风力发电技术基础教程 PPT
合集下载
风力发电基础课件
回转平面与叶片截面
弦长的夹角
运动旋转方向
u R 2Rn
dL气流升力
相对
速度
dL
1 2
Cl w2dS
dD
1 2
Cd
w 2dS
dF气流w产生的气动力
驱动功率dPw= dT
风输入的总气动功率:P=vΣFa 旋转轴得到的功率:Pu=Tω
风轮效率η=Pu/P
叶片的几何参数
3. 旋转叶片的气动力(叶素分析)
v v1 v2 2
,
贝兹理
最大理想功率为:Pmax
8 27
Sv13
论的极 限值
风力机的理论最大效率:max
Pmax E
(8 / 27)Sv13
1 2
Sv13
16 27
0.593
风力发电机从自然风中所能索取的能量是有限的,其 功率损失部分为留在尾流中的旋转动能。
风力发电机基础理论
3.风力机的主要特性系数
对于有限长的叶片,风轮叶片下游存在着尾迹涡,它形成两 个主要的涡区:一个在轮毂附近,一个在叶尖。有限叶片数由 于较大的涡流影响将造成一定的能量损失,使风力机效率有所 下降。
1) 中心涡,集中在转轴上; 2) 每个叶片的边界涡; 3) 每个叶片尖部形成的螺旋涡。
涡流理论
叶片静止时,据赫姆霍兹定理,叶片附着涡和后缘尾涡 组成马蹄涡系。简化后,将叶片分成无限多沿展向宽度很小 的微段。
叶片的几何参数
2.升力和阻力的变化曲线
0.8
Cl •升力系数与阻力系数是随攻角变化的
0.6
0.4
失速点
0.2
Cd
i
i -30o -20o -10o 0o 10o 20o
-0.2 Cl min
弦长的夹角
运动旋转方向
u R 2Rn
dL气流升力
相对
速度
dL
1 2
Cl w2dS
dD
1 2
Cd
w 2dS
dF气流w产生的气动力
驱动功率dPw= dT
风输入的总气动功率:P=vΣFa 旋转轴得到的功率:Pu=Tω
风轮效率η=Pu/P
叶片的几何参数
3. 旋转叶片的气动力(叶素分析)
v v1 v2 2
,
贝兹理
最大理想功率为:Pmax
8 27
Sv13
论的极 限值
风力机的理论最大效率:max
Pmax E
(8 / 27)Sv13
1 2
Sv13
16 27
0.593
风力发电机从自然风中所能索取的能量是有限的,其 功率损失部分为留在尾流中的旋转动能。
风力发电机基础理论
3.风力机的主要特性系数
对于有限长的叶片,风轮叶片下游存在着尾迹涡,它形成两 个主要的涡区:一个在轮毂附近,一个在叶尖。有限叶片数由 于较大的涡流影响将造成一定的能量损失,使风力机效率有所 下降。
1) 中心涡,集中在转轴上; 2) 每个叶片的边界涡; 3) 每个叶片尖部形成的螺旋涡。
涡流理论
叶片静止时,据赫姆霍兹定理,叶片附着涡和后缘尾涡 组成马蹄涡系。简化后,将叶片分成无限多沿展向宽度很小 的微段。
叶片的几何参数
2.升力和阻力的变化曲线
0.8
Cl •升力系数与阻力系数是随攻角变化的
0.6
0.4
失速点
0.2
Cd
i
i -30o -20o -10o 0o 10o 20o
-0.2 Cl min
风力发电机基础知识及电气控制.ppt
发电机变频器在NCC320
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容
风力发电基础知识介绍 PPT
7
2)陆地上方的空气加热速度要比海 洋上更快,陆地上的热空气上升到 一定高度后冷却。
8
3)这些冷空气逐渐向海洋上方移 动,在这里下沉并被向陆地方向 挤压,空气向陆地的流动就是我 们所说的风。因此,说明太阳是 风形成的原因所在!
9
1) 大气层包围着地球 它的内部被称为对流层,距地球表面约十公里,完 全由空气组成。接近地球表面有大量的空气,而8- 10公里以外空气却很稀薄,
Electric Generator 发电机
输出功率
Speed 速度
Controller 控制器
Wind Speed & Direction 风速与方向
16
装配一台风机 一台风机是由许多部分组成的?
塔架 机舱 变压器 叶轮 基础
17
叶轮 叶轮被固定在大 的主轴上,大的 叶轮有三个吸收 风能的叶片,风 速足够大时就会 驱动叶轮旋转!
