椅150套;(2)设能购买A型课桌椅a套,依题意得:230a+200(100﹣a)≤22000,解得a≤.∵a是正整数,∴a最大=66.答:最多能购买A型课桌椅66套.考点:一元一次不等式的应用;二元一次方程组的应用;最值问题.【题文】如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D.E为的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;(2)若AB=3,BC=4,求CE的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)先证明∠EBC=∠ECF,再证明∠ABF=∠AFB,即可得AB=AF;(2)先应用勾股定理求出AC的长,用AC-AF求出CF的长,再应用△EFC∽△ECB可求出CE的长.试题解析:解:(1)证明:∵BC直径为⊙O的直径,∴∠BEC=90°,∴∠ECF+∠EFC=90°.∵∠ABC=90°,∴∠ABF+∠EBC=90°.又∵E为的中点,∴∠EBC=∠ECF,∴∠EFC=∠ABF.又∵∠AFB=∠EFC,∴∠AFB=∠ABF,∴AB=AF;(2)∵∠ABC=90°,∴AC===5.又∵AB=AF=3,∴CF=AC-AF=5-3=2.∵∠EBC=∠ECF,∠E=∠E,∴△EFC∽△ECB.∴.∴BE=2CE.∵∠BEC=90°,∴,∴,∴CE=.考点:圆周角定理;等腰三角形的判定;相似三角形的判定与性质.【题文】在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)A(﹣3,0),C(0,3),D(﹣1,4);(2)E(,0);(3)P(2,﹣5)或(1,0).【解析】试题分析:(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.试题解析:(1)当中y=0时,有,解得:=﹣3,=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当中x=0时,则y=3,∴C(0,3).∵=,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有:,解得:,∴直线C′D的解析式为y=﹣7x ﹣3,当y=﹣7x﹣3中y=0时,x=,∴当△CDE的周长最小,点E的坐标为(,0).(3)设直线AC的解析式为y=ax+c,则有:,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线上,∴,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线上,∴,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线上,∴,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).考点:二次函数综合题;最值问题;存在型;分类讨论;综合题.。

2022年广西河池市中考数学试卷真题附解析

2022年广西河池市中考数学试卷真题附解析

2022年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

每小题给出的四个选项中,只有一项符合题目要求。

请用2B铅笔将答题卡上对应题目的答案标号涂黑。

)1.(3分)如果将“收入50元”记作“+50元”,那么“支出20元”记作( )A.+20元B.﹣20元C.+30元D.﹣30元2.(3分)下列几何体中,三视图的三个视图完全相同的几何体是( )A.B.C.D.3.(3分)如图,平行线a,b被直线c所截,若∠1=142°,则∠2的度数是( )A.142°B.132°C.58°D.38°4.(3分)下列运算中,正确的是( )A.x2+x2=x4B.3a3•2a2=6a6C.6y6÷2y2=3y3D.(﹣b2)3=﹣b65.(3分)希望中学规定学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若小强的三项成绩(百分制)依次是95,90,91.则小强这学期的体育成绩是( )A.92B.91.5C.91D.906.(3分)多项式x2﹣4x+4因式分解的结果是( )A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)27.(3分)东东用仪器匀速向如图容器中注水,直到注满为止.用t 表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是( )A.B.C.D.8.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中错误的是( )A.AB=AD B.AC⊥BD C.AC=BD D.∠DAC=∠BAC 9.(3分)如果点P(m,1+2m)在第三象限内,那么m的取值范围是( )A.﹣<m<0B.m>﹣C.m<0D.m<﹣10.(3分)如图,AB是⊙O的直径,PA与⊙O相切于点A,∠ABC =25°,OC的延长线交PA于点P,则∠P的度数是( )A.25°B.35°C.40°D.50°11.(3分)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为( )A.30(1+x)2=50B.30(1﹣x)2=50C.30(1+x2)=50D.30(1﹣x2)=5012.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )A.25π+24B.5π+24C.25πD.5π二、填空题(本大题共4小题,每小题3分,共12分。

广西河池市中考数学真题(解析版)

广西河池市中考数学真题(解析版)
【答案】
【解析】
【分析】如图,连接 ,设圆与x轴相切于点 ,连接 交 与点 ,结合已知条件,则可得 ,勾股定理求解 ,进而即可求得 的坐标.
【详解】如图,连接 ,设圆与x轴相切于点 ,连接 交 与点 ,
则 轴,
为直径,则 ,

轴,

, ,
, ,

轴,

故答案为: .
【点睛】本题考查了圆的性质,直径所对的圆周角是直角,垂径定理,切线的性质,勾股定理,坐标与图形,掌握以上知识是解题的关键.
三、解答题(本大题共8小题,共66分.)
19.计算: .
【答案】
【解析】
【分析】根据二次根式的性质化简,负整数指数幂,绝对值和有理数的乘方计算法则求解即可得到答案.
【详解】解:
【点睛】本题主要考查了二次根式的性质化简,负整数指数幂,绝对值和有理数的乘方计算法则,解题的关键在于能够熟练掌握相关知识进行求解.
B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,
∴当-1<x<2时,y<0,故选项B正确,不符合题意;
C、由图可知:当x=-1时,y=a-b+c=0,
∴a+c=b,故选项C正确,不符合题意;
D、由图可知:当x=1时,y=a+b+c<0
∴a+b<-c,故选项D错误,不符合题意;
故选:D.
【点睛】本题主要考查了二次函数对称性、二次函数图象与系数之间的关系和二次函数图象上点的坐标特征,解题的关键理解函数图象与不等式之间以及方程的关系.
故选:C.
【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.

