圆周角第一课时课件

合集下载

九年级数学上册《圆周角》第一课时课件

九年级数学上册《圆周角》第一课时课件

练习一:判断下列各图中,哪些是圆周角,为什么?
● (2)问题:足球训练场上教练球门前划了一个圆圈进行无人防守的射门训练如图1,甲、乙两 名运动员分别在C、D两地,他们争论不休,都说在自己的位置射门好。如果你是教练,评一 评他们的说法。
二、师生互动、合作探究
● 探究一:同弧所对的圆周角的大小有什么关系?
1.如图,点A、B、C、D在同一个圆上,四边形
ABCD的对角线把4个内角分成8个角,这些角中哪 些是相等的角?
∠1 = ∠4 ∠5 = ∠8
∠2 = ∠7 ∠3 = ∠6
A1
2
D
8 7
3
4
B
6 5
C
方法点拔:由同弧来找相等的圆周角
2、求圆中角X的度数
P 120°
O.
70° x
A
B
O.
X 600 B A
DAC DAB 1 (DOC DOB)
A
2
BAC 1 BOC 2

D
C B
定理
定理
C
在同圆或等圆中,同弧或等弧所对的圆 周角相等,都等于这条弧所对的圆心角
的一半.
D A

E
B
C1 A
C2
C3

·O
B
推论
半圆(或直径)所对的圆周角 是直角, 90°的圆周角所对的弦 是直径.
三、巩固新知:
● (1)教师引导学生把实际问题抽象成数学问题:“研究同弧所对的圆周角的大小关系问题”, 导入新课。
● (2)引导学生通过画图测量,发现:∠C、∠D的度数相等。并进一步用几何画板测量多画几 个弧AB所对的圆周角,并测量出各个角的度数,进一步验证“同弧所对的圆周角的大小相 等”。

人教版九年级数学上册《圆周角》优秀PPT课件

人教版九年级数学上册《圆周角》优秀PPT课件
∠ ABC = ∠ADC=∠ AEC
课堂练习
1.如图,⊙O是 ABC的外接圆,连接OA,OB,
∠ OBA=50°,求∠C的度数.
解:∵OA=OB
∴∠ OBA=∠ OAB=50° ∴∠ AOB=80°
由圆周角定理可知:
∠ C= 12∠AOB=40°
C O
A
B
课堂练习
2.试找出下图中所有相等的圆周角。
所对的圆心角的一半.
D
A
C

E
B
小试牛刀
1.如图,在⊙O中,∠BOC=60°, 求∠A、∠D的度数.
A
D
O
解:由圆周角定理可知:
∠A=
12∠BOC=
1 2
×60°=
30°
∠D= 12∠BOC= 12×60°= 30°
B
C
发现:同弧所对的圆周角相等
小试牛刀
2.如图,若 CD=EF ,∠A与∠B相等吗?
练一练:下列各图中的∠BAC是否为圆周角并简
述理由.
B O·
B
C
A

A
A
C O·
√ C (1) A
顶点(不2)在圆上 B
B 边(AC3没)有和圆相交

A O·
CC
·O
B
C
顶点(不4在)圆上
√ (5)
A B
√ (6)
探索新知
探究2:在⊙O上任取一条BC,画出BC所对的一 个圆周角∠BAC和圆心角∠BOC,用量角器测量
他所处的位置B对球门AC的张角∠ABC有关).
A
A
E B
C D
E
AC所对的角ห้องสมุดไป่ตู้ ABC 、∠ADC、

《圆周角》课件——第1课时

《圆周角》课件——第1课时

求证:∠BAC=1/2∠BOC
新课学习
证明 (1)当圆心O在∠BAC的一条边上时(图3-25
①). 在△OAB中,
∵OA=OB,∴∠BAO=∠OBA .
∵∠BOC=∠BAO +∠OBA,
∴∠BOC=2∠BAO
∴∠BAC=1/2∠BOC
新课学习
(2)当圆心O在∠BAC的内部时,作直径AD(图 325 ②). 由(1)的结论,得 ∠BAD=1/2∠BOD,∠DAC=1/2∠DOC . ∴∠BAD+∠DAC= 1/2∠BOD+1/2∠DOC .