34
高速轴 发电机与齿轮箱是通过高速轴连 接的. 高速轴转动并不像主轴那样具有 很大的扭矩 这就是高速轴看起来很细的原因。 另一方面,高速轴转速很快, 达到了每分钟1500转
35
机械刹车 一台风机有两套原理不同的刹车: 一套是叶尖刹车,另一套是机械 刹车。
机械刹车被安装在发电机与齿轮箱之间 的高速轴上,它仅仅被用在当叶尖刹车 失败需要紧急刹车时。当风机在停机检 修状态时,启动刹车装置以避免因风机 突然启动而产生的隐患。
32
主轴 叶轮被用螺栓固定在风 机主轴上一个强度很高 的圆盘上。
牢固、稳定的固定叶轮是非常重要的。 齿轮箱则被固定在主轴的另一头。
33
齿轮箱 这是机舱内部的齿轮箱。齿轮 箱内部有齿轮传动装置,内部 齿轮之间相互啮合,叶轮转速 在每分钟27转左右 主轴缓慢旋转将很大的力传送 到齿轮箱里,通过传动装置将 转速成比例提高。
风力发电技术PPT课件
控制策略实施
实施效果评估
采用最大功率点跟踪和电网电压定向控制 策略,确保风力发电机在并网过程中能够 稳定运行,并实现对电网的友好接入。
通过实际运行数据对并网效果进行评估, 结果显示该并网方案和控制策略能够有效 提高风能利用率和电网稳定性。
06
运行维护与故障排除
运行维护管理体系建立
制定运行维护计划
02
风力发电机组成与工作原理
风轮结构与类型
01
02
03
水平轴风轮
风轮旋转轴与地面平行, 适用于大型风力发电机, 具有高风能利用率和稳定 性。
垂直轴风轮
风轮旋转轴与地面垂直, 适用于小型风力发电机, 具有结构简单、维护方便 等优点。
风轮叶片
叶片形状和材料对风能利 用率和噪音等性能有重要 影响,现代风力发电机多 采用复合材料叶片。
运行。
03
风力发电机组设计与选型
设计原则与方法
01
02
03
04
安全性原则
确保风力发电机组在各种恶劣 环境下的稳定运行,防止意外
事故发生。
经济性原则
在保障安全性的前提下,追求 经济效益最大化,降低度电成
本。
可靠性原则
提高风力发电机组的可利用率 和寿命,减少维护成本和停机
时间。
适应性原则
适应不同风资源和环境条件, 确保风力发电机组的良好运行
控制系统与辅助设备
控制系统
实现对风力发电机的启动、停机 、调速、并网等控制功能,保证
风力发电机的安全稳定运行。
偏航系统
根据风向变化调整风轮迎风角 度,提高风能利用率和减少风 轮载荷。
刹车系统
在紧急情况下实现风力发电机 的快速停机,保证设备安全。
新能源发电技术之风力发电技术PPT(72张)
建设一座装机10万千瓦的风电场,约需8亿元以上, 而建设同样规模的火电厂约为4至5亿元。
风力涡轮发电机组成? 风大时风机是否安全? 风向变化了,风机方向变不变呀?
你想了解风电吗? 那就向下了解吧!
我上到风机上了
总结
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
特性:周期性、多样性、
复杂性
多大的风力才可以发电呢?
一般说来,3级风就有利用的价值。但从经济合 理的角度出发,风速大于4m/s才适宜于发电。
据测定,一台55kW的风力发电机组,当风速 9.5m/s时,机组的输出功率为55kW;当风速8m/s 时,功率为38kW;风速6m/s时,只有16kW;而风 速为5m/s时,仅为9.5kW。可见风力愈大,经济 效益也愈大。
•
16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
•
17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。
•
18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。
新能源发电技术
国网技术学院 新能源与发电培训部
程新华
新能源发电技术
一、能源发展战略简介 二、原子能发电技术 三、水利发电技术
风力涡轮发电机组成? 风大时风机是否安全? 风向变化了,风机方向变不变呀?
你想了解风电吗? 那就向下了解吧!
我上到风机上了
总结
•
19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。
•
20、没有收拾残局的能力,就别放纵善变的情绪。
•
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
•
2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
特性:周期性、多样性、
复杂性
多大的风力才可以发电呢?
