最新巧思妙解高考数学题目

合集下载

2024年新高考新结构数学7个大题逐一击破圆锥曲线含答案

2024年新高考新结构数学7个大题逐一击破圆锥曲线含答案

圆锥曲线目录【题型一】轨迹【题型二】新结构卷中19题“定义”型轨迹【题型三】直线所过定点不在坐标轴上【题型四】面积比值范围型【题型五】非常规型四边形面积最值型【题型六】“三定”型:圆过定点【题型七】“三定”型:斜率和定【题型八】“三定”型:斜率积定【题型九】圆锥曲线切线型【题型十】“韦达定理”不能直接用【题型十一】“非韦达”型:点带入型【题型一】轨迹求轨迹方程的常见方法有:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标x 0、y 0,然后代入点P 的坐标x 0,y 0 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.2024年新高考新结构数学7个大题逐一击破圆锥曲线(学生版)1(2024·重庆·模拟预测)已知点F-1,0和直线m:x=2,点P到m的距离d=4-2PF.(1)求点P的轨迹方程;(2)不经过圆点O的直线l与点P的轨迹交于A,B两点. 设直线OA,OB的斜率分别为k1,k2,记k1k2 =t,是否存在t值使得△OAB的面积为定值,若存在,求出t的值;若不存在,说明理由.2(2024·辽宁·一模)已知平面上一动点P到定点F12,0的距离比到定直线x=-2023的距离小40452,记动点P的轨迹为曲线C.(1)求C的方程;(2)点A2,1,M,N为C上的两个动点,若M,N,B恰好为平行四边形MANB的其中三个顶点,且该平行四边形对角线的交点在第一、三象限的角平分线上,记平行四边形MANB的面积为S,求证:S≤86 9.3(2024·山东淄博·一模)在平面直角坐标系xOy 中,点.F 5,0 ,点P x ,y 是平面内的动点.若以PF 为直径的圆与圆D :x 2+y 2=1相切,记点P 的轨迹为曲线C .(1)求C 的方程;(2)设点A (1,0),M (0,t ),N (0,4-t )(t ≠2),直线AM ,AN 分别与曲线C 交于点S ,T (S ,T 异于A ),过点A 作AH ⊥ST ,垂足为H ,求|OH |的最大值.【题型二】新结构卷中19题“定义”型轨迹1(2024·新疆乌鲁木齐·二模)在平面直角坐标系xOy 中,重新定义两点A x 1,y 1 ,B x 2,y 2 之间的“距离”为AB =x 2-x 1 +y 2-y 1 ,我们把到两定点F 1-c ,0 ,F 2c ,0 c >0 的“距离”之和为常数2a a >c 的点的轨迹叫“椭圆”.(1)求“椭圆”的方程;(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;(3)设c =1,a =2,作出“椭圆”的图形,设此“椭圆”的外接椭圆为C ,C 的左顶点为A ,过F 2作直线交C 于M ,N 两点,△AMN 的外心为Q ,求证:直线OQ 与MN 的斜率之积为定值.2(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如x=ty+1表示过点(1,0)的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆C1:x2+y2=1是直线族mx+ny=1(m,n∈R)的包络曲线,求m,n满足的关系式;(2)若点P x0,y0不在直线族:Ω:(2a-4)x+4y+(a-2)2=0(a∈R)的任意一条直线上,求y0的取值范围和直线族Ω的包络曲线E;(3)在(2)的条件下,过曲线E上A,B两点作曲线E的切线l1,l2,其交点为P.已知点C0,1,若A,B,C三点不共线,探究∠PCA=∠PCB是否成立?请说明理由.3(2024·全国·模拟预测)已知复平面上的点Z对应的复数z满足z2-z2-9=7,设点Z的运动轨迹为W.点 O 对应的数是0.(1)证明W是一个双曲线并求其离心率e;(2)设W的右焦点为 F1 ,其长半轴长为L,点Z到直线x=Le的距离为d(点Z在W的右支上),证明:ZF1=ed;(3)设W的两条渐近线分别为 l1,l2 ,过Z分别作 l1,l2 的平行线l3,l4分别交l2,l1于点 P,Q ,则平行四边形OPZQ的面积是否是定值?若是,求该定值;若不是,说明理由.【题型三】直线所过定点不在坐标轴上存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.1已知点M 是抛物线C :x 2=2py p >0 的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足PM =22.(1)求抛物线C 的方程;(2)过A -1,1 作斜率为2的直线与抛物线C 相交于点B ,点T 0,t t >0 ,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t =λk ?若存在,求出λ值;若不存在,请说明理由.2已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为233,点P 2,3 到其左右焦点F 1,F 2的距离的差为2.(1)求双曲线C 的方程;(2)在直线x +2y +t =0上存在一点Q ,过Q 作两条相互垂直的直线均与双曲线C 相切,求t 的取值范围.3已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上任意一点Q (异于顶点)与双曲线两顶点连线的斜率之积为19,E 在双曲线C 上,F 为双曲线C 的右焦点,|EF |的最小值为10-3.(1)求双曲线C 的标准方程;(2)过椭圆x 2m 2+y 2n2=1(m >n >0)上任意一点P (P 不在C 的渐近线上)分别作平行于双曲线两条渐近线的直线,交两渐近线于M ,N 两点,且|PM |2+|PN |2=5,是否存在m ,n 使得椭圆的离心率为223?若存在,求出椭圆的方程,若不存在,说明理由.【题型四】面积比值范围型圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.1(2022·全国·高三专题练习)F c,0是椭圆C:x2a2+y2b2=1a>b>0的右焦点,其中c∈N*.点A、B分别为椭圆E的左、右顶点,圆F过点B与坐标原点O,P是椭圆上异于A、B的动点,且△PBF的周长小于8.(1)求C的标准方程;(2)连接BP与圆F交于点Q,若OQ与AP交于点M,求S△OPQS△MBQ的取值范围.2(2023下·福建福州·高三校考)如图,已知圆C:x2a2+y2b2=1(a>b>0)的左顶点A(-2,0),过右焦点F的直线l与椭圆C相交于M,N两点,当直线l⊥x轴时,|MN|=3.(1)求椭圆C的方程;(2)记△AMF,△ANF的面积分别为S1,S2,求S1S2的取值范围.3(2022·湖北黄冈·蕲春县第一高级中学校考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,圆A 2:(x -2)2+y 2=r 2(r >0),椭圆C 与圆A 2交于点D ,且k DA2⋅k DA 1=-34.(1)求椭圆方程.(2)若过椭圆右焦点F 2的直线l 与椭圆C 交于P ,Q 两点,与圆A 2交于M ,N 两点,且S △A 1PQS △A 2MN=3,求r 的取值范围.【题型五】非常规型四边形面积最值型求非常规型四边形的面积最大值,首先要选择合适的面积公式,对于非常规四边形,如果使用的面积公式为S DMEN=12x N-x My1-y2,为此计算y1-y2,x N-x M代入转化为k的函数求最大值.1(2023·全国·高三专题练习)已知圆O:x2+y2=4,O为坐标原点,点K在圆O上运动,L为过点K的圆的切线,以L为准线的拋物线恒过点F1-3,0,F23,0,抛物线的焦点为S,记焦点S的轨迹为S.(1)求S的方程;(2)过动点P的两条直线l1,l2均与曲线S相切,切点分别为A,B,且l1,l2的斜率之积为-1,求四边形PAOB面积的取值范围.2(2023·全国·高三专题练习)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,以F1F2为直径的圆和椭圆C在第一象限的交点为G,若三角形GF1F2的面积为1,其内切圆的半径为2-3.(1)求椭圆C的方程;(2)已知A是椭圆C的上顶点,过点P-2,1的直线与椭圆C交于不同的两点D,E,点D在第二象限,直线AD、AE分别与x轴交于M,N,求四边形DMEN面积的最大值.3(2023·全国·高三专题练习)如图.已知圆M :(x -2)2+y 2=81,圆N :(x +2)2+y 2=1.动圆S 与这两个圆均内切.(1)求圆心S 的轨迹C 的方程;(2)若P 2,3 、Q 2,-3 是曲线C 上的两点,A 、B 是曲线C 上位于直线PQ 两侧的动点.若直线AB 的斜率为12,求四边形APBQ 面积的最大值.【题型六】“三定”型:圆过定点圆过定点思维:1.可以根据特殊性,计算出定点,然后证明2.利用以“某线段为直径”,转化为向量垂直计算2.利用对称性,可以猜想出定点,并证明。