2021年河池市中考数学试卷(word解析版)

2021年河池市中考数学试卷(word解析版)

2021年河池市中考数学试卷(word解析版)2021年河池市中考数学试卷(word解析版)一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)(2021?河池)下列各数中,比��1小的数是() A.��2 B.0 C.1 D.2 2.(3分)(2021?河池)如图,AB∥CD,∠1=50°,则∠2的大小是()A.50° B.120° C.130° D.150° 3.(3分)(2021?河池)下列四个几何体中,主视图为圆的是()A. B. C. D. 4.(3分)(2021?河池)下列长度的三条线段不能组成三角形的是() A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,5 5.(3分)(2021?河池)下列运算正确的是()235623A.2a+3b=5ab B.2(2a��b)=4a��2b C.(a)=a D.a÷a=a 6.(3分)(2021?河池)如图,不等式组的解集在数轴上表示正确的是()A.D.B.C.7.(3分)(2021?河池)要调查河池市中学生了解禁毒知识的情况,下列调查方式最适合的是()A.在某中学抽取200名女生 B.在某中学抽取200名男生 C.在某中学抽取200名学生D.在河池市中学生中随机抽取200名学生 8.(3分)(2021?河池)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150° B.130° C.120° D.100°29.(3分)(2021?河池)二次函数y=ax+bx+c的图象如图所示,则下列结论不正确的是()第1页(共22页)A.a<0 B.c>0 C.a+b+c>0 D.b��4ac>0 10.(3分)(2021?河池)如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),将线段OA绕原点O逆时针旋转30°,得到线段OB,则点B的坐标是()2A.(0,2) B.(2,0) C.(1,��) D.(��1,) 11.(3分)(2021?河池)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED 为菱形的是()A.AB=BC B.AC=BC C.∠B=60° D.∠ACB=60° 12.(3分)(2021?河池)如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A(0,2),B(0,8),则圆心P 的坐标是()A.(5,3) B.(5,4) C.(3,5) D.(4,5)二、填空题(本大题共6小题,每小题3分,共18分) 13.(3分)(2021?河池)代数式在实数范围内有意义,则x的取值范围是______.214.(3分)(2021?河池)已知关于x的方程x��3x+m=0的一个根是1,则m=______. 15.(3分)(2021?河池)同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是______.16.(3分)(2021?河池)如图,AB是⊙O的直径,点C,D都在⊙O上,∠ABC=50°,则∠BDC的大小是______.17.(3分)(2021?河池)对于实数a,b,定义运算“*”:a*b=2,例如:因为4>2,所以4*2=4��4×2=8,则(��3)*(��2)=______. 18.(3分)(2021?河池)如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为______cm.三、解答题(本大题共8小题,共66分) 19.(6分)(2021?河池)计算:|��1|��tan45°+20.(6分)(2021?河池)先化简,再求值:��3.2?(x��9)��3x,其中x=2.21.(8分)(2021?河池)如图,AE∥BF,AC平分∠BAE,交BF于C.(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.22.(8分)(2021?河池)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于A(��3,2),B(2,n).(1)求反比例函数y=的解析式;(2)求一次函数y=ax+b的解析式;(3)观察图象,直接写出不等式ax+b<的解集.23.(8分)(2021?河池)某校八年级学胜在学习《数据的分析》后,进行了检测,现将该校八(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).分数(分)人数(人) 68 4 78 7 80 3 88 5 90 10 96 6 100 5 (1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么? 24.(8分)(2021?河池)某校需购买一批课桌椅供学生使用,已知A型课桌椅230元/套,B型课桌椅200元/套.(1)该校购买了A,B型课桌椅共250套,付款53000元,求A,B型课桌椅各买了多少套?(2)因学生人数增加,该校需再购买100套A,B型课桌椅,现只有资金22000元,最多能购买A型课桌椅多少套? 25.(10分)(2021?河池)如图,在△ABC中,∠ABC=90°,以BC为直径作⊙O,交AC于D,E为的中点,连接CE,BE,BE交AC于F.(1)求证:AB=AF;(2)若AB=3,BC=4,求CE的长.第4页(共22页)226.(12分)(2021?河池)在平面直角坐标系中,抛物线y=��x��2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.第5页(共22页)感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档