一般说来,3级风就有利用的价值。但从经济合 理的角度出发,风速大于4m/s才适宜于发电。
据测定,一台55kW的风力发电机组,当风速 9.5m/s时,机组的输出功率为55kW;当风速8m/s 时,功率为38kW;风速6m/s时,只有16kW;而风 速为5m/s时,仅为9.5kW。可见风力愈大,经济 效益也愈大。
•
16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。
•
17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。
•
18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。
新能源发电技术
国网技术学院 新能源与发电培训部
程新华
新能源发电技术
一、能源发展战略简介 二、原子能发电技术 三、水利发电技术
《风力发电教程》课件
风力发电的发展历程与现状
发展历程
自20世纪70年代以来,随着能源危机和环境问题的日益严重,风能作为一种清洁、可再生的能源得 到了广泛关注。经过几十年的发展,风力发电技术不断成熟,已经成为全球范围内快速发展的可再生 能源产业。
现状
目前全球风力发电装机容量已经达到了数亿千瓦,中国、美国、欧洲等国家和地区都在大力发展风能 产业。随着技术的进步和规模化发展,风力发电成本不断降低,已经成为最具竞争力的可再生能源之 一。同时,各国政府也出台了一系列政策措施,鼓励和支持风能产业的发展。
风力发电在分布式能源系统中的应用案例
通过具体案例分析,如某个城市的分布式能源系统建设、某个工业园区的分布式 能源系统建设等,介绍风力发电在其中的应用模式、技术方案以及经济性分析。
海上风电的发展与实践
海上风电的发展现状与趋势
介绍全球海上风电的发展历程、现状以及未来发展趋势,阐述海上风电的优势和挑战。
适合大规模并网发电,单机容 量大,发电效率高。
小型风力发电机组
适合分布式发电和小规模应用 ,安装灵活,成本较低。
风力发电机组的工作流程
风能捕获
风轮叶片受到风力作用 ,旋转轮毂驱动齿轮箱
。
机械能转换
齿轮箱将低速旋转的机 械能转换为高速旋转的
机械能。
电能产生
高速旋转的机械能驱动 发电机转动,通过电磁
感应原理产生电能。
储能技术
储能技术分类
储能技术包括物理储能、 化学储能和电磁储能等, 在风力发电中常用的是化 学储能技术。
储能系统组成
化学储能系统主要包括电 池、充电和放电控制装置 等部分。
储能技术的应用
储能技术的应用能够解决 风能发电的间歇性问题, 提高电力系统的稳定性和 可靠性。
风力发电基础知识介绍ppt课件
.
5
由于两个屋子之间有温度差,风 就一直在吹。壁炉里的火加热了 空气。热空气流动到温度低的房 间的顶部,最终通过窗户释放到 外界。太阳不断地加热着地球, 壁炉就扮演着太阳的角色
.
6
1)当太阳光照射到地球表面时,地 球被加热,而陆地和海洋的吸收热 量的速度是不同的,陆地吸收热的 速度比海洋快的多。
.
27
机械刹车 当风机需要被维 修或例行维护时, 机械刹车将叶轮 锁定,使其停止 转动!
.
28
高速轴 高速轴将来自
齿轮箱的能量传 递到发电机,此 时高速轴的转速 达到每分钟1500 转!
.
29
它是如何工作的? 机舱 叶轮 齿轮箱 发电机 塔架 风 建造地点 组装一台风机
.
31பைடு நூலகம்
机舱
主轴 齿轮箱 高速轴 机械刹车 发电机 控制器 风速仪 风向标 偏航电机 偏航轴承 冷却系统 叶轮
全由空气组成。接近地球表面有大量的空气,而8- 10公里以外空气却很稀薄,
2) 风的形成主要有两个原因: 地球总是绕着自己的中心轴旋转。当地球转动时,对 流层静止不动,这样你的脑海里可能就会有风形成的 概念了。而事实上在地表数百米的空气层是跟着地球 旋转的。因此如果所有空气(包括地表附近)完全静 止,那么风就不能形成了。
Gearing 齿轮装置
Speed & Torque 速度与扭矩
Coupling 联轴器
Electric Generator 发电机
Output Power
输出功率
Speed 速度
Controller 控制器
.
16
装配一台风机 一台风机是由许多部分组成的?
塔架 机舱 变压器 叶轮 基础
风力发电技术基础教程ppt课件
直于W的升力元dL。 • 另一方面,dR还可分解为推力元dF和扭矩元dT,由几何关系可得:
dF=dLcos + dDsin dT=r(dLsin - dD cos )
35
• 由于可利用阻力系数CD和升力系数Cl 分别求得dD和dL:
2
dL = 1/2 CLW C dr 2
