双折射现象

合集下载

双折射原理

双折射原理

双折射原理
双折射原理是指当光线射入具有非正交晶轴的晶体时,将会发生折射现象。

在晶体内部,光线将会分裂为两束光线,传播方向不同,并且具有不同的折射率。

这种现象称为双折射。

双折射是由晶体的非均匀性引起的,晶体的非正交晶轴导致它的结构不均匀,从而导致光线以不同的速度在不同的方向上传播。

根据双折射原理,光线在进入晶体时会被分成两束光线,分别称为普通光和非普通光。

普通光是垂直于晶体轴的光线,它的传播速度和折射率与在无折射时相同。

非普通光是平行于晶体轴的光线,它的传播速度和折射率与普通光不同。

因此,当光线通过晶体时,它们的传播方向和速度会发生改变。

双折射原理在实际应用中有着广泛的应用。

例如,在光学仪器如显微镜和光学仪表中,双折射原理被用于制造偏光器件,如偏光片和偏光棱镜。

通过利用晶体的双折射性质,可以选择性地分离和控制光线的偏振状态。

此外,双折射原理在材料科学和工程领域也有很多应用。

例如,在材料的应力分析中,通过观察材料中光线的双折射现象,可以判断材料内部的应力分布情况。

双折射原理在光纤通信领域也有应用,例如制造偏光保护器和光纤光栅等。

总之,双折射原理是光学领域的重要原理之一,它描述了光线在晶体中发生双折射现象的规律。

这个原理的应用涉及到光学仪器、材料科学和工程等领域,对于理解和应用光学现象具有重要的意义。

晶体的双折射现象(精)

晶体的双折射现象(精)


光轴
• •
o光
e光
o光 e光
3. 光轴平行晶体表面,自然光垂直入射
o光
• •
e光
• •
• •
e光
• •
o光

此时,o, e 光传播方向相同,但传播速度不同。从晶体出
射后,二者产生相位差。
三. 晶体偏振器
no (1.658) n(1.55) ne (1.486)
1. 尼科耳棱镜
••


2. 渥拉斯顿棱镜

光轴 o光

••
••
o光
e光
e光
o光Biblioteka ••上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。
负晶体 no ne
o光 ie,o
••
e光
加拿大树胶
••
e
o

• e光 o光
3. 波晶片(光轴平行于表面且厚度均匀的晶体)
自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。
§14.13 晶体的双折射现象
一. 双折射现象
1.双折射
双折射现象 一束光入射到
各向异性的介质后出现两
s
束折射光线的现象。
方解石
R2
R1
2. 寻常光和非寻常光
两折射光线中有一条始终在入 射面内,并遵从折射定律,称 为寻常光,简称 o 光
i n1
n2
e o
e光
o光
另一条光一般不遵从折射定律,称非常光,简称 e 光
3. 晶体的光轴 当光在晶体内沿某个特殊方向传播时不发生双折射,该 方向称为晶体的光轴。 例如 方解石晶体(冰洲石)