高考数学复习点拨 巧构造妙解题

高考数学复习点拨 巧构造妙解题

高考数学复习点拨 巧构造妙解题指数函数的单调性是指数函数的重要性质,灵活应用此性质可以解决一些与之相关的问题,使一些看似复杂的问题,通过构造指数函数轻松获解.那么在具体问题中应如何构造函数呢?下面结合几例加以剖析.一、确定代数式的符号例1 已知3333x y x y x y --∈+>+R ,,,判断x y +的符号. 解:构造函数1()3333t t t t f t -=-=-,则它在R 上递增, 而3333x x y y --->-,即()()f x f y >-.x y ∴>-,即0x y +>.评析:在利用指数函数的性质解决问题时,要善于挖掘函数所隐含的性质. 二、确定字母的取值范围例2 关于x 的方程32345x x a a+=-有负实根,求实数a 的取值范围. 解:据方程有负实根,并注意到34x y ⎛⎫= ⎪⎝⎭是单调递减的,从而得到314x ⎛⎫> ⎪⎝⎭, 于是问题就变为解不等式3215a a +>-,可知354a <<. 评析:本题构造函数34x y ⎛⎫= ⎪⎝⎭是关键,利用函数与方程的关系使问题得以顺利解决. 三、判断几何图形形状例3 已知a bc m ,,,都是正数,且m m m a b c =+, 求当m 取何值时,长分别为a bc ,,的三条线段能构成三角形? 解:由于m m ma b c =+,且a bc m ,,,都是正数, 所以0a b >>,且0a c >>.因此要使长为a bc ,,的三线段能构成三角形,只要b c a +>即可. 因为m m m a b c =+, 所以1m m m m m b c b c a a a +⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. 因为()x x b c f x a a ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在R 上是单调递减函数, 所以若1m =,则(1)1b c f a a=+=,即b c a +=,显然不能构成三角形;若1m >,则()(1)f m f <,又()1m mb c f m a a ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,(1)b c f a +=, 因此b c a +>,故能构成三角形;若01m <<,则()(1)f m f >,即b c a +<,显然不能构成三角形.综上可知,当1m >时,长为a b c ,,的三线段能构成三角形.评析:应用指数函数的性质解决问题的关键在于构造指数函数, 本题对等式m m m a b c =+进行变形,使等式一端为常数,即1m mb c a a ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 然后利用相关函数单调性使问题顺利获解.。

高考数学巧学巧解大全

高考数学巧学巧解大全

最新高中数学巧学巧解大全高中数学活题巧解方法总论 一、代入法若动点),(y x P 依赖于另一动点),(00y x Q 而运动,而Q 点的轨迹方程已知(也可能易于求得)且可建立关系式)(0x f x =,)(0x g y =,于是将这个Q 点的坐标表达式代入已知(或求得)曲线的方程,化简后即得P 点的轨迹方程,这种方法称为代入法,又称转移法或相关点法。

【例1】(2009年高考广东卷)已知曲线C :2x y =与直线l :02=+-y x 交于两点),(A A y x A 和),(B B y x B ,且B A x x <,记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点),(t s P 是L 上的任一点,且点P 与点A 和点B 均不重合.若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;【巧解】联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221t y s x +=+=, 即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).【例2】(2008年,江西卷)设),(00y x P 在直线m x =)10,(<<±≠m m y 上,过点P 作双曲线122=-y x 的两条切线PA 、PB ,切点为A 、B ,定点M )0,(1。