dD = 1/2 CD W C dr 故dF和dT可求。 • 将叶素上的力元沿展向积分,得: —作用在叶轮上的推力:F= dF —作用在叶轮上的扭矩:T= dT —叶轮的输出功率:P= dT= T
• 风力发电机组(以下简称风力机)是一种能量转换装置——将风能转换为电能的。
5
6
二、风力发电机组的主要机型
• 按叶片与轮毂的联接方式分: —定桨距 (失速型)机组 —变桨距机组
• 按叶轮转速是否恒定分: —定速风力机
—变速风力机
•其它机型 —主动失速型 —无齿轮箱型 —海上机组
7
• 基本特征 —水平轴 —三叶片 —上风式 —双速发电机
9
第二章 风力机基础理论 • 叶片的空气动力特性 • 叶轮的空气动力模型
10
§2.1 空气动力学的基本概念 一、流线 • 气体质点:体积无限小的具有质量和速度的流体微团。 • 流线:
—在某一瞬时沿着流场中各气体质点的速度方向连成的一条平滑曲线。 —描述了该时刻各气体质点的运动方向:切线方向。 —流场中众多流线的集合称为流线簇。一般情况下,各流线彼此不会相交如图所示。
18
• 上翼面:凸出的翼型表面。 • 下翼面:平缓的翼型表面。 • 中弧线:翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 • 厚度:翼弦垂直方向上上下翼面间的距离。
—厚度分布:沿着翼弦方向的厚度变化。 • 弯度:翼型中弧线与翼弦间的距离。
dF=dLcos + dDsin dT=r(dLsin - dD cos )
35
• 由于可利用阻力系数CD和升力系数Cl 分别求得dD和dL:
2
dL = 1/2 CLW C dr 2
dD = 1/2 CD W C dr 故dF和dT可求。 • 将叶素上的力元沿展向积分,得: —作用在叶轮上的推力:F= dF —作用在叶轮上的扭矩:T= dT —叶轮的输出功率:P= dT= T
• 风力发电机组(以下简称风力机)是一种能量转换装置——将风能转换为电能的。
5
6
二、风力发电机组的主要机型
• 按叶片与轮毂的联接方式分: —定桨距 (失速型)机组 —变桨距机组
• 按叶轮转速是否恒定分: —定速风力机
—变速风力机
•其它机型 —主动失速型 —无齿轮箱型 —海上机组
7
• 基本特征 —水平轴 —三叶片 —上风式 —双速发电机
9
第二章 风力机基础理论 • 叶片的空气动力特性 • 叶轮的空气动力模型
10
§2.1 空气动力学的基本概念 一、流线 • 气体质点:体积无限小的具有质量和速度的流体微团。 • 流线:
—在某一瞬时沿着流场中各气体质点的速度方向连成的一条平滑曲线。 —描述了该时刻各气体质点的运动方向:切线方向。 —流场中众多流线的集合称为流线簇。一般情况下,各流线彼此不会相交如图所示。
18
• 上翼面:凸出的翼型表面。 • 下翼面:平缓的翼型表面。 • 中弧线:翼型内切圆圆心的连线。对称翼型的中弧线与翼弦重合。 • 厚度:翼弦垂直方向上上下翼面间的距离。
—厚度分布:沿着翼弦方向的厚度变化。 • 弯度:翼型中弧线与翼弦间的距离。
风力发电基础知识介绍 ppt课件
Coupling 联轴器
Electric Generator 发电机
Output Power
输出功率
Speed 速度
Controller 控制器
17
装配一台风机 一台风机是由许多部分组成的?
塔架 机舱 变压器 叶轮 基础
18
叶轮 叶轮被固定在大 的主轴上,大的 叶轮有三个吸收 风能的叶片,风 速足够大时就会 驱动叶轮旋转!
Cut-out or Furling
Velocity 截止或收叶速度
16
Wind 风
Aero Turbine 航空涡轮机
Yaw Control
&
Pitch Control 偏航控制与变桨
控制
Wind Speed & Direction 风速与方向
Gearing 齿轮装置
Speed & Torque 速度与扭矩
使用水冷却时,冷水被导入一些隐藏 在发电机外壳里的管中。水冷却了发 电机加热了水本身。而散热器(如上 图)又利用周围环境的空气再将水冷 却。由此,水在冷却发电机的同时不 断的循环,温度却不会升高。
44
叶轮 所有大型风机都有三个叶片 组成叶轮与主轴连接,而每 种风机的叶片长度都有所不 同。比如有一种风机叶片长 度为25-27米,而最大的风机 的叶片达到39米,这相当于 一懂13层的高楼!
35
高速轴
发电机与齿轮箱是通过高速轴连 接的. 高速轴转动并不像主轴那样具有 很大的扭矩
这就是高速轴看起来很细的原因。 另一方面,高速轴转速很快, 达到了每分钟1500转
36
机械刹车 一台风机有两套原理不同的刹车: 一套是叶尖刹车,另一套是机械 刹车。
机械刹车被安装在发电机与齿轮箱之间 的高速轴上,它仅仅被用在当叶尖刹车 失败需要紧急刹车时。当风机在停机检 修状态时,启动刹车装置以避免因风机 突然启动而产生的隐患。