磁光双折射现象

磁光双折射现象

磁光双折射现象磁光双折射现象是指在磁场作用下,光在晶体中发生折射时,会出现两个不同方向的折射光线。

这一现象是由于磁场对光的传播速度产生了影响,导致光线的传播方向发生改变。

磁光双折射现象的发现和研究为光学和磁学领域提供了重要的理论基础和实验依据。

磁光双折射现象最早是由法国物理学家夏尔·克尔什鲁恩(Charles Kerr)在19世纪70年代末观察到的。

他发现在某些晶体中,当施加磁场时,光线会分成两束,并且沿着不同的方向传播。

这一现象引起了科学家们的极大兴趣,随后进行了大量的研究工作。

磁光双折射现象的解释是基于磁场对晶体的电磁性质产生的影响。

晶体是由一系列有序排列的原子或分子构成的,其中的电子在磁场的作用下会发生运动。

这种运动会使得晶体的折射率发生变化,从而导致光线的传播速度和传播方向发生改变。

具体来说,磁场作用下的晶体可以分为正常磁光双折射和反常磁光双折射两种情况。

正常磁光双折射是指磁场使得晶体的折射率变大,导致光线的传播速度增加。

而反常磁光双折射则是指磁场使得晶体的折射率变小,导致光线的传播速度减小。

磁光双折射现象在实际应用中具有重要的意义。

例如,它可以用于制造磁光器件,如磁光隔离器和磁光调制器。

磁光隔离器可以实现单向光传输,防止光信号的反射和干扰,广泛应用于光通信和激光器系统中。

磁光调制器则可以根据外界磁场的变化来调节光的强度或相位,用于光通信和光信息处理等领域。

磁光双折射现象还在科学研究中发挥着重要作用。

通过研究磁光双折射现象,可以深入理解光与物质相互作用的机制,为材料的设计和合成提供指导。

同时,磁光双折射也为研究磁场的性质和磁场对物质的影响提供了一种新的手段。

磁光双折射现象是光学和磁学领域的重要现象之一。

它的发现和研究为我们深入理解光与物质相互作用的规律提供了重要的实验基础和理论依据。

在实际应用中,磁光双折射现象也有着广泛的应用前景。

随着科学技术的不断进步,我们对磁光双折射现象的认识和应用也会不断深化和拓展。

光通过单轴晶体时的双折射现象ppt课件

光通过单轴晶体时的双折射现象ppt课件

3、o光和e光的振动方向 o 光和 e光都是线偏振光,其振动方向如何?
o 光轴
e 光轴
o 光主截面
e 光主截面
用检偏器检验知
o 光的振动垂直 o光的主截面 e 光的振动在 e 光的主截面内
光轴在入射面内时, 两条光线的主截面就是入射面 o光的振动垂直入射面 两光偏振方向垂直 e光的振动在入射面内
4、o光和e光的主折射率(仅讨论单轴晶体) 光轴 o光的主折射率 两个主折射率
注意:在晶体内光轴是一个方向 实验上怎么操作呢?令入射表面垂直光轴,光线沿光轴方向入射,光线在晶体内 部传播不发生双折射。
光轴方向
空气
方解石 不发生双折射
方解石晶体的光轴(方向)
两钝隅连线方向为 光轴方向
101°52′
78°8′
78°8′
三个角度均为 101°52′的顶点 称为钝隅
单轴晶体 单轴晶体(uniaxis crystal) 只有一个光轴方向: 方解石 (冰洲石)、石英(quartz)、红宝石 人工拉制单轴晶体、ADP(磷酸二氢氨)、铌酸锂(LiNiO3) 方解石晶体的演示 双轴晶体(biaxis crystal)
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石 晶体
纸面
双 折 射
光 光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石晶体实物照 片 纸面

光的双折射现象 东北大学 大学物理

光的双折射现象  东北大学 大学物理

e
出射光沿同方向传播,具有相互垂直的偏振方向,但传播 速度不相同,我们认为产生了双折射现象。
双折射晶体的分类:
e波面 光轴
正晶体:vo ve 如石英 no ne 光轴 负晶体:vo ve如方解石 no ne
ve o
v0
o
v0 ve
正晶体
o波面
负晶体
四、双折射现象的应用
利用晶体制成一些棱镜或者器件可以从自然光中获得 高质量的线偏振光。 1、尼科耳棱镜 no (1.658) n(1.55) ne (1.486)
E’ F’


Oe
出射两束偏振方向相互垂直的线偏光
8
3、平行光垂直入射,光轴在入射面内光轴垂直于晶体表面
A
•E F O e 光轴
B
E’
• F’
出射光沿相同方向传播,具有相互垂直的偏振方向,传播速 度相同,不产生双折射现象。
4、平行光垂直入射,光轴在入射面内,光轴平行晶体表面
光轴
A
B
E F
O•
E’ F’
出射的是一束振动方向在屏幕面内的线偏振光
2、渥拉斯顿棱镜
两块直角方解石光轴相互垂直,如图:
D
C
•••
O• •e
O
•e

A
B
方解石 ne 1.4864 no 1.6584 Ve主 V0
第十一讲 光的双折射现象
一、双折射 :当一束自然光射向各向异性的介质时,从界面折 入介质内部的折射光分为传播方向不同的两束光的现象
方解石的一物双像
特性 :两束折射光是光矢量方向不同的平面偏振光
寻常光(o光):一束光始终在入射面内,且遵循折射定律 非常光(e光):一束光一般不在入射面内,且不遵循折射定律

晶体的双折射现象(精)