∴ACB的度数=110°.
∴ AmB的度数=360°-110°=250°.


∴∠ACB=1/2×250°=125°
新课学习
⌒ 上时(图3-26 ②), (2)当点C在优弧AmB
∵∠AOB=110°,°=55°.
结论总结
通过本节课的内容,你有哪些收获?
作业布置
课本P.84第1、2题
板书设计
3.3圆周角
第一课时
1.圆周角定义:
2.圆周角定理:
3.圆周角定理推论1:
例1
∵∠BAD+∠DAC=∠BAC,
1/2∠BOD+1/2∠DOC=1/2(∠BOD+∠DOC)=1/2∠BOC,
∴∠BAC=1/2∠BOC
新课学习
(3)当圆心O在∠BAC 的外部时(图 3-25 ③),
你能给出证明吗?试一试,与同学交流.
归纳以上三种情况的结论,就得到
圆周角定理:圆周角等于它所对弧上的圆心角的一半.
1.什么叫做圆周角?
顶点在圆上,并且它的两边在圆内的部分是圆的两 条弦,像这样的角叫做圆周角。 2.圆周角定理?

人教版数学九年级上册圆周角的概念和圆周角的定理课件(第一课时18张)

人教版数学九年级上册圆周角的概念和圆周角的定理课件(第一课时18张)

1
= 2∠AOD,∠CBD
= 1∠COD,
2
∴ ∠ABC = 1∠AOC.
2
A C
●O B
一条弧所对的圆周角等于它所对的圆心角的一
半.
活动三:学以致用
1. 如图1,在圆O中, ∠BOC=50°,则∠BAC = 25°;
2.变式1:如图2,已知∠BCD=120°,则∠AOB= 120; °
3.变式2:如图3,已知圆心角∠AOB=100°,则
⌒ BC所对圆周角是∠ BAC , 圆心角
是∠BOC,
则∠
BAC=
1 2
∠BOC
O
A
C
B
例1.如图:OA、OB、OC都是⊙ O的半径
∠AOB=2∠BOC. ∠ACB=40°,求∠BAC的度数.
证明:∵
∠ACB=
1 2
∠AOB=40
°
∴ ∠AOB= 80 °
∵ ∠AOB=2∠BOC
O
∴ ∠BOC=40 °
特征:① 角的顶点在圆上.
② 角的两边都和圆相交 (即两边是圆的两条弦)
判别下列各图形中的角是不是圆周角。
×

×

×
×
×
当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角 的大小有什么关系?.
A C
●O
B
E
D
圆周角: ∠ABC,
∠ADC, ∠AEC.
新人教版九年级上册数学
24.1.4圆周角(第1课时)
问题:请同学们想一想,球员射中球门的难易 与什么有关?
总结:如图所示,球员射中球门的难易与他所在的位置B对球门

圆周角和圆心角的关系课件第1课时北师大版九年级下册数学

圆周角和圆心角的关系课件第1课时北师大版九年级下册数学

A.40°
B.50°
C.60°
D.70°
合作探究
如图,已知圆心角∠AOB=100°,求圆周角∠ACB、
∠ADB的度数.
合作探究
解:设优弧ADB所对的圆心角为∠1,∵∠AOB=100°,