《风力发电技术》课件
用于调节风机的转速和风轮角度,以优化发电效率。
全球风力发电发展现状
快速增长
近年来,全球风力发电容量 持续增长,成为主要的可再 生能源之一。
领先国家
中国、美国和德国是全球风 力发电的主要领先国家。
环保效益
风力发电无污染、资源丰富, 是可持续发展的重要组成部 分。
中国风力发电的发展与规模
迅猛增长
就业机会
《风力发电技术》PPT课 件
让我们了解一下风力发电技术的精髓,探索其原理、组成和未来发展趋势。
风力发电技术的定义
风力发电技术是一种利用风能将其转化为电能的可再生能源技术。
风力发电的原,推动发电机产生电能。
2
组成
包括风力发电机组、塔架、涡轮机叶片和传动装置。
3
控制系统
中国是全球最大的风力发电市场, 拥有庞大的风力发电规模。
风力发电行业为中国创造了大量 就业机会,推动经济发展。
地域分布
风力资源在中国各地分布广泛, 促进了能源多元化。
风力发电的优势和挑战
1 清洁能源
风力发电不产生温室气体 和污染物,对环境友好。
2 可再生性
风是永恒的能源,风力发 电具有可持续性特征。
3 可变性
风力的不稳定性和可变性 是风力发电的主要挑战。
风力发电技术的未来发展趋势
技术创新
改进涡轮机叶片设计、提高风 速和方向控制技术。
储能发展
与储能技术的结合,解决风力 发电波动性的问题。
智能化系统
应用智能化系统和大数据分析 提高发电效率和可靠性。
结论和展望
风力发电技术在全球范围内得到日益广泛的应用,未来将继续发展和创新,为清洁能源做出更大贡献。
《风电教程幻灯片》课件
2 风力发电机的构造
风力发电机由塔筒、风轮、变速器、发电机等组成。塔筒用于支撑装置,风轮用于接受 风能,变速器用于转速适配,发电机用于产生电能。
3 制动与控制系统
风力发电机配备了制动和控制系统,用于控制风轮的转动速度和风力发电机的运行状态, 保证其安全和高效运行。
风电场的规划与设计
风电场的布局和风 机间距
风电场的布局需要考虑场地 的地形、环境等因素,合理 安排风机的位置。风机间距 的选择对风力发电的效益和 安全都有一定影响。
风机的选型和位置 布置
风机的选型需要考虑机型的 功率、转速等指标,并根据 风能资源的情况选择适当的 风机。风机的位置布置也需 要考虑风能分布的差异。
风场的电力系统和 配电装置
风场的电力系统包括风机并 网、变电站等设施。配电装 置用于连接风机与电网,将 风产生的电能送入电网供应 给用户。
风能资源的测量
风能资源的分析与评估
测量风能资源需要利用风速计、 风向计等仪器,以及进行一定 的数据分析和统计,从而确定 风能资源的可利用程度。
通过对风能资源的分析与评估, 可以确定风力发电的潜力和可 行性,并为风电场的规划提供 科学依据。
风力发电机
1 风力发电机的工作原理
风力发电机通过风的作用,使风轮叶片转动,驱动发电机产生电能。风能转化为机械能, 再转化为电能的过程。
风电场的运维与维护
1
风电场的运营与管理
风电场的运营与管理包括设备的运行监测、故障处理、维护计划的制定等。保证 风电场的安全运行和最大维护包括日常巡检、定期保养、故障排除等。高效的维护可以延长设 备的使用寿命和减少损失。
3
风电场的安全与风险控制
风电场的安全与风险控制包括对风力发电机的运行状态的监测与控制,以及采取 相应的安全措施和风险防范措施。
风力发电机由塔筒、风轮、变速器、发电机等组成。塔筒用于支撑装置,风轮用于接受 风能,变速器用于转速适配,发电机用于产生电能。
3 制动与控制系统
风力发电机配备了制动和控制系统,用于控制风轮的转动速度和风力发电机的运行状态, 保证其安全和高效运行。
风电场的规划与设计
风电场的布局和风 机间距
风电场的布局需要考虑场地 的地形、环境等因素,合理 安排风机的位置。风机间距 的选择对风力发电的效益和 安全都有一定影响。
风机的选型和位置 布置
风机的选型需要考虑机型的 功率、转速等指标,并根据 风能资源的情况选择适当的 风机。风机的位置布置也需 要考虑风能分布的差异。
风场的电力系统和 配电装置
风场的电力系统包括风机并 网、变电站等设施。配电装 置用于连接风机与电网,将 风产生的电能送入电网供应 给用户。
风能资源的测量
风能资源的分析与评估
测量风能资源需要利用风速计、 风向计等仪器,以及进行一定 的数据分析和统计,从而确定 风能资源的可利用程度。
通过对风能资源的分析与评估, 可以确定风力发电的潜力和可 行性,并为风电场的规划提供 科学依据。
风力发电机
1 风力发电机的工作原理
风力发电机通过风的作用,使风轮叶片转动,驱动发电机产生电能。风能转化为机械能, 再转化为电能的过程。
风电场的运维与维护
1
风电场的运营与管理