晶体的双折射现象(精)
光轴


方解石
光轴
o光
e光
o光
e光
3. 光轴平行晶体表面,自然光垂直入射

o光

e光


e光

o光
此时,o, e 光传播方向相同,但传播速度不同。从晶体出 射后,二者产生相位差。
三. 晶体偏振器 1. 尼科耳棱镜 2. 渥拉斯顿棱镜

no (1.658) n(1.55) ne (1.486)
光轴
v o t

v e t

( 平行光轴截面 )
( 平行光轴截面 )
ve
vo
( 垂直光轴截面 )
ve
vo
( 垂直光轴截面 )
二. 单轴晶体中的波面 ( 惠更斯作图法(ve>vo) )
1. 光轴平行入射面,自然光斜入射负晶体中 B


光轴

A
光轴


B'
方解石

o光 e光

2. 光轴平行入射面,自然光垂直入射负晶体中


光轴
o光





负晶体 no ne
加拿大树胶
o光 e光
e光 o光


o光 ie,o e光




e光
e
上述两种棱镜得到的偏振光 质量非常好,但棱镜本身价 格很高,因而使用较少。

o
o光
3. 波晶片 (光轴平行于表面且厚度均匀的晶体) 自然光垂直入射波晶片后, o 光, e 光传播速度不同, 产生的相位不同 。 出射 o 光 e 光的相差为

《双折射现象》课件

《双折射现象》课件

通过利用晶体或塑料等材料制造的特殊透镜,可以实现对不同偏振状态
光的分离和操控。
02
光学通信
在光纤通信中,双折射现象可用于实现光的偏振复用,从而提高通信容
量和传输速率。通过在光纤中引入双折射效应,可以实现信号的并行传
输和信号的解调。
03
光学传感
双折射现象还可以应用于光学传感领域,如压力、温度、磁场等物理量
的测量。通过利用双折射现象对光的偏振状态的影响,可以实现对物理
量的敏感测量。
02
双折射现象的物理原理
光的波动性
光的波动性是指光在传播过程中表现出的振动特性。光波是一种横波,具有振动 方向与传播方向垂直的特性。
当光波通过某些介质时,由于介质中分子或原子对光的振动方向产生影响,导致 光波的振动方向发生变化,从而影响光的传播方向。
光的偏振
光的偏振是指光波的振动方向在某一特定平面内。自然光中 ,光波的振动方向是随机的,但在特定条件下,光波的振动 方向可以被限制在某一特定平面内。
偏振光在某些介质中传播时,其传播方向会受到介质中分子 或原子的影响,从而表现出不同的光学性质。
双折射的物理机制
双折射是指当光线通过某些晶体或其它双折射介质时,光波会分裂成两 个偏振方向相互垂直、传播速度不同的光线,这种现象称为双折射。
双折射现象在光学通信和信息处理中有重要的应用,如光子晶体光纤、量子通信等,利用双折射现象可 以实现高速、大容量的信息传输和处理。
双折射现象的研究趋势与展望
探索新型双折射材料
随着科技的发展,新型材料的不断涌现,探索具有更高双折射 系数、更稳定的新型双折射材料是未来的研究趋势之一。
深入研究双折射机制
目前对双折射机制的理解还不够深入,未来需要进一步深 入研究光与物质相互作用机制,揭示双折射现象的本质。

光通过单轴晶体时的双折射现象

光通过单轴晶体时的双折射现象

非常光( 非常光 extraordinary light e光): 光 (1) 是振动面平行于自己的主平面的线偏振光 是振动面平行于自己的主平面的线偏振光; (2) 一般不符合折射定律 在垂直于光轴的方向 一般不符合折射定律,在垂直于光轴的方向 传播时符合折射定律. 传播时符合折射定律 (3) 沿不同的方向折射率不同 传播速度不同 沿不同的方向折射率不同, 传播速度不同. 沿光轴的方向折射率和速度与O光相同 沿光轴的方向折射率和速度与 光相同. 光相同 光和e光的主平面相互平行时 两光的振动面互相垂直. 当o光和 光的主平面相互平行时 两光的振动面互相垂直 光和 光的主平面相互平行时,两光的振动面互相垂直 对于e光 沿垂直于光轴的方向的折射率称为主折射率,记为 记为n 对于 光, 沿垂直于光轴的方向的折射率称为主折射率 记为 e.
o
e
晶体主 截面 O
晶体绕入射光方向旋转时两束光的相对光强不断变化 O’ 入射光 振动面
o e
晶体主 截面 O
晶体绕入射光方向旋转时两束光的相对光强不断变化 O’ 入射光 振动面
o
e
O
晶体主 截面
晶体绕入射光方向旋转时两束光的相对光强不断变化 O’ 入射光 振动面
o
e
O
晶体主 截面
晶体绕入射光方向旋转时两束光的相对光强不断变化 O’ 入射光 振动面
方解石晶体实 物照片 纸面 方解石晶体 CaCO3
折射现 双 折射现 象
1、双折射现象 用眼睛观看发光点, 会看到两个像点,透 过方解石晶体,纸面 上的字成了的双字
O光和e光
自然光进入各向异性晶体中,光线怎样传播?
两束折射光
▲ 服从折射定律寻常光线
ordinary ray— O光 extra —e光