∴∠D= ∠AOB=50°,∠1=360°-∠AOB=260°,


∴∠ACB= ∠1=130°,

因此∠ACB、∠ADB的度数分别为130°、50°.
预习导学
1.如图,四个边长为1的小正方形拼成一个大正方形,A、B、
O是小正方形顶点,☉O的半径为1,P是☉O上的点,且位于右
上方的小正方形内,则∠APB等于( B )
A.30°
B.45°
C.60°
D.90°
预习导学
2.如图,AB、CD是☉O的两条弦,连接AD、BC.若∠BAD
=70°,则∠BCD的度数为( D )
合作探究
如图,点A、B、C都在圆O上,OC⊥OB,点A在劣弧
BC上,且OA=AB,求∠ABC的度数.
合作探究
解:∵OA=OB,OA=AB,
∴OA=OB=AB,
即△OAB是等边三角形,
∴∠AOB=60°.
∵OC⊥OB,
∴∠COB=90°,
∴∠COA=90°-60°=30°,
∴∠ABC=15°.
合作探究
圆内的部分是圆的两条弦
.
;(2)
两边在
预习导学
圆周角定理及其推论
1.同弧所对的圆周角等于它所对的圆心角的一半.
2.在
等.
同圆或等圆 中,同弧或等弧所对的 圆周角 相
预习导学
·导学建议·
在知识点二圆周角定理的得出和证明中,先把学生所画出

圆周角课件(1)

圆周角课件(1)
24.1.4 圆周角(1)
复 习
1.什么叫圆心角?
顶点在圆心的角叫圆心角
2. 圆心角、弧、弦三个量之间关系的一个结论,这个结论是什么?
在同圆(或等圆)中,如果圆心角、弧、弦有一组量相等,那么它们所对应的其余两个量都分别相等。
探 究
O
A
问题:将圆心角顶点向上移,直至与⊙O相交于点C?视察得到的∠ACB有什么特征?
∠AOB
大胆猜想
操作验证
P85探究
结论 (1)同弧所对的圆周角都相等,
(2)同弧所对的圆周角是圆心角的一半.
为了验证这个 发现 , 可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:
(1) 折痕是圆周角的一条边,
(2) 折痕在圆周角的内部,
(3) 折痕在圆周角的外部。
归纳:
练习3
(1).已知一条弧所对的圆周角等于50°,则这条弧所对的圆心角等于______°.
(2).已知一条弧的度数等于40°,则这条弧所对的圆心角和圆周角分别等于______°.
(3).如图,点A,B,C在⊙ O上,且∠ AOB=110°,则∠ ACB=_____°
例 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.
小结:
(1) 同弧或等弧所对的圆周角相等,
(2)半圆或直径所对的圆周角等于直角; 90°的圆周角所对的弦是直径。
2.圆周角定理:
3.圆周角定理的推论:
1.圆周角定义:
1、分别量一量图中弧AB所对的两个圆周角的度数比较一下. 再变动点C在圆周上的位置,看看圆周角的度数有没有变化. 你发现其中有什么规律吗?
2、分别量出图 中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么?

24.1.4圆周角 教学课件(共33张PPT)初中数学人教版(2012)九年级上册

24.1.4圆周角 教学课件(共33张PPT)初中数学人教版(2012)九年级上册

B.120
C.130
解析:∵四边形 ABCD内接于 O , ADC 120
∴ ABC 60
∵ AC AC ∴ AOC 2ABC 120 故选:B.
D.135
130° 5.如图,AB 是 O 的直径,点 C,D,E 在⊙O 上,若 AED 40 ,则 BCD 的度数为______.
解析:连接 BE, AB 是直径,
A
A
A
30°
C
O
60°
B C 60° O
120°
C 75° O 150°
B
B
同弧所对的圆周∠角A度C数B=等1于∠这AO条B弧所对圆心角的一半. 2
探索新知
思考 如何证明刚刚的结论呢? 分类讨论
1.圆心在圆周角的一边上,如图(1); 2.圆心在圆周角的内部,如图(2); 3.圆心在圆周角的外部,如图(3).
不是,边没有 和圆相交
(3)
不是,顶点 不在圆上
(4)
不是,边没有 和圆相交
(5)
(6)
探索新知
探究1 分别测量下图中AB 所对的圆周角∠BAC 和圆心角∠BOC的度数,它
们之间有什么关系?
BAC 1 BOC 2
探索新知
探究2 在☉O中任取一条弧,分别测量这条弧所对的圆心角和圆周角, 你还能得到前面的结论吗?由此你能发现什么规律?
A. 35
B. 40
C. 45
D. 55
解析:连接 AD , AB 是 O 的直径,
ADB 90 , ABD 55 ,
BAD ADB ABD 90 55 35 , BCD BAD 35 , 故选 A.
C 3.如图, AB 是半圆 O 的直径,C ,D 是半圆上的两点,若 C 125 ,则 ABD的度数是( )