风电场的运营与管理包括设备的运行监测、故障处理、维护计划的制定等。保证 风电场的安全运行和最大维护包括日常巡检、定期保养、故障排除等。高效的维护可以延长设 备的使用寿命和减少损失。
3
风电场的安全与风险控制
风电场的安全与风险控制包括对风力发电机的运行状态的监测与控制,以及采取 相应的安全措施和风险防范措施。
风力发电技术讲义PPT课件
03
风力发电机组与设备
风力发电机组的主要类型与特点
水平轴风力发电机组
利用水平轴将风能转化为机械旋 转动力,根据风向调节转子叶片 角度,具有较高的风能利用率。
垂直轴风力发电机组
利用垂直轴将风能转化为机械 旋转动力,无需调节转子叶片 角度,适用于低风速地区。
大型风力发电机组
适用于风能资源丰富的地区, 具有高发电量、低成本等优点 ,但建设和安装周期较长。
预防性检修
根据机组运行状态和历史数据,预测 潜在的故障,提前进行检修,避免故 障发生。
风力发电场的运营模式与产业链
01
02
03
运营模式
介绍风力发电场的运营模 式,包括独立运营、合作 运营、租赁运营等。
产业链
分析风力发电产业链的各 个环节,包括设备制造、 风电场建设、运营维护、 电力输送等。
商业模式
风力发电技术的未来发展趋势
技术创新
未来风力发电技术的发展将继续依赖于技术创新,包括新材料、新工艺、智能控制等方面的研究与应 用。这些技术将进一步提高风能利用率和发电效率。
海上风电
海上风电是未来风能发展的重要方向。随着海上风电技术的成熟和成本的降低,海上风电将成为全球 能源供应的重要来源之一。同时,海上风电的建设也将促进海洋工程、船舶制造等相关产业的发展。
风力发电与其他可再生能源的协同发 展有助于提高可再生能源的总体占比, 加速能源结构的转型和优化。
感谢您的观看
THANKS
包括维护、管理、保险等方面 的费用。
投资回报期
评估风电场的投资回报期,判 断投资是否具有经济可行性。
05
风力发电的运行与维护
风力发电机组的运行管理
风力发电机组的启动与关闭
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
—传动系统:将叶轮的转速提升到发电机的额 定转速
—发电机:将叶轮获得的机械能再转变为电能。
—偏航系统:使叶轮可靠地迎风转动并解缆。 —其它部件:如塔架、机舱等 —控制系统:使风力机在各种自然条件与工况 下正常运行的保障机制,包括调速、调向和安 全控制。
• 风力发电机组(以下简称风力机)是一种能量 转换装置——将风能转换为电能的。
• 升力:
先定性地考察一番飞机机翼附近的流 线。当机翼相对气流保持图示的方向与 方位时,在机翼上下面流线簇的疏密程 度是不尽相同的。
1
2
1
1
3
1
—根据流体运动的质量守恒定律,有连续性方程
A1V1 = A2V2 + A3V3
其中:A、V分别表示截面积和速度。
下标1、2、3分别代表前方或后方、上表面
和下表面处。
—阻力与升力:R在风速方向的投影称为阻力,记为D; 而在垂直于风速方向上的投影称为升力,记为L。
—气动力矩:合力R对(除自己的作用点外)其它点 的力矩,记为M。又称扭转力矩。
• 为方便使用,通常用无量刚数值表示翼剖面的气动特 性,故定义几个气动力系数:
升力系数:
CL=L / (1/2 V2C)
阻力系数:
二、风力发电机组的主要机型
• 按叶片与轮毂的 联接方式分:
• 按叶轮转速是否 恒定分:
—定桨距 (失速 型)机组
—定速风力机
—变桨距机组
—变速风力机
•其它机型
—主动失速型 —无齿轮箱型 —海上机组
大家学习辛苦了,还是要坚持
继续保持安静
• 基本特征 —水平轴 —上风式
—三叶片 —双速发电机
• 机型的发展趋势 —定桨距 ——〉变桨距 —定速型 ——〉变速型 — Kw级 ——〉 MW级 — 有齿轮箱式 ——〉直接驱动式
CD=D / (1/2 V2C)
气动力矩系数: CM=M / (1/2 V2C2)
此处,L、D、M分别为翼型沿展向单位长度上的升
力、阻力和气动力矩。
3、翼剖面的升力特性
用升力系数Cl随攻角变化的曲线(升力特性
曲线)来描述。如图。
CLmax CL
0
CT
说明:
• 在0~CT之间,CL与呈近似的线性关系 表明随着的增加,升力L逐渐加大。
结论: 由于机翼上下表面所受的压力差,使得机
翼得到向上的作用力——升力。
三、翼型的气动特性
1、翼型的几何描述
• 前缘与后缘:
O
B
翼弦
C
• 翼弦: OB,长度称为弦长,记为 C。 —弦长是翼型的基本长度,也称几何弦。 —此外,翼型上还有气动弦,又称零升力线。
• 上翼面:凸出的翼型表面。 • 下翼面:平缓的翼型表面。 • 中弧线:翼型内切圆圆心的连线。对称翼型的
§2.2 叶轮空气动力学基础
叶轮的作用:将风能转换为机械能