过点A 作直线0=-y x 的垂线,垂足为N ,试求AMN ∆的重心G 所在的曲线方程。

【巧解】设1122(,),(,)A x y B x y ,由已知得到120y y ≠,且22111x y -=,22221x y -=,(1)垂线AN 的方程为:11y y x x -=-+, 由110y y x x x y -=-+⎧⎨-=⎩得垂足1111(,)22x y x y N ++,设重心(,)G x y所以11111111()321(0)32x y x x m x y y y +⎧=++⎪⎪⎨+⎪=++⎪⎩解得1139341934x y m x y x m y ⎧--⎪=⎪⎪⎨⎪-+⎪=⎪⎩由22111x y -= 可得11(33)(33)2x y x y m m--+-=即2212()39x y m --=为重心G 所在曲线方程 巧练一:(2005年,江西卷)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.,求△APB 的重心G 的轨迹方程.巧练二:(2006年,全国I 卷)在平面直角坐标系xOy 中,有一个以)3,0(1-F 和)3,0(2F 为焦点、离心率为23的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P处的切线与x 、y 轴的交点分别为A 、B ,且向量OB OA OM +=,求点M 的轨迹方程二、直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法。

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

巧借特殊值,妙解客观题——2020年高考数学

巧借特殊值,妙解客观题——2020年高考数学

30° 30° sin狀 +tan狀
( ) ( ) 60° 60°
60° 60°
C.3狀 sin狀 +tan狀 D.6狀 sin狀 +tan狀
分析:由于π的近似值是比较熟悉的,通过选取特
42 Copyrigh高t©中博看网 . All Rights Reserved.
术”相似,数学家阿尔·卡西的方法是:当正整数狀 充
分大时,计算单位圆的内接正6狀边形的周长和外切正
6狀 边形(各边均与圆相切的正6狀 边形)的周长,将它
们的算术平均数作为2π的近似值.按照阿尔·卡西的
方法,π的近似值的表达式是( ).
( ) ( ) A.3狀
30° 30° sin狀 +tan狀
B.6狀
二、开放探究问题
例2 (2020年高考数学北京卷第14题)若函数
犳(狓)=sin(狓+φ)+cos狓 的最大值为2,则常数φ 的
一个取值为

分析:直接利用题目条件选取比较熟知的特殊值
φ=
π,代 入 2

角函
数关

式,利 用


公式



化,得 到 相 应 的 三 角 函 数 解 析 式 满 足 条 件,从 而 即 为
与判断.
四、学科融合问题
例4 (2020年高考数学全国卷 Ⅱ 理科第12题)0
-1周 期 序 列 在 通 信 技 术 中 有 着 重 要 应 用.若 序 列
犪1犪2…犪狀… 满足犪犻 ∈ {0,1}(犻=1,2,…),且存在正整 数犿,使得犪犻+犿 =犪犻(犻=1,2,…)成立,则称其为0-1 周期序列,并称满足犪犻+犿 =犪犻(犻=1,2,…)的最小正整 数 犿 为这个序列的周期.对于周期为 犿 的0-1序列

巧借三角函数定义妙解2024年高考题

巧借三角函数定义妙解2024年高考题

巧用三角函数定义,妙解2024年高考题近年来,高考数学的题目越来越注重考查学生的综合运用能力和创新思维。

其中,三角函数作为高中数学的重要知识点,常常出现在高考试题中。

本文将通过巧用三角函数定义,妙解2024年高考题。

`x−1/3=y−1/4=z`(1)证明:AD⊥AE且DG⊥GF.(2)求证:∠DGF不是直角。

(3)设∠DGF=α,求平面DGF与平面ABC的夹角。

首先,我们需要利用三角函数的定义来解决这道题目。

对于一般的三角形ABC,我们可以利用向量AB和向量AC的点乘来求解夹角BAC的余弦值,然后通过反余弦函数求解夹角BAC的角度值。

(1)首先,我们可以通过坐标点A(1,3,1)和直线l的方程来求解线段AD和AE的方向向量。

分别计算得到:向量AD=(1-1,3-1/4,1-1/3)=(0,3/4,2/3)向量AE=(1-1,1-1/4,1-1/3)=(0,-1/4,-2/3)然后,我们可以通过计算这两个方向向量的点乘来判断它们是否垂直。

即:AD·AE=0*0+(3/4)*(-1/4)+(2/3)*(-2/3)=0由于AD和AE的点乘等于0,所以可以证明AD⊥AE。

同样的方法,我们可以计算线段DG和GF的方向向量,并判断它们是否垂直。

结果证明也成立。

(2)我们需要求解∠DGF的角度值。

根据题目已知条件,我们可以通过向量DG和向量GF的点乘来计算它们的夹角余弦值。

向量DG和向量GF 的计算结果分别为:向量DG=(4-1,-1/4-3,-2/3-1)=(3,-17/4,-5/3)向量GF=(4-1,1-3/4,1-2/3)=(3,5/4,1/3)接下来,我们计算两个向量的点乘,并通过反余弦函数求夹角DGF的角度值。

计算得到:DG·GF=3*3+(-17/4)*(5/4)+(-5/3)*(1/3)=46/8=23/4cos∠DGF = (DG·GF)/(,DG,*,GF,) ≈ (23/4)/(,(3, -17/4, -5/3),*,(3, 5/4, 1/3),)因为夹角DGF的余弦值不等于0,所以可以证明∠DGF不是直角。