2圆心角和圆周角第一课时-冀教版九年级数学上册课件

2圆心角和圆周角第一课时-冀教版九年级数学上册课件

∴∠AOM=∠BOM,AM=BM
∵AE=BF
O
∴EM=FM,而OM⊥AB
∴OE=OF
A
E MF
B ∴∠EOM=∠FOM ∴∠AOM-∠EOM=∠BOM-∠FOM
C
D 即∠AOC=∠BOD
∴AC=BD
巩固提升
圆心角性质的应用 在圆中 1.求弧相等可以转化为求角相等或线段相等; 2.求线段相等可以转化为求角相等或弧相等; 3.求角相等可以转化为求线段相等或弧相等.
A

MO
N
OM=ON (OC=OD)
B
△COM≌△DON(HL)
∠AOC=∠BOD
同圆中相等的圆心角 所对的弧相等
A⌒D=B⌒C
典例精析
例1.(变式)已知,如图,AB为⊙O的直径,
点M,N分别是AO,BO的中点, CM⊥AB,DN⊥AB,垂足分别⌒为M⌒、N.求证:
AC=BD. C
方法二:连接OC、OD、AC、BD
③②①在在在⊙⊙⊙OO中O中中
B′
∵ABA∵∴⌒=BAA∵∴⌒A=BBA∠'A⌒B==B⌒A'AA'B,=O⌒'''ABB,B⌒∠'''B=,AA∠',⌒OCAABBB'O===∠BAA'A''CB⌒'OB' 'B'
·
O
A
∠AOB=∠A'OB'
C ●
结论
在同圆或等圆中,两个圆心角及其所对应的 两条弦和所对应的两条弧这三组量中,只要 有一组量相等,其他两组量就分别相等.
方法一:连接OC、OD
A
M ON ●

人教版初中九年级上册数学课件 《圆周角》圆(第1课时圆周角及其定理)

人教版初中九年级上册数学课件 《圆周角》圆(第1课时圆周角及其定理)

A.140° C.60°
B.70° D.40°
8
5.某小区新建一个圆形人工湖,如图所示,弦 AB 是湖上一座桥,已知桥 AB 长为 200 m,测得圆周角∠ACB=45°,则这个人工湖的直径 AD 长为___2_0_0__2_____m.
9
6.如图,在⊙O 中,弦 AC=2 3,B 是圆上一点,且∠ABC=45°,则⊙O 的 半径 r=___6___.
17
解:(1)∵∠APC=∠CPB=60°,∠BAC=∠CPB,∠ABC=∠APC,∴∠ABC =∠BAC=60°,∴△ABC 为等边三角形.
(2)PC=PA+PB.证明:在 PC 上截取 PD=PA,连接 AD.∵∠APC=60°,∴ △APD 是等边三角形,∴AD=PA=PD,∠ADP=60°,∴∠ADC=120°.又∵∠APB =∠APC+∠BPC=120°,∴∠ADC=∠APB.又∵∠ACP=∠ABP,∴△APB≌△ ADC(AAS),∴PB=DC.又∵PD=PA,∴PC=PA+PB.
18
︵ (3)在AB上任取一点 P,过点 P 作 PE⊥AB,垂足为点 E,过点 C 作 CF⊥AB,垂足 为点 F.∵S△APB=12AB·PE,S△ABC=12AB·CF,∴S 四边形 APBC=12AB·(PE+CF).当点 P
︵ 为AB的中点时,PE+CF=PC 最长,即 PC 为⊙O 的直径,此时四边形 APBC 的面 积最大.又∵⊙O 的半径为 1,∴易得等边三角形的边长 AB= 3,∴四边形 APBC 的最大面积为 S 四边形 APBC=12×2× 3= 3.
A.16° B.32°
C.58° D.64°
分析:∵AB是⊙O的直径, ∴∠ADB=90°,∴∠A=90°- ∠ABD=32°,∴∠BCD=∠A= 32°.