光的双折射现象分析

光的双折射现象分析

光的双折射现象分析摘要一束入射光射入各向异性的晶体时,产生两束折射光的现象称为双折射现象。

在介质内,这两束光被称为O光与E光。

O光遵从折射定律,E光不遵从折射定律。

双折射现象表明,E光在各向异性介质(一般为晶体)内,各个方向的折射率不相等,而折射率与传播速度有关,因而,E光在晶体内的传播速度是随光线的传播方向的不同而变化的。

O光则不同,在晶体内各个方向上的折射率及传播速度都是相同的。

关键词:晶体;折射;光速。

正文:让平行的自然光束正入射在方解石晶体的一个表面上,我们就会发现光束分解为两束。

按照光的折射定律,正入射时光线不应该偏折。

而上述的两束光的一束在晶体内沿原方向传播,另一束却偏离了原来的方向,后者显然是违反了普通的折射定律。

进一步对各种入射方向进行研究,结果表明,晶体内的两条折射线中的一条总是符合普通的折射定律,另一条却总是违反它。

所以晶体内的前一条叫寻常光(简称o光),后一条折射线叫非常光(简称e 光)。

应当注意,这里所有的o光和e光,只在双折射晶体的内部才有意义,射出晶体以后,就无所谓了o光和e光。

在方解石中存在着一特殊的方向,光线沿这个方向传播时o光和e光不分开,这个特殊的方向称为晶体的光轴为了说明光轴的方向我们稍详细的研究一下方解石的晶体。

方解石是天然的晶体,如图所示,它呈平行六面体状,每个表面都是平行四边形,它的一对锐角约为78度,一对钝角约为102度。

大家可以看出每三个表面汇合成一个顶点,在八个顶点中有彼此对着的两个顶点是由三个钝角面汇合而成的。

通过这样的顶点并与三个界面成等角的直线方向,就是方解石晶体的光轴方向。

晶体中任何与上述直线平行的直线,都是光轴。

光轴代表晶体中的一个特定方向。

只有一个光轴的晶体称为单晶体,如方解石石英等。

有些晶体具有两个光轴方向,称为双轴晶体,如云母蓝宝石等。

晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。

O光和e光各有自己的主平面,实验发现,o光的光振动垂直于o光的主平面,e光的光振动在e光的主平面内,一般情况下,o光和e光的主平面并不重合,他们之间有一不大的夹角。

17.11光的双折射现象

17.11光的双折射现象

17.11 光的双折射现象
3 主截面: 光轴与晶面法线组成的平面 入射线在主截面内时,两条折射线均在主截 面内
光轴
109
71
71
光轴
109
e光
o光
17.11 光的双折射现象
四 正晶体与负晶体 o光波面:球面 e光波面:旋转椭 球面 光轴方向相切 ( vo ve )
光轴 光轴
*
17.11 光的双折射现象
一 晶体的双折射现象 双折射现象:光进入各向异性介质(双折射 晶体)时,介质中出现o光和e光两条折射光线.
17.11 光的双折射现象
折射定律
双折射现象
方解石晶体
i
n
玻璃

动 光 学 波动光学
sin i n 恒量 sin
17.11 光的双折射现象
o
e
o
e
o、e光均为
2 寻常光线: 在晶体中各方向上传播速度相 同. c no 常量 vo 1 非常光线: 晶体中各方向上传播速度不 同,随方向改变而改变.
c ne ve
no 、ne
:称为主折射率
17.11 光的双折射现象
三 光轴及主平面
1光轴:晶体内的特 定方向,在该方向,o 光和e 光的传播速 度相等 任何平行于光轴 的直线都是光轴
线偏振光:
1寻常光o (ordinary ray): 遵守折射定律,在入射面内
sin i n0 恒量 sin
17.11 光的双折射现象
2 非常光e (exotic ray): 不遵守折射定律,一般不在入射面内
sin i ne 恒量 sin
17.11 光的双折射现象
二 理论解释