2022-2023学年度高考数学专题突破《数列通项公式的多种妙解方式》含十六大经典题型附答案解析

2022-2023学年度高考数学专题突破《数列通项公式的多种妙解方式》含十六大经典题型附答案解析

数列通项公式的多种妙解方式经典题型一:观察法经典题型二:叠加法经典题型三:叠乘法经典题型四:待定系数法经典题型五:同除以指数经典题型六:取倒数法经典题型七:取对数法经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题经典题型九:周期数列经典题型十:前n 项积型经典题型十一:“和”型求通项经典题型十二:正负相间讨论、奇偶讨论型经典题型十三:因式分解型求通项经典题型十四:其他几类特殊数列求通项经典题型十五:双数列问题经典题型十六:通过递推关系求通项(2022·全国·高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【解析】(1)∵a 1=1,∴S 1=a 1=1,∴S 1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a n a n -1=n +1n -1,∴a n =a 1×a 2a 1×a 3a 2×⋯×a n -1a n -2×a n a n -1=1×31×42×⋯×n n -2×n +1n -1=n n +1 2,显然对于n =1也成立,∴a n 的通项公式a n =n n +1 2;(2)1a n =2n n +1 =21n -1n +1 , ∴1a 1+1a 2+⋯+1a n=21-12 +12-13 +⋯1n -1n +1 =21-1n+1<2(2022·全国·高考真题(理))记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n-1+n-12=2n-1a n-1+n-1②,①-②得,2S n+n2-2S n-1-n-12=2na n+n-2n-1a n-1-n-1,即2a n+2n-1= 2na n-2n-1a n-1+1,即2n-1a n-2n-1a n-1=2n-1,所以a n-a n-1=1,n≥2且n∈N*,所以a n是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,所以S n=-12n+nn-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时S n min=-78.类型Ⅰ观察法:已知数列前若干项,求该数列的通项时,一般对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项.类型Ⅱ公式法:若已知数列的前项和与a n的关系,求数列a n的通项a n可用公式a n=S1,(n=1)S n-S n-1,(n≥2)构造两式作差求解.用此公式时要注意结论有两种可能,一种是“一分为二”,即分段式;另一种是“合二为一”,即a1和a n合为一个表达,(要先分n=1和n≥2两种情况分别进行运算,然后验证能否统一).类型Ⅲ累加法:形如a n+1=a n+f(n)型的递推数列(其中f(n)是关于n的函数)可构造:a n-a n-1=f(n-1)a n-1-a n-2=f(n-2)...a2-a1=f(1)将上述m2个式子两边分别相加,可得:a n=f(n-1)+f(n-2)+...f(2)+f(1)+a1,(n≥2)①若f(n)是关于n的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n的指数函数,累加后可转化为等比数列求和;③若f(n)是关于n的二次函数,累加后可分组求和;④若f(n)是关于n的分式函数,累加后可裂项求和.类型Ⅳ累乘法:形如a n +1=a n ⋅f (n )a n +1a n=f (n )型的递推数列(其中f (n )是关于n 的函数)可构造:a n a n -1=f (n -1)a n -1a n -2=f (n -2)...a 2a 1=f (1)将上述m 2个式子两边分别相乘,可得:a n =f (n -1)⋅f (n -2)⋅...⋅f (2)f (1)a 1,(n ≥2)有时若不能直接用,可变形成这种形式,然后用这种方法求解.类型Ⅴ构造数列法:(一)形如a n +1=pa n +q (其中p ,q 均为常数且p ≠0)型的递推式:(1)若p =1时,数列{a n }为等差数列;(2)若q =0时,数列{a n }为等比数列;(3)若p ≠1且q ≠0时,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求.方法有如下两种: 法一:设a n +1+λ=p (a n +λ),展开移项整理得a n +1=pa n +(p -1)λ,与题设a n +1=pa n +q 比较系数(待定系数法)得λ=q p -1,(p ≠0)⇒a n +1+q p -1=p a n +q p -1 ⇒a n +q p -1=p a n -1+qp -1 ,即a n +q p -1 构成以a 1+qp -1为首项,以p 为公比的等比数列.再利用等比数列的通项公式求出a n +qp -1 的通项整理可得a n .法二:由a n +1=pa n +q 得a n =pa n -1+q (n ≥2)两式相减并整理得a n +1-a na n -a n -1=p ,即a n +1-a n 构成以a 2-a 1为首项,以p 为公比的等比数列.求出a n +1-a n 的通项再转化为类型Ⅲ(累加法)便可求出a n .(二)形如a n +1=pa n +f (n )(p ≠1)型的递推式:(1)当f (n )为一次函数类型(即等差数列)时:法一:设a n +An +B =p a n -1+A (n -1)+B ,通过待定系数法确定A 、B 的值,转化成以a 1+A +B 为首项,以A m n =n !n -m !为公比的等比数列a n +An +B ,再利用等比数列的通项公式求出a n +An +B 的通项整理可得a n .法二:当f (n )的公差为d 时,由递推式得:a n +1=pa n +f (n ),a n =pa n -1+f (n -1)两式相减得:a n +1-a n =p (a n -a n -1)+d ,令b n =a n +1-a n 得:b n =pb n -1+d 转化为类型Ⅴ㈠求出 b n ,再用类型Ⅲ(累加法)便可求出a n .(2)当f (n )为指数函数类型(即等比数列)时:法一:设a n +λf (n )=p a n -1+λf (n -1) ,通过待定系数法确定λ的值,转化成以a 1+λf (1)为首项,以A m n =n !n -m !为公比的等比数列a n +λf (n ) ,再利用等比数列的通项公式求出a n +λf (n ) 的通项整理可得a n .法二:当f (n )的公比为q 时,由递推式得:a n +1=pa n +f (n )--①,a n =pa n -1+f (n -1),两边同时乘以q 得a n q =pqa n -1+qf (n -1)--②,由①②两式相减得a n +1-a n q =p (a n -qa n -1),即a n +1-qa na n -qa n -1=p ,在转化为类型Ⅴ㈠便可求出a n .