《圆周角》课件1

《圆周角》课件1

2.经历探究同弧(或等弧)所对圆周角与圆心角之
间的关系的过程,进一步体会分类讨论、转化的
思想方法.
图中∠ACB 的顶点和边有哪些特点?
2.探究
图中∠ACB 和∠AOB 有怎样的关系? C
ACB1AOB 2
O
A
B
2.探究
(1)在圆上任取 BC,画出圆心角∠BOC 和圆周角 ∠BAC,圆心角与圆周角有几种位置关系?
A
D
BC=
=
=8(cm)
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
如图,⊙O 的直径 AB 为 10 cm,弦 AC 为 6 cm,
ACB 的平分线交⊙O 于点 D,求 BC,AD,BD 的长.
同弧或等弧所对的圆周角相等.
2.经历探究同弧(或等弧)所对圆周角与圆心角之
于点
D,求
BC,AD,BD
的长.
间的关系的过程,进一步体会分类讨论、转化的
C 思想方法.
(1)在圆上任取 ,画出圆心角∠BOC 和圆周角∠BAC,圆心角与圆周角有几种位置关系?
∵ CD 平分ACB, 在 Rt△ABC 中,
∴ ∠A=∠C.
∴ ACD=BCD, 又∵ ∠BOC=∠A+∠C,
在 Rt△ABC 中,
A
O
B
BC= AB 2AC 2= 10262=8(cm)
D
(1)本节课学习了哪些主要内容?
5.应用
2.经历探究同弧(或等弧)所对圆周角与圆心角之

如图,⊙O 的直径 间的关系的过程,进一步体会分类讨论、转化的
思想方法. ∠A=∠C.

《圆周角》ppt课件1

《圆周角》ppt课件1
第二十四章 圆
24.1 圆的有关性质
24.1.4 圆周角
第1课时 圆周角定理及其推论
知识点 1:圆周角及圆周角定理
圆上
1.圆周角概念:顶点在
相交
,并且两边都与圆
的角叫
圆周角.
2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角
一半

.
1.下列各图中的角,其中为圆周角的是
B
(
)
第1课时 第1课时 第1课时 第1课时 第1课时 第1课时
圆周角定理及其推论
圆周角定理及其推论
圆周角定理及其推论
圆周角定理及其推论
圆周角定理及其推论
圆周角定理及其推论
3.如图,点 A,B,C 均在⊙O 上,当∠OBC=40°时,∠A 的度数

(
A
)
A.50° C.60°
B.55° D.65°
知识点 2:圆周角定理的推论
相等
圆周角定理的推论:同弧或等弧所对的圆周角
圆圆C周周.角角定定△理理及 及C其其E推推F论论≌△BED
D.AF=FD
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
第1课时 圆周角定理及其推论
8.★已知⊙C 经过原点,并与两坐标轴分别交于 A,D 两点,点 B
是圆上任意一点,已知∠OBA=30°,点 A 的坐标为(2,0),则点 D 的
坐标为
(0,2 3)或(0,-2 3)
.
9.已知 AB 是⊙O 的直径,弦 CD⊥AB 于 H,∠A=30°,CD=2 3,