晶体的自然双折射

晶体的自然双折射

续上
4. 主平面和主截面 主平面:晶体中光的传播方向与晶体 光轴构成的平面。
o光的 主平面
· · · ·
光轴
e光的 主平面
o光
光轴
e光
o光的振动方向垂直于o光的主平面; e光的振动方向平行于e光的主平面。
主平面:包含晶体光轴和光线的平面。
主截面:晶体表面的法线与晶体光 轴构成的平面。
二. 晶体的主折射率,正晶体、负晶体 光矢量振动方向与晶体光轴的夹角不同, 光的传播速度也不同,沿晶体光轴方向o光 和e光的传播速度相同。
4 2
2. 二分之一波片
1 ne no d m 2 m 0、 1、 2
A出
光轴
Ae入= Ae出 A入 A0入
使线偏振光振动面转过2 角度 三、 椭圆与圆偏振光的检偏
A0出
用四分之一波片和偏振片P 可区分出自然 光和圆偏振光或部分偏振光和椭圆偏振光。 自然光在晶体(波片)内产生的o光和e 光虽然同频率且振动方向相互垂直,但它们 之间无固定的位相差,这样的光不能合成椭 圆偏振光。
102° A
例如,方解石晶体
光轴 B
光轴是一特殊的方向,凡平 行于此方向的直线均为光轴。

单轴晶体:只有一个光轴的晶体
双轴晶体:有两个光轴的晶体
方解石
方解石的光轴
通过A或B,并 与三个会合钝角的 界面成等角的直线 方向,就是方解石 晶体的光轴方向
(对于严格等棱长的方解
石菱体,即AB连线方向)
与此平行通过晶 体的直线都是光 轴方向,常用 表示
必须与第一步 I 片产生强度 极大或极小透振方向重合。
观察现象 有消失 结论 第二步
线偏振光 自然光或圆偏振光 a. 令入射光依次通过

光通过单轴晶体时的双折射现象

光通过单轴晶体时的双折射现象

纸面
方解石 晶体

折 射
光光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
纸面
方解石 晶体

折 射
光光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
纸面
方解石 晶体

折 射
光光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
纸面
方解石 晶体

折 射
光光
当方解石晶体旋转时,o 光不动,e 光围绕o 光旋转
方解石晶体实物照 片 纸面
双 折折射射现现象
方解石晶体 CaCO3
1、双折射现象 用眼睛观看发光点,会看到 两个像点,透过方解石晶体, 纸面上的字成了的双字
O光和e光
自然光进入各向异性晶体中,光线怎样传播?
两束折射光
▲ 服从折射定律寻常光线 ordinary ray— O光
▲ 不服从折射定律异常光线 extra —e光
5.3 光通过单轴晶体时的双折射现象
一、晶体的双折射双现折象射
一束单色自然光垂直入射于晶体的表面,进入晶体后,变为两束光 .
O光
•• •• •• ••
• •• • • • •• • •
OE光偏振
插页
单色自然光
e光
晶体的截面
晶体绕入射光方向旋转, 寻常光(O光)不动,非常光(e光)随着晶体旋 转.
产生双折射原因
光轴在入射面内时, 两条光线的主截面就是入射面
o光的振动垂直入射面 e光的振动在入射面内
两光偏振方向垂直
4、o光和e光的主折射率(仅讨论单轴晶体)
光轴
两个主折射率
o光的主折射率
c no vo