法三:递推公式为a n +1=pa n +q n (其中p ,q 均为常数)或a n +1=pa n +rq n (其中p ,q , r 均为常数)时,要先在原递推公式两边同时除以q n +1,得:a n +1q n +1=p q ⋅a n q n +1q ,引入辅助数列b n (其中b n=a n q n),得:b n +1=p q b n +1q 再应用类型Ⅴ㈠的方法解决.(3)当f (n )为任意数列时,可用通法:在a n +1=pa n +f (n )两边同时除以p n +1可得到a n +1p n +1=a n p n +f (n )p n +1,令an p n =b n ,则b n +1=b n +f (n )pn +1,在转化为类型Ⅲ(累加法),求出b n 之后得a n =p n b n .类型Ⅵ对数变换法:形如a n +1=pa q (p >0,a n >0)型的递推式:在原递推式a n +1=pa q 两边取对数得lg a n +1=q lg a n +lg p ,令b n =lg a n 得:b n +1=qb n +lg p ,化归为a n +1=pa n +q 型,求出b n 之后得a n =10b n.(注意:底数不一定要取10,可根据题意选择).类型Ⅶ倒数变换法:形如a n -1-a n =pa n -1a n (p 为常数且p ≠0)的递推式:两边同除于a n -1a n ,转化为1a n =1a n -1+p 形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n ;还有形如a n +1=ma n pa n +q 的递推式,也可采用取倒数方法转化成1a n +1=m q 1a n +mp形式,化归为a n +1=pa n +q 型求出1a n的表达式,再求a n .类型Ⅷ形如a n +2=pa n +1+qa n 型的递推式:用待定系数法,化为特殊数列{a n -a n -1}的形式求解.方法为:设a n +2-ka n +1=h (a n +1-ka n ),比较系数得h +k =p ,-hk =q ,可解得h 、k ,于是{a n +1-ka n }是公比为h 的等比数列,这样就化归为a n +1=pa n +q 型.总之,求数列通项公式可根据数列特点采用以上不同方法求解,对不能转化为以上方法求解的数列,可用归纳、猜想、证明方法求出数列通项公式a n .(1)若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =S 1,n =1S n -S n -1,n ≥2,n ∈N ∗注意:根据S n 求a n 时,不要忽视对n =1的验证.(2)在数列{a n }中,若a n 最大,则a n ≥a n -1a n ≥a n +1 ,若a n 最小,则a n≤a n -1a n ≤a n +1 .经典题型一:观察法1.(2022·全国·高三专题练习)数列a n 的前4项为:12,15,18,111,则它的一个通项公式是( )A.12n -1B.12n +1C.13n -1D.13n +1【答案】C【解析】将12,15,18,111可以写成13×1-1,13×2-1,13×3-1,13×4-1,所以a n 的通项公式为13n -1;故选:C2.(2022·全国·高三专题练习(文))如图所示是一个类似杨辉三角的递推式,则第n 行的首尾两个数均为( )A.2nB.2n -1C.2n +2D.2n +1【答案】B【解析】依题意,每一行第一个数依次排成一列为:1,3,5,7,9,⋯,它们成等差数列,通项为2n -1,所以第n 行的首尾两个数均为2n -1.故选:B3.(2022·全国·高三专题练习)“一朵雪花”是2022年北京冬奥会开幕式贯穿始终的一个设计理念,每片“雪花”均以中国结为基础造型构造而成,每一朵雪花都闪耀着奥运精神,理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1901年研究的一种分形曲线,如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分划向外作正三角形,再去掉底边,反复进行这一过程.若第一个正三角形(图①)的边长为1,则第5个图形的周长为___________.【答案】25627【解析】由题意知下一个图形的边长是上一个图形边长的13,边数是上一个图形的4倍,则周长之间的关系为b n =13⋅4⋅b n -1=43b n -1,所以{b n }是公比为q =43的等比数列,而首项b 1=3,所以b n =3⋅43n -1,当n =5时,“雪花”状多边形的周长为b 5=25627.故答案为:25627经典题型二:叠加法4.(2022·全国·高三专题练习)在数列{a n }中,已知a 1=1p ,a n +1=a n na n +1,p >0,n ∈N *.若p =1,求数列{a n }的通项公式.【解析】由题意,a n +1=a n na n +1 ,得:1a n +1-1a n=n ,运用累加法:1a 2-1a 1+1a 3-1a 2+⋯+1a n -1a n -1=1+2+⋯+n -1=n n -1 2,n ≥2∴1a n -1a 1=n n -1 2,即1a n =n n -1 2+p ,n ≥2 ,当p =1时,a n =2n 2-n +2,n ≥2 ,当n =1时,a n =1成立,所以a n =2n 2-n +25.(2022·全国·高三专题练习)已知数列a n 满足a n +1n +1-a n n =1n n +1n ∈N *,且a 1=1,求数列a n 的通项公式;【解析】因为a n +1n +1-a n n =1n n +1=1n -1n +1,所以a n n -a n -1n -1=1n -1-1n n ≥2 ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯a 22-a 11=1-12,所以累加可得a n n -a 1=1-1nn ≥2 .又a 1=1,所以a n n =2n -1n,所以a n =2n -1n ≥2 .经检验,a 1=1,也符合上式,所以a n =2n -1.6.(2022·全国·高三专题练习)已知数列a n 中,a 1=1中,a n +1=a n +n (n ∈N *)中,则a 4=________,a n =________.【答案】 7n 2-n +22【解析】依题意,n ∈N *,n ≥2,a n -a n -1=n -1,而a 1=1,则a n =a 1+(a 2-a 1)+(a 3-a 2)+⋯+(a n -a n -1)=1+1+2+⋯+(n -1)=1+1+n -12⋅n -1 =n 2-n +22,而a 1=1满足上式,所以a n =n 2-n +22,a 4=42-4+22=7.故答案为:7;n 2-n +22经典题型三:叠乘法7.(2022·全国·高三专题练习)在数列a n 中,a n +1=nn +2a n (n ∈N *),且a 1=4,则数列a n 的通项公式a n =________.【答案】8n n +1【解析】由a n +1=n n +2a n ,得a n +1a n =nn +2,则a 2a 1=13,a 3a 2=24,a 4a 3=35,⋮a n a n -1=n -1n +1n ≥2 ,累乘得a n a 1=13×24×35×⋯×n -3n -1×n -2n ×n -1n +1=2n n +1,所以a n =8n n +1.