一、叶轮的几何描述 • 叶轮轴线:叶轮旋转的轴线。 • 旋转平面:桨叶扫过的垂直于叶轮轴线的平面。 • 叶片轴线:叶片绕其旋转以改变相对于旋转平
面的偏转角——安装角(重要概念)。 • 半径r处的桨叶剖面:距叶轮轴线r处用垂直于
叶片轴线的平面切出的叶片截面。
• 当=CT时,CL达到最大值CLmax。CT称为 临界攻角或失速攻角。当>CT时,CL下
降。
• 当=0(<0)时, CL=0,表明无升力。0
称为零升力角,对应零升力线。
4、翼剖面的阻力特性
用阻力特性曲线来描述。 CD
CDmin
CDmin
两个特征参数:
最小阻力系数CDmin及对应攻角CDmin 。
• 气体质点:体积无限小的具有质量和速度的流 体微团。
• 流线: —在某一瞬时沿着流场中各气体质点的速度方 向连成的一条平滑曲线。 —描述了该时刻各气体质点的运动方向:切线 方向。 —流场中众多流线的集合称为流线簇。一般情 况下,各流线彼此不会相交如图所示。
绕过物体的流线簇
• 绕过障碍物的流线: 当流体绕过障碍物时,流线形状会改变,其
形状取决于所绕过的障碍物的形状。
• 不同的物体对气流的阻碍效果也各不相同 考虑几种形状的物体,它们的截面尺寸相同,
但侧面形状各异,对气流的阻碍作用(用阻力 系数度量)不同。
1.11
0.34
1.33
0.47
0.044
侧面形状不同的几种物体
二、阻力与升力
• 阻力:
当气流与物体有相对运动时,气流对 物体的平行于气流方向的作用力。
—根据伯努利方程:
2
P = Pi +1/2 * Vi
即:气体总压力=静压力+动压力=恒定值
考察翼型剖面气体流动的情况:
① 上翼面突出,流场横截面面积减小,空气流速大,
即V2>V1。而由伯努利方程,必使: P2 < P1,即静压 力减小。
② 下翼面平缓, V3≈V1,使其几乎保持原来的 大气压,即: P3 ≈ P1。
• 安装角:桨 叶剖面上的 翼弦线与旋 转平面的夹 角,又称桨 距角,记为 。
• 半径r处叶片截面的几何桨距:在r处几何螺旋 线的螺距。 可以从几个方面来理解:
—几何螺旋线的描述:半径r,螺旋升角。 —此处的螺旋升角为该半径处的安装角r。
—该几何螺旋线 与r处翼剖面 的弦线相切。
—桨距值:
H=2r tg r
中弧线与翼弦重合。 • 厚度:翼弦垂直方向上上下翼面间的距离。
—厚度分布:沿着翼弦方向的厚度变化。 • 弯度:翼型中弧线与翼弦间的距离。
—弯度分布:沿着翼弦方向的弯度变化。
2、作用在翼型上的气动力
重要概念:攻角
气流速度与翼弦间所夹的角度,记做,又
称迎角。
LRM来自VC• 由于机翼上下表面所受的压力差,实际上存在着一个 指向上翼面的合力,记为R。
二、贝兹理论
1. 贝兹理论中的假设
三、风力发电机组中的关键技术
• 机组的设计方法与技术 • 叶片的设计与制造技术
—气动设计 —结构设计 —制造工艺 • 机组控制技术 —功率控制技术 —载荷控制技术 —并网技术 —远程监控技术
第二章 风力机基础理论
• 叶片的空气动力特性 • 叶轮的空气动力模型
§2.1 空气动力学的基本概念
一、流线
风力发电技术基础教程
目录
• 风力发电技术概述 • 风力机的理论基础 • 机组的机械零部件 • 机组电气系统 • 风资源概述
第一章 风力发电技术概述
• 风力发电机组的总体构成 • 风力发电机组的主要机型 • 风力发电机组中的关键技术
一、风力发电机组的总体构成
风
电
机组
• 风力发电机组的主要组成部分: —叶轮:将风能转变为机械能。
—发电机:将叶轮获得的机械能再转变为电能。
—偏航系统:使叶轮可靠地迎风转动并解缆。 —其它部件:如塔架、机舱等 —控制系统:使风力机在各种自然条件与工况 下正常运行的保障机制,包括调速、调向和安 全控制。
• 风力发电机组(以下简称风力机)是一种能量 转换装置——将风能转换为电能的。
• 升力:
先定性地考察一番飞机机翼附近的流 线。当机翼相对气流保持图示的方向与 方位时,在机翼上下面流线簇的疏密程 度是不尽相同的。
1
2
1
1
3
1
—根据流体运动的质量守恒定律,有连续性方程
A1V1 = A2V2 + A3V3
其中:A、V分别表示截面积和速度。
下标1、2、3分别代表前方或后方、上表面
和下表面处。
—阻力与升力:R在风速方向的投影称为阻力,记为D; 而在垂直于风速方向上的投影称为升力,记为L。
—气动力矩:合力R对(除自己的作用点外)其它点 的力矩,记为M。又称扭转力矩。
• 为方便使用,通常用无量刚数值表示翼剖面的气动特 性,故定义几个气动力系数:
升力系数:
CL=L / (1/2 V2C)
阻力系数:
二、风力发电机组的主要机型
• 按叶片与轮毂的 联接方式分:
• 按叶轮转速是否 恒定分:
—定桨距 (失速 型)机组
—定速风力机
—变桨距机组
—变速风力机
•其它机型