双折射

双折射
寻常光和非常光都是线偏振光。冰洲石内光线和光轴构成的平面称作主平面。寻常光的振动(电场强度)垂 直于寻常光的主平面;非常光的振动(电场强度)则在非常光的主平面内。
类型
永其固有的特性,称为永久双折射。
暂时
有些物质(如玻璃、塑料、环氧树脂)通常是不发生双折射的,但当它们内部有应力时就会出现双折射现象。 还有些不发生双折射的物质(如硝基苯、钛酸钡),在电场的作用下会出现双折射, 这种现象称为暂时双折射 或人工双折射。
理论诠释
理论诠释
折射定律冰洲石的两条折射光线中,一条光遵守普通的折射定律,称作寻常光(或o光);另一条光不遵守 普通的折射定律,称作非常光(或e光)。在冰洲石内,寻常光的传播速度与传播方向无关,是一个常量;非常光 的传播速度则是与传播方向有关的变量。冰洲石内有一个特殊的方向,非常光沿这个方向传播的速度等于寻常光 的速度。这个方向称作冰洲石的光轴。冰洲石的六个表面都是相同的菱形时,两个钝隅的连线便是光轴。
双折射现象的明显例子是方解石。透过方解石的菱面体就可以看到明显重影。
产生双折射现象可作如下解释:自然光射到冰洲石上的每一点,都会在冰洲石内产生两种子波:一种是球面 波;另一种是以光轴为旋转轴的旋转椭球面波。根据惠更斯原理,子波的包络面便是新的波面。因此,两种子波 便有两种波面,即有两种折射光。平行光斜入射到冰洲石的表面上,光轴在入射面内,射到A点的光在冰洲石内产 生两个子波面(球面和旋转椭球面);射到B点的光晚到一些,产生的两个子波都小一些;这时射到C点的光刚到 达冰洲石表面。作这些子波的包络面CE和CF,则AE和AF就分别是A点产生的寻常光和非常光。
谢谢观看
双折射
一条入射光线产生两条折射光线的现象
01 简介
03 类型
目录

双折射现象

双折射现象

对于主截面和入射面重合的情况,o光、e光都在 入射面内,并且o光垂直于主截面,e光平行于主截面。 在晶体内,振动方向垂直于主平面的光称为o光。
在晶体内,振动方向平行于主平面的光称为e光。
注意:我们所说的o光和e光是对晶体而言的。只有
在晶体内才可以说o光和e光。在离开晶体后它们就只 有振动方向的区别,而无o光和e光的区别了,这时只 能说它们是振动方向不同的两束线偏振光。
A
q
B
光轴
e光
C o光
[ C ]
6
三、光的双折射现象的解释
惠更斯 原理: O 光在晶体内任意点所引起的波阵面是球 面。即具有各向同性的传播速率。
e 光在晶体内任意点所引起的波阵面是旋转椭 球面。沿光轴方向与O光具有相同的速率。
O光波面 A 光轴方向
e光波面
O光波面
A
e光波面
光轴方向
负晶如方解石CaCO3
例. ABCD 为一块方解石的一个截面,光轴方 向在屏幕面内且与AB 成一锐角q ,如图所示. 一束平行的单色自然光垂直于 AB 端面入射.在 方解石内折射分解为 o 光和 e 光, o 光和 e 光 D 的:
(A) 传播方向相同,光矢量的振 动方向互相垂直. (B) 传播方向相同,光矢量的振动 方向不互相垂直. (C) 传播方向不相同,光矢量的振 动方向互相垂直. (D) 传播方向不相同,光矢量的振 动方向不互相垂直.
方解石
71
o光
•当入射光位于晶体的主平面内时(即入射面就是晶 体的主平面), o光、e光以及它们的主平面都在入 射面内(两光的主平面与入射面重合)。此时, o光 和e光的光矢量振动方向互相垂直。
4
•在一般情况下, o光的主平面与e光的主平面之间 有一不大的夹角,此时两光矢量的振动方向不完全 互相垂直。