故答案为:8n n +1 .8.(2022·全国·高三专题练习)设a n 是首项为1的正项数列,且(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),求通项公式a n =___________【答案】2n (n +1)【解析】由(n +2)a n +12-na n 2+2a n +1a n =0(n ∈N *),得[(n +2)a n +1-na n ](a n +1+a n )=0,∵a n >0,∴a n +1+a n >0,∴(n +2)a n +1-na n =0 ,∴a n +1a n =nn +2,∴a n =a 1⋅a 2a 1⋅a 3a 2⋅a 4a 3⋅⋅⋅⋅⋅a n a n -1=1×13×24×35×⋅⋅⋅×n -2n ×n -1n +1=2n (n +1)(n ≥2),又a 1=1满足上式,∴a n =2n (n +1).故答案为:2n (n +1).9.(2022·全国·高三专题练习)数列a n 满足:a 1=23,2n +2-1 a n +1=2n +1-2 a n n ∈N * ,则a n 的通项公式为_____________.【答案】a n =2n2n -1 2n +1-1【解析】由2n +2-1 a n +1=2n +1-2 a n 得,a n +1a n =2n +1-22n +2-1=2⋅2n -12n +2-1,则a n a n -1⋅a n -1a n -2⋅a n -2a n -3⋅⋅⋅a 2a 1=2⋅2n -1-12n +1-1⋅2⋅2n -2-12n -1⋅2⋅2n -3-12n -1-1⋅⋅⋅2⋅21-123-1=2n -1⋅32n +1-1 2n -1,即a n a 1=3⋅2n -12n -1 2n +1-1 ,又a 1=23,所以a n =2n 2n -1 2n +1-1.故答案为:a n =2n2n -1 2n +1-1.经典题型四:待定系数法10.(多选题)(2022·广东惠州·高三阶段练习)数列a n 的首项为1,且a n +1=2a n +1,S n 是数列a n 的前n 项和,则下列结论正确的是( )A.a 3=7 B.数列a n +1 是等比数列C.a n =2n -1 D.S n =2n +1-n -1【答案】AB【解析】∵a n +1=2a n +1,可得a n +1+1=2a n +1 ,又a 1+1=2∴数列a n +1 是以2为首项,2为公比的等比数列,故B 正确;则a n +1=2n ,∴a n =2n -1,故C 错误;则a 3=7,故A 正确;∴S n =21-2n1-2-n =2n +1-n -2,故D 错误.故选:AB .11.(2022·河南安阳·三模(文))已知数列a n 满足a n +1=2a n +12,且前8项和为506,则a 1=___________.【答案】32【解析】由题意得:∵a n +1=2a n +12∴a n +1+12=2a n +12 ,即a n +1+12a n +12=2∴数列a n +12 是以a 1+12为首项,2为公比的等比数列,记数列a n +12 的前n 项和为T n T 8=a 1+12 (1-28)1-2=a 1+12+a 2+12+a 3+12+⋯+a 8+12=(a 1+a 2+a 3+⋯a 8)+12×8=506+4=510解得:a 1=32故答案为:3212.(2022·河北衡水·高三阶段练习)已知数列a n 的前n 项和为S n ,且满足2S n +n =3a n ,n ∈N *.(1)求数列a n 的通项公式;(2)若b n =a 2n ,求数列b n 的前10项和T 10.【解析】(1)当n =1时,2S 1+1=3a 1,即2a 1+1=3a 1,解得a 1=1;当n ≥2时,∵2S n +n =3a n ,∴2S n -1+n -1=3a n -1,两式作差得2a n +1=3a n -3a n -1,即a n =3a n -1+1,a n +12=3a n -1+12,∴a n +12a n -1+12=3,又a 1+12=32,∴数列a n +12 是以32为首项,3为公比的等比数列,∴a n +12=32×3n -1=3n 2,a n =3n 2-12=123n -1 .(2)∵b n =a 2n ,则T 10=b 1+b 2+b 3+⋯+b 10=a 2+a 4+⋯+a 20=1232-1 +34-1 +⋯+320-1=1232+34+⋯+320 -10=12321-910 1-9-10 =911-8916.13.(2022·全国·高三专题练习)设数列a n 满足a 1=2,a n -2a n -1=2-n n ∈N * .(1)求证:a n -n 为等比数列,并求a n 的通项公式;(2)若b n =a n -n ⋅n ,求数列b n 的前n 项和T n .【解析】(1)因为a 1=2,a n -2a n -1=2-n n ∈N * ,所以a n =2a n -1+2-n ,即a n -n =2a n -1-n -1又a 1-1=2-1=1,所以a n -n 是以1为首项,2为公比的等比数列,所以a n -n =1×2n -1,所以a n =2n -1+n (2)由(1)可得b n =a n -n ⋅n =n ×2n -1,所以T n =1×20+2×21+3×22+⋯+n ×2n -1①,所以2T n =1×21+2×22+3×23+⋯+n ×2n ②,①-②得-T n =1+1×21+1×22+1×23+⋯+1×2n -1-n ×2n即-T n =1-2n1-2-n ×2n ,所以T n =n -1 ×2n +1;14.(2022·全国·高三专题练习)在数列a n 中,a 1=5,且a n +1=2a n -1n ∈N * .(1)证明:a n -1 为等比数列,并求a n 的通项公式;(2)令b n =(-1)n ⋅a n ,求数列b n 的前n 项和S n .【解析】(1)因为a n +1=2a n -1,所以a n +1-1=2a n -1 ,又a 1-1=4,所以a n +1-1a n -1=2,所以a n -1 是以4为首项,2为公比的等比数列.故a n -1=4×2n -1,即a n =2n +1+1.(2)由(1)得b n =(-1)n⋅2n +1+1 ,则b n =2n +1+1,n =2k ,k ∈N *-2n +1+1 ,n =2k -1,k ∈N* ,①当n =2k ,k ∈N *时,S n =-22-1 +23+1 -24+1 +⋯+-2n -1 +2n +1+1 =-22+23-24+25+⋯-2n +2n +1=22+24+⋯+2n =432n -1 ;②当n =2k -1,k ∈N *时,S n =S n +1-b n +1=432n +1-1 -2n +2+1 =-2n +2+73,综上所述,S n =432n -1 ,n =2k ,k ∈N*-2n +2+73,n =2k -1,k ∈N *经典题型五:同除以指数15.(2022·广东·模拟预测)已知数列a n 中,a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,b n =a n -1n +1(1)求证:数列b n 是等比数列;(2)从条件①n +b n ,②n ⋅b n 中任选一个,补充到下面的问题中并给出解答.