—主动失速型 —无齿轮箱型 —海上机组
大家学习辛苦了,还是要坚持
继续保持安静
• 基本特征 —水平轴 —上风式
—三叶片 —双速发电机
• 机型的发展趋势 —定桨距 ——〉变桨距 —定速型 ——〉变速型 — Kw级 ——〉 MW级 — 有齿轮箱式 ——〉直接驱动式
CD=D / (1/2 V2C)
气动力矩系数: CM=M / (1/2 V2C2)
此处,L、D、M分别为翼型沿展向单位长度上的升
力、阻力和气动力矩。
3、翼剖面的升力特性
用升力系数Cl随攻角变化的曲线(升力特性
曲线)来描述。如图。
CLmax CL
0
CT
说明:
• 在0~CT之间,CL与呈近似的线性关系 表明随着的增加,升力L逐渐加大。
结论: 由于机翼上下表面所受的压力差,使得机
翼得到向上的作用力——升力。
三、翼型的气动特性
1、翼型的几何描述
• 前缘与后缘:
O
B
翼弦
C
• 翼弦: OB,长度称为弦长,记为 C。 —弦长是翼型的基本长度,也称几何弦。 —此外,翼型上还有气动弦,又称零升力线。
• 上翼面:凸出的翼型表面。 • 下翼面:平缓的翼型表面。 • 中弧线:翼型内切圆圆心的连线。对称翼型的
§2.2 叶轮空气动力学基础
叶轮的作用:将风能转换为机械能
一、叶轮的几何描述 • 叶轮轴线:叶轮旋转的轴线。 • 旋转平面:桨叶扫过的垂直于叶轮轴线的平面。 • 叶片轴线:叶片绕其旋转以改变相对于旋转平
面的偏转角——安装角(重要概念)。 • 半径r处的桨叶剖面:距叶轮轴线r处用垂直于
叶片轴线的平面切出的叶片截面。
• 当=CT时,CL达到最大值CLmax。CT称为 临界攻角或失速攻角。当>CT时,CL下
降。
• 当=0(<0)时, CL=0,表明无升力。0
称为零升力角,对应零升力线。
4、翼剖面的阻力特性
用阻力特性曲线来描述。 CD
CDmin
CDmin
两个特征参数:
最小阻力系数CDmin及对应攻角CDmin 。
• 气体质点:体积无限小的具有质量和速度的流 体微团。
• 流线: —在某一瞬时沿着流场中各气体质点的速度方 向连成的一条平滑曲线。 —描述了该时刻各气体质点的运动方向:切线 方向。 —流场中众多流线的集合称为流线簇。一般情 况下,各流线彼此不会相交如图所示。
绕过物体的流线簇
• 绕过障碍物的流线: 当流体绕过障碍物时,流线形状会改变,其
形状取决于所绕过的障碍物的形状。
• 不同的物体对气流的阻碍效果也各不相同 考虑几种形状的物体,它们的截面尺寸相同,
但侧面形状各异,对气流的阻碍作用(用阻力 系数度量)不同。
1.11
0.34
1.33
0.47
0.044
侧面形状不同的几种物体
二、阻力与升力
• 阻力:
当气流与物体有相对运动时,气流对 物体的平行于气流方向的作用力。
—根据伯努利方程:
2
P = Pi +1/2 * Vi
即:气体总压力=静压力+动压力=恒定值
考察翼型剖面气体流动的情况:
① 上翼面突出,流场横截面面积减小,空气流速大,
即V2>V1。而由伯努利方程,必使: P2 < P1,即静压 力减小。
② 下翼面平缓, V3≈V1,使其几乎保持原来的 大气压,即: P3 ≈ P1。
• 安装角:桨 叶剖面上的 翼弦线与旋 转平面的夹 角,又称桨 距角,记为 。
• 半径r处叶片截面的几何桨距:在r处几何螺旋 线的螺距。 可以从几个方面来理解:
—几何螺旋线的描述:半径r,螺旋升角。 —此处的螺旋升角为该半径处的安装角r。
—该几何螺旋线 与r处翼剖面 的弦线相切。
—桨距值:
H=2r tg r
中弧线与翼弦重合。 • 厚度:翼弦垂直方向上上下翼面间的距离。
—厚度分布:沿着翼弦方向的厚度变化。 • 弯度:翼型中弧线与翼弦间的距离。
—弯度分布:沿着翼弦方向的弯度变化。
2、作用在翼型上的气动力
重要概念:攻角
气流速度与翼弦间所夹的角度,记做,又
称迎角。
LRM来自VC• 由于机翼上下表面所受的压力差,实际上存在着一个 指向上翼面的合力,记为R。
二、贝兹理论
1. 贝兹理论中的假设
三、风力发电机组中的关键技术
• 机组的设计方法与技术 • 叶片的设计与制造技术
—气动设计 —结构设计 —制造工艺 • 机组控制技术 —功率控制技术 —载荷控制技术 —并网技术 —远程监控技术
第二章 风力机基础理论
• 叶片的空气动力特性 • 叶轮的空气动力模型
§2.1 空气动力学的基本概念
一、流线
风力发电技术基础教程
目录
• 风力发电技术概述 • 风力机的理论基础 • 机组的机械零部件 • 机组电气系统 • 风资源概述
第一章 风力发电技术概述
• 风力发电机组的总体构成 • 风力发电机组的主要机型 • 风力发电机组中的关键技术
一、风力发电机组的总体构成
风
电
机组
• 风力发电机组的主要组成部分: —叶轮:将风能转变为机械能。