双折射现象

双折射现象

双折射现象双折射现象,也称为双折射效应,在光学中是指光线在通过特定材料时,会发生两个不同的折射,即折射光线分成了两个不同的方向传播。

双折射现象最早是在1669年由丹麦天文学家和物理学家欧拉斯·巴塞利乌斯·巴巴贝尔(Erasmus Bartholinus)发现的。

他注意到一块冰晶可以将一个入射光线分成两个不同的方向折射,这些折射光线的偏振方向也不同。

后来,瑞典科学家哈特文·哈吉姆斯提出了双折射现象的说明,他发现双折射现象通常发生在具有非正交晶面的晶体中。

双折射现象的原理是晶体自身的对称性破缺,使得光速度在不同方向上不同。

这使得光线在通过晶体时的折射情况也不同,进而导致双折射效应的发生。

一个典型的例子是石英晶体,当光线以沿晶体光轴方向传播时,光速度与其他方向有较大的差异,这会导致光线分成两个互相垂直的偏振方向,并沿着两个不同的方向传播。

这个现象被称为“正常双折射”或“实用双折射”。

比如,在对矿物学研究中,双折射现象是一种重要的物理特征,因为它可以帮助鉴别和识别不同种类的矿物。

多种物质也会产生双折射现象,如合成晶体, 特别是嵌入含有离子液体的材料,和某些液体,如丙酮和二甲基苯。

因为双折射现象是一种诱人的物理现象,它被广泛应用在许多领域中,包括光学、光通信、生物成像、电子显示器、激光科技和光学通信等行业。

在光学实验中,常常使用一个叫做“偏振镜”的工具来改变光线的偏振方向,这也是了解双折射现象的关键。

然而,也需要注意的是,双折射现象并不是所有的材料都会产生,它只会在一些具有特定对称性和性质的材料中出现。

综上所述,双折射现象是一种在光学中重要的现象,对理解光学和解决许多应用问题很有价值。

通过对双折射的深入研究,我们能够更好地利用光学技术,并推动科技和工程领域的发展。

五章光的双折射ppt课件

五章光的双折射ppt课件

Iee Ieo
z1 z2
Ioo I 0
I ee
Ioe
Ieo I e
5.4.2 光在晶体中的传播方向
{正晶体 vo>ve 负晶体 ve>vo
石英 方解石
一、单轴晶体内o光和e光的传播方向:负晶体为例
1. 以i角入射到晶体,光轴在入射面内
sini c
sin ro v o no
····i A···B·cDΔ t
晶体绕入射光方向旋转时两束光的相对光强不断变化
O’
入射光
振动面
e
o
晶体主 截面 O
晶体绕入射光方向旋转时两束光的相对光强不断变化 O’
入射光 振动面
e
o
晶体主 截面 O
晶体绕入射光方向旋转时两束光的相对光强不断变化
入射光 振动面
O’
e
o
晶体主 截面 O
晶体绕入射光方向旋转时两束光的相对光强不断变化
负晶体:no> ne, vo < ve (如方解石、电气石等) 旋转椭球面在球面之外 旋转椭球面的短轴等于球面的直径。
负晶体 vo
光轴 ve