求数列______的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)因为a 1=5且a n =2a n -1+2n -1n ≥2,n ∈N ∗ ,所以当n ≥2时,a n -1=2a n -1-1 +2n ,所以a n -12n =a n -1-12n -1+1,即a n -12n -a n -1-12n -1=1所以a n -12n 是以a 1-12=2为首项,1为公差的等差数列,所以a n -12n =2+n -1 ×1=n +1,所以a n =n +1 2n+1,b n =a n -1n +1=n +1 2n+1-1n +1=2n因为b 1=a 1-11+1=2,n ≥2时,b n b n -1=2n 2n -1=2所以数列b n 是以2为首项,2为公比的等比数列.(2)选①:因为b n =2n ,所以n +b n =n +2n ,则T n =(1+2)+2+22 +3+23 +⋅⋅⋅+n +2n=1+2+3+⋅⋅⋅+n +2+22+23+⋅⋅⋅+2n=12n n +1 +21-2n 1-2=n 22+n2+2n +1-2选②:因为b n =2n ,所以nb n =n ⋅2n,则T n =1×21+2×22+⋅⋅⋅+n ×2n (i )2T n =1×22+2×23+⋅⋅⋅+n ×2n +1(ii )(i )-(ii )得-T n =1×21+22+23+⋅⋅⋅+2n -n ×2n +1T n =n ×2n +1-21-2n 1-2=n ×2n +1-2n +1+2=n -1 2n +1+216.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=2a n +3n ,求数列a n 的通项公式.【解析】由a n +1=2a n +3n 两边同除以3n +1得a n +13n +1=23⋅a n 3n +13,令b n =a n 3n ,则b n +1=23b n +13,设b n +1+λ=23(b n +λ),解得λ=-1,b n +1-1=23(b n -1),而b 1-1=-23,∴数列{b n -1}是以-23为首项,23为公比的等比数列,b n -1=-23 n ,得a n =3n -2n17.(2022·全国·高三专题练习)在数列a n 中,a 1=1,S n +1=4a n +2,则a 2019的值为( )A.757×22020B.757×22019C.757×22018D.无法确定【答案】A【解析】∵a 1=1,S n +1=4a n +2,∴S 2=a 1+a 2=4a 1+2,解得a 2=5.∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减得,a n +2=4a n +1-4a n ,∴a n +2-2a n +1=2a n +1-2a n ,∴a n +1-2a n 是以a 2-2a 1=3为首项,2为公比的等比数列,∴a n +1-2a n =3×2n -1,两边同除以2n +1,则a n +12n +1-a n 2n=34,∴a n 2n 是以34为公差,a 121=12为首项的等差数列,∴a n 2n =12+n -1 ×34=3n -14,∴a n =3n -14×2n =3n -1 ×2n -2,∴a 2019=3×2019-1 ×22017=757×22020.故选:A .经典题型六:取倒数法18.(2022·全国·高三竞赛)数列a n 满足a 1=p ,a n +1=a 2n +2a n .则通项a n =______.【答案】p +1 2n -1-1【解析】∵a n =a 2n -1+2a n -1,∴a n +1=a n -1+1 2=a n -2+1 22=⋯=a 1+1 2n -1=p +1 2n -1.即a n =p +1 2n -1-1.故答案为p +1 2n -1-119.(2022·全国·高三专题练习)已知数列a n 满足a 1=12,且a n +1=a n 3a n +1,则数列a n =__________【答案】13n -1【解析】由a n +1=a n 3a n +1两边取倒数可得1a n +1=1a n +3,即1a n +1-1a n=3所以数列1a n 是等差数列,且首项为2,公差为3,所以1a n=3n -1,所以a n =13n -1;故答案为:13n -120.(2022·全国·高三专题练习)数列a n 满足a n +1=a n 1+2a nn ∈N ∗,a 1=1,则下列结论错误的是( )A.2a 10=1a 3+1a 17B.21an是等比数列C.2n -1 a n =1D.3a 5a 17=a 49【答案】D 【解析】由a n +1=a n 1+2a n ,且a 1=1,则a 2=a 12a 1+1>0,a 3=a 21+2a 2>0,⋯,以此类推可知,对任意的n ∈N ∗,a n >0,所以,1a n +1=1+2a n a n =1a n +2,所以1a n +1-1a n =2,且1a 1=1,所以,数列1a n 是等差数列,且该数列的首项为1,公差为2,所以,1a n =1+2n -1 =2n -1,则2n -1 a n =1,其中n ∈N ∗,C 对;21a n +121a n=21an +1-1a n=22=4,所以,数列21an是等比数列,B 对;由等差中项的性质可得2a 10=1a 3+1a 17,A 对;由上可知a n =12n -1,则3a 5a 17=3×12×5-1×12×17-1=199,a 49=12×49-1=197,所以,3a 5a 17≠a 49,D 错.故选:D .21.(2022·全国·高三专题练习)已知数列a n 满足a 1=1,a n +1=a n 4a n +1,(n ∈N *),则满足a n >137的n 的最大取值为( )A.7 B.8C.9D.10【答案】C【解析】因为a n +1=a n 4a n +1,所以1a n +1=4+1a n ,所以1a n +1-1a n =4,又1a 1=1,数列1a n是以1为首项,4为公差的等差数列.所以1a n =1+4(n -1)=4n -3,所以a n =14n -3,由a n >137,即14n -3>137,即0<4n -3<37,解得34<n <10,因为n 为正整数,所以n 的最大值为9;故选:C 经典题型七:取对数法22.(2022·湖南·长郡中学高三阶段练习)若在数列的每相邻两项之间插入此两项的积,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.现对数列1,2进行构造,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;依次构造,第n n ∈N * 次得到的数列的所有项的积记为a n ,令b n =log 2a n ,则b 3=___________,b n =___________.【答案】 143n +12【解析】设第n 次构造后得到的数列为1,x 1,x 2,⋯,x k ,2.则a n =2x 1x 2⋯x k ,则第n +1次构造后得到的数列为1,x 1,x 1,x 1x 2,x 2,⋯,x k -1x k ,x k ,2x k ,2.