《圆周角》精品课件

《圆周角》精品课件
任意一点(除点A、B外),那么,∠ACB就是直径AB
所对的圆周角,想一想,∠ACB会是怎样的角?
解:∵OA=OB=OC,
C
∴△AOC,△BOC都是等腰三角形.
·
B
∴ ∠OAC=∠OCA,∠OBC=∠OCB.
A
O
又∵ ∠OAC+∠OBC+∠ACB=180°,
∴ ∠ACB=∠OCA+∠OCB=180°÷2=90°.
圆周角和直径的关系:
半圆(或直径)所对的圆周角是直角,90°的
圆周角所对的弦是直径.
例 如图,⊙O 的直径 AB 为 10 cm,弦 AC为 6 cm,
∠ACB 的平分线交⊙O于点D,求BC,AD,BD的长.
解:如图,连接OD,
∵AB 是直径,∴ ∠ACB= ∠ADB= 90°.
∵CD平分∠ACB,∴∠ACD=∠BCD.
∵△AOC和△BOC是等腰三角形,
∴∠AOD=2∠ACO,∠BOD=2∠BCO,
D
∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,
1
∴ ∠ = ∠.
2
D
②如图,当圆心O在∠ACB外时,连接CO,并
延长交圆于点D.
∵△AOC和△BOC是等腰三角形,
C
∴∠AOD=2∠ACO,∠BOD=2∠BCO,
新知探究 跟踪训练
1.如图所示,∠BAC 是圆周角的是( A
)
圆周角:顶点在圆上,并且两边都与圆相交的角.
新知探究 知识点2
如图所示,圆周角∠ACB与圆心角∠AOB所对的弧相等,
那么它们之间是否存在什么关系呢?下面我们就来研究
这个问题.
①如图,当圆心O在∠ACB内时,连接CO,

圆周角和圆心角的关系(第1课时)课件

圆周角和圆心角的关系(第1课时)课件
第 三章 圆
第三章 圆
3.4 圆周角和圆心角的关系 (第1课时)
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理及推
论解决简单的几何问题.(重点) 3.了解圆周角的分类,会推理验证“圆周角与圆心角的
关系”.(难点)
情景导入
如图,在足球射门的游戏中,球员射中球门的难易程度与 他所处的位置B对球门AC的张角(∠BAC)有关.当球员在B 、D、E三点射门时,他所处的位置对球门AC分别形成三个张 角∠BAC,∠BAC,∠BAC.这三个角的大小有什么关系?在 这三点射门的效果一样吗?
B
O
C
B
(2) 圆心角
O (3)
B
C
A(5)Biblioteka CO·B (6)
边AC没有与 圆相交
圆周角 A
合作探究
活动1: 圆周角与圆心角的关系
做一做: 如图,∠AOB=80°.
(1)请你画几个 A B 所对的圆周角?这几个圆
周角有什么关系?与同伴进行交流. (2)这些圆周角和圆心角∠AOB的大小有什么
关系?你是怎么发现的?与同伴进行交流.
求证: ∠C= 1 ∠AOB . 2
分析:根据圆周角和圆心角的位置关系,分三种情况讨论: (1)圆心O在圆周角∠C的一边上,如图(1); (2)圆心O在圆周角∠C的内部,如图(2); (3)圆心O在圆周角∠C的外部,如图(3).
证明:(1)当圆心O在圆周角∠C的一边上时,如图(1).
∵∠AOB是△ACO的外角,
∠1=∠4,∠2=∠7, ∠3=∠6,∠5=∠8,
△AEB∽△DEC △AED∽△BEC
课堂小结
1.圆周角定义: 顶点在圆上,并且两边都和 圆相交的角叫圆周角. 2.圆周角定理:一条弧所对的圆周角等于它 所对的圆心角的一半. 3.圆周角定理推论:同弧(或等弧)所对的圆周角相等 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档