强度为I的自然光,垂直入射到方解石晶体上后又垂直入射到 另一块完全相同的晶体上。两块晶体的主截面之间的夹角为, 试求当等于30°时,最后透射出来的光束的相对强 度(不考虑反射、吸收等损失)。
知识点回顾
物质的二向色性
利用
分界面的反射和折射 晶体的双折射
可得到线偏振光
5.3 光通过单轴晶体时的双折射现象
双 折折射射现现象
方解石晶体 CaCO 3
纸面
5.3 光通过单轴晶体时的双折射现象
一、双折射现象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A
B
Ao Ae
e光
o光
2、垂直入射时: (1)光轴垂直于晶体表面且平行 于入射面 o、e光速度相同,方向相同, 不发生双折射。 (2)光轴平行于晶体表面且 平行于入射面 o、e光方向相同,但速度不同,直 观上不分开,要发生双折射。
A B WO,We O,e O,e
AБайду номын сангаас
B Wo We
o e
注意:
o光、e光只存在于双折射晶体内部,出射晶体后, 就只是两束振动方向不同的线偏振光,无所谓O 光、e光。
e光
o光
双折射晶体的主截面和主平面
3.2 晶体的主折射率,正晶体、负晶体
惠更斯在研究双折射现象时提出: 在各向异性的晶体中,子波源会同时发出 o光、e光两种子波。
o光的子波,各方向传播 的速度相同为 v0,点波源发出的 波面为球面,振动方向始终垂直其 主平面。 o光只有一种光速vo 一种折射率no
光 光
方解石 晶体
继续旋转方解石晶体:
纸面
双 折 射
光 光
方解石 晶体
继续旋转方解石晶体:
纸面
双 折 射
方解石 晶体
光 光
继续旋转方解石晶体:
纸面
双 折 射
方解石 晶体
光 光
2. 晶体的光轴
当光在晶体内沿某个特殊方向传播时 不发生双折射,该方向称为晶体的光轴。 例.方解石晶体是由平行六面体构成的。 A 1020
方解石
以入射线为轴,转方解石: 光点o不动,e 绕o转,用偏振片检验, 二者都是偏振光,且偏振方向互相垂直。 所以,利用双折射现象也可以获得线偏振光。
e光的像
纸面
双 折 射
光 光
o光的像
方解石 晶体
当方解石晶体旋转时, o 光的像不动, e光的像围绕 o 光的像旋转。
继续旋转方解石晶体:
纸面
双 折 射
光轴
o光
光轴
e光
o光,e光的主平面可能重合,
也可能不重合;
一般来说, o光主平面和 e光主平面并不重合。
例。 . . e光 . .. . . . . 光轴方向
e光主平面(垂直屏幕)
o光 主平面(垂直屏幕)
o光主平面和 e光主平面 并不重合。
o光
注意: o光 有时是道,有时是点;e光亦然。
• 通过选择合适的入射方向,可以使入射面与主 截面重合。 • 当光轴处于入射面之中, • 此时,o光主平面、e光主平面重合,且均与主 截面重合。
光轴
· · · · vot · · · · · · · · · · · · · · · · · ·· ··
c n0 v0
e光的子波,各方向传播的速度不同。 各方向都有相应的折射率。 e 光在平行光轴方向上的速度与o光的速度 相同,为v0; 光轴 vot e 光在垂直光轴方向 上的速度与o光的速度 vet 相差最大,记为 ve, 定义其相应的折射率为 ne. e光点波源发出的波面 c ne 为椭球面,振动方向 ve 始终在其主平面内。 n0 ,ne称为晶体的主折射率。
o光
e光
n1 sin i n2 sin ro
sin i const sin re
非寻常光(extra-ordinary light): (1)一般不遵从折射定律: 当入射角改变时,
(2)一般折射线不在入射面内。
一束光入射到各向异性的媒质中分成两束 (e,o)光的现象。 e e o o
1020 1020 780 1020
0 光轴 78
光轴
A
光轴
B
B
方解石晶体的光轴 如果将A或B磨平,使磨面与光轴垂直, 当光线垂直磨面入射时,就无双折射现象。
1020 1020 1020
1020
78
0
780
1020 1020 1020
1020
只有一个光轴的晶体称单轴晶体, 如方解石、石英,冰等; 有两个光轴的晶体称双轴晶体, 如云毋、硫磺,兰宝石等。 (我们只讨论单轴晶体的双折射)
• 3 主截面:入射界面(晶体表面)的法线与
光轴形成的平面。是与晶体相关的,与光线无 关。
• 4 主平面:晶体中的光线与光轴所形成的平面。
• o光主平面, e光主平面。 实验表明: O 光振动垂直其主平面;(记) e 光振动在其主平面内。(记) o光的
主平面
e光的 · · 主平面 · ·
1020 1020 780 1020 78
0
六面体每个面都是钝角1020 和锐角780的平行四边形。 A点和B点是三个钝角的交合点, AB连线与三条棱边的夹角相等。 实验发现AB的方向 即方解石晶体光轴的方向。
光轴
B
方解石晶体的 光轴方向
注意:光轴是一个特殊的方向。
凡平行于此方向的直线均为光轴。
A 1020
o e B
(3)光轴平行于晶体表面且垂直于 入射面 o、e光方向相同,但光速不同,直 观上不分开,要发生双折射。服从 折射定律。
A
Wo We
● ● ● ●
o e
o
e
3.光轴 界面,且垂直入射面,自然光斜入射
此特殊情况(光轴 入射面)下, 在入射面(纸面)内,o光,e光 都满足折射定律,
• • • • 针对光轴在入射面内的情形。 入射光的波面分别为AB,Ao’B’,Ae’B’, (一)步骤: 由1与入射界面的交点A向2作垂线,交于B点。AB即为入 射光波面。则B到达界面时,A点的光已在介质中传播的 时间为t=BB’/c。 • 作O光波面:以A为中心,Vot为半径作球面,该球面与过 B’的平面的切点为Ao’,AAo’即为O光的方向。 • 作e光的波面:光轴与O光波面的交点也是光轴与e光波面 的交点,为椭球面的一个轴,另一轴与该轴垂直,长度为 Vet,可以作出椭球面,过B’点的平面与其切点为Ae’, AAe’为e光的方向。
§3双折射现象
一.双折射现象
透过方解石晶体看字出现双像。
折射现象 双 折射现
方解石晶体 CaCO 3
纸面
光通过双折射晶体
方解石
偏 振 片
双折射的两
束光振动方
向相互垂直
几个重要的概念
1.寻常光(o光)和 非寻常光(e光)
自然光 n1 n2 (各向异 性介质)
i re ro
寻常光(ordinary light): 遵从折射定律
晶体可分为两类: 正晶体: ne > no (ve<vo), 如石英、冰等。 负晶体: ne < no
光轴
vot
vet

子波源
正晶体 (vo > ve) 光轴
(ve>vo),
如方解石、红宝石等。
负晶体是椭球。(记)
vot
vet

子波源
负晶体 (vo < ve )
3.3晶体的惠更斯作图法
相关文档
最新文档