则a n +1=4x 1x 2⋯x k 3=4×a n 2 3=12a 3n ,∴b n +1=log 2a n +1=log 212a 3n=-1+3b n ,∴b n +1-12=3b n -12 ,又∵b 1=log 222=2,∴数列b n -12 是以32为首项,3为公比的等比数列,∴b n -12=32×3n -1=3n 2,b n =3n +12,b 3=14.故答案为:14;3n +1223.(2022·全国·高三专题练习(文))英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列x n 满足x n +1=x n -f x nf x n,则称数列x n 为牛顿数列.如果函数f x =2x 2-8,数列x n 为牛顿数列,设a n =ln x n +2x n -2,且a 1=1,x n >2.数列a n 的前n 项和为S n ,则S n =______.【答案】2n -1【解析】∵f x =2x 2-8,∴f x =4x ,又∵x n +1=x n -f x n f x n=x n -2x n 2-84x n =x n 2+42x n ,∴x n +1+2=x n +2 22x n ,x n +1-2=x n -222x n,∴x n +1-2x n +1-2=x n +2x n -2 2,又x n >2∴ln x n +1+2x n +1-2=ln x n +2x n -2 2=2ln x n +2x n -2 ,又a n =ln x n +2x n -2,且a 1=1,所以a n +1=2a n ,∴数列a n 是首项为1,公比为2的等比数列,∴a n 的前n 项和为S n ,则S n =1×1-2n1-2=2n -1.故答案为:2n -1.经典题型八:已知通项公式a n 与前n 项的和S n 关系求通项问题24.(2022·江苏南通·高三开学考试)从条件①2S n =n +1 a n ,②a 2n +a n =2S n ,a n >0,③S n +S n -1=a n n ≥2 ,中任选一个,补充到下面问题中,并给出解答.已知数列a n 的前n 项和为S n ,a 1=1,___________.(1)求a n 的通项公式;(2)设b n =a n +1+12n +1,记数列b n 的前n 项和为T n ,是否存在正整数n 使得T n >83.【解析】(1)若选择①,因为2S n =n +1 a n ,n ∈N *,所以2S n -1=na n -1,n ≥2,两式相减得2a n =n +1 a n -na n -1,整理得n -1 a n =na n -1,n ≥2,即a n n =a n -1n -1,n ≥2,所以a n n 为常数列,而a n n =a 11=1,所以a n =n ;若选择②,因为a 2n +a n =2S n n ∈N *,所以a 2n -1+a n -1=2S n -1n ≥2 ,两式相减a 2n -a 2n -1+a n -a n -1=2S n -2S n -1=2a n n ≥2 ,得a n -a n -1 a n +a n -1 =a n +a n -1n ≥2 ,因为a n >0,∴a n +a n -1>0,∴a n -a n -1=1n ≥2 ,所以a n 是等差数列,所以a n =1+n -1 ×1=n ;若选择③,由S n +S n -1=a n n ≥2 变形得,S n +S n -1=S n -S n -1,所以S n +S n -1=S n +S n -1 S n -S n -1 ,由题意知S n >0,所以S n -S n -1=1,所以S n 为等差数列,又S 1=a 1=1,所以S n =n ,S n =n 2,∴a n =S n -S n -1=2n -1n ≥2 ,又n =1时,a 1=1也满足上式,所以a n =2n -1;(2)若选择①或②,b n =n +1+12n +1=n +22n +1,所以T n =3×12 2+4×12 3+5×12 4+⋯+n +2 ×12n +1,所以12T n =3×12 3+4×12 4+5×12 5+⋯+n +2 ×12n +2,两式相减得12T n =3×12 2+12 3+12 4+⋯+12 n +1-n +2 ×12n +2=34+181-12n -1 1-12-n +2 ×12 n +2=1-n +42n +2,则T n =2-n +42n +1,故要使得T n >83,即2-n +42n +1>83,整理得,n +42n +1<-23,当n ∈N *时,n +42n +1>0,所以不存在n ∈N *,使得T n >83.若选择③,依题意,b n =a n +1+12n +1=n +12n,所以T n =2×12+3×12 2+4×12 3+⋯+n +1 ×12n,故12T n =2×12 2+3×12 3+4×12 4+⋯+n +1 ×12 n +1,两式相减得:12T n =1+12 2+12 3+⋯+12 n -n +1 ×12 n +1=1+141-12n -1 1-12-n +1 ×12 n +1=32-n +32n +1,则T n =3-n +32n ,令T n =3-n +32n >83,则n +32n <13,即2n -3n -9>0,令c n =2n -3n -9,则c 1=-10<0,当n ≥2时,c n +1-c n =2n +1-3n +1 -9-2n -3n -9 =2n -3>0,又c 4<0,c 5>0,故c 2<c 3<c 4<0<c 5<c 6⋯,综上,使得T n >83成立的最小正整数n 的值为5.25.(2022·河南省上蔡第一高级中学高三阶段练习(文))记各项均为正数的等比数列a n 的前n 项和是S n ,已S n =a n +43a n +1-4n ∈N * .(1)求a n 的通项公式;(2)求数列na n 的前n 项和T n .【解析】(1)设等比数列a n 的公比为q .因为S n =a n +43a n +1-4n ∈N * ,所以当n =1时,a 1=a 1+43a 2-4,解得a 2=3;当n =2时,a 1+a 2=a 2+43a 3-4,则a 1=43a 3-4.因为a n 是等比数列,所以a 1a 3=a 22,即43a 3-4 a 3=9,整理得4a 23-12a 3-27=0,解得a 3=-32(舍去)或a 3=92.所以q =a 3a 2=32,a 1=a 2q=2,所以a n =2×32n -1.(2)由(1)得na n =2n ×32 n -1,所以T n =2×1+2×32+3×32 2+⋯+n -1 × 32 n -2+n ×32 n -1①则32T n =2×1×32+2×32 2+3×32 3+⋯+ n -1 ×32 n -1+n ×32 n ②①-②得-T n 2=2×1+32+32 2+323+⋯+ 32 n -1 -2n ×32 n=2×1-32 n1-32-2n ×32 n =-4+4-2n ×32 n ,所以T n =4n -8 ×32n+8.26.(2022·全国·高三专题练习)设数列{a n }的前n 项和为S n ,a n +1=-S n S n +1n ∈N * ,a 1=1. 求证:数列1S n是等差数列.【解析】∵-S n S n +1=a n +1=S n +1-S n ,S 1=1≠