水资源承载力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中原经济区区域水资源承载力的数学建模评价与预测
摘要
中原经济区区域是内陆地区一个重要的经济板块,处在承东启西的战略地位,是我们国家产业向内陆地区转移的一个承接地和平台,在完善全国区域发展格局和区域协调发展中有不可替代的作用,具有重要的战略意义,因此,研究中原经济区域水资源的承载力,能够为实现中原经济区的战略定位、“三化”建设的协调发展提供基础数据分析和决策参考依据。
针对问题一,为了研究中原经济区区域水资源承载力,本文择取了中原经济区域中的郑州、开封、洛阳、新乡、南阳五个城市作为研究区域,运用模糊综合评价模型来对2002~2008年间各个城市的水资源承载力进行了综合评价,得出了其整体的综合指标。
针对问题二,本文根据问题一的数据信息运用了时间序列模型中的简单移动平均法来对2010~2020年间的中原经济区域中所选的五个城市水资源承载力进行预测,得出了其综合水资源承载力的趋势变化。
关键词
水资源承载力模糊综合评价模型时间序列模型简单移动平均法
一、问题重述
中原经济区作为国家层面重点开发区域,是中部地区人口和经济密集区,国家重要的粮食生产和现代农业基地,全国工业化、城镇化和农业现代化协调发展示范区,全国重要的经济增长板块,全国区域协调发展的战略支点和重要的现代综合交通枢纽,华夏历史文明传承创新区。在全国区域协调发展中占有无可替代的战略地位。选择中原经济区的若干重要城市作为研究对象,进行区域承载力的综合评价及预测,能够为实现中原经济区的战略定位、“三化”建设的协调发展提供基础数据分析和决策参考依据。
请选取水资源承载力、环境承载力、能源承载力、耕地承载力、社会经济承载力、生态承载力等分析因子中的一项或几项,对1999-2009年间中原经济区各城市(可选取一部分城市)的承载力状况,建立区域承载力综合评价模型进行科学合理的综合评价,并建立数学模型预测2010-2020 年研究区区域承载力变化趋势。
二、问题的分析
针对问题一、研究中原经济承载力情况有重大意义,为此我们选取水资源承载力作为分析因子,并择取中原经济区域中的郑州、开封、洛阳、新乡、南阳五个城市为研究区域。根据数据来源:河南省统计年鉴,河南省统计网还有河南水利局网等可靠网站查到2002-2008年(由于时间久远,网站没有公布1999-2001年间的大部分资料,因而本文从2002年开始搜集资料)间所则取研究区域的人口数量、土地面积、供水量、需水量、灌溉面积等各个数据,建立综合评价模型对所则取研究区域水资源承载力进行科学合理的综合评价。
针对问题二、根据问题一所得数据和结果,我们运用时间序列预测模型中的简单移动平均法对中原经济区域所取的五个城市在2010-2020 年期间水资源承载力变化趋势进行预测。
三、模型的假设
1、假设所查得的数据真实有效;
2、假设水资源承载力只和灌溉率、水资源利用率、供水模数、需水模数、人均供水五个因素有关;
四、符号说明
U A ;
V D i i i i i B i R i i :第级评价因素;
:各因素对综合评判重要性的权系数:以2002年作为1开始的第年评价因素的隶属度;:以2002年作为1开始的第年的评价因素的模糊矩阵;:评判集;
:以2002年作为1开始的第年的评价因素的综合评价指标;
五、模型的建立及求解
5.1.2002-2008年中原经济区域中的郑州、开封、洛阳、新乡、南阳五个城市 水资源承载力模数综合评价 5.1.1综合评价模型的建立
模糊综合评判方法是模糊数学对受多种因素影响和制约的事物和现象做出一个总体评判的方法,对水资源承载力的各个因素进行单因素评价,然后通过总评定因素中所起作用大小的变量,也在一定程度上代表根据单因素i U 评定等级的能力,而j b 则为等级i V 对综合评定所得模糊子集B 的隶属度,它们表示综合评判的结果。
设给定两个有限论域:
{}12m ,,,U u u u =,{}12,,,n V v v v =
其中,U 为所有评判因素组成的集合,V 为所有评语等级所组成的集合,设A 为U 的模糊子集,B 为V 的模糊子集,R 为评判矩阵,则模糊综合评价可表示为如下模糊变换:12()0b 1n j B A R b b b ==≤≤,
其中:1
2
(),01,1,2,
,m i A a a a a i m =≤≤=
()12,,,,01,1,2,
,n j B b b b b j n =≤≤=,
1112
12122212n n m m mn r r r r r r R r r r ⎛⎫
⎪ ⎪= ⎪
⎪⎝⎭
式中,ij r 表示因素i U 的评价对等级i V 的隶属度,因而矩阵R 中第i 行
()12=,,
,i i i in R r r r ,即对第i 个因素i U 的单因素评判结果。评价计算中
1
2
(),01,1,2,
,m i A a a a a i m =≤≤=代表了各因素对综合评判重要性
的权系数,因此,满足归一性,即=1
=1n
i i a ∑,同时,模糊变换B A R =也可转化为
普通矩阵计算,即1b =min 1m j i ij i a r =⎛⎫
⎪⎝⎭∑,。 对于评价因素14,
,U U ,各评语级隶属函数计算式分别为:
1121121122
1121
120i i i i V i i U K U K U K K U U K U K K K U K ⎧⎛⎫
-+≥⎪ ⎪-⎝⎭⎪⎪⎛
⎫-⎪=-≤≤⎨ ⎪
-⎝⎭⎪⎪≤⎪⎪⎩
11
2121
12V2132
2333
2U -K 11-U K 2U 11U K 2U =11U 211U 2i i i i i i i i i i K K K K K K U K K K K K K U K K U ⎧⎛⎫≥⎪ ⎪
-⎝⎭⎪⎪⎛⎫-⎪+≤≤ ⎪⎪-⎝⎭⎪⎨
⎛⎫-⎪+≤≤ ⎪
⎪-⎝
⎭⎪⎪⎛⎫--≥⎪ ⎪-⎪⎝⎭⎩
2
3V3322333
201
U =12112i i i i i i U K U K K U K K K K U U K K U π⎧⎪≥⎪⎪⎛
⎫-⎪-≤⎨ ⎪
-⎝⎭⎪⎪⎛⎫-⎪+≤ ⎪⎪-⎝⎭
⎩ 对于其他评价因素同理可以求出。 5.1.2评价因素的选取、分级和评分
影响中原经济区域水资源承载力的因素众多,即有供水方面的,又有蓄水方面的;既有直接的,又有间接的。根据水资源及其利用特点并按照评价指标的可测性、可靠性及充分性原则、参照全国水资源供需分析采用的指标体系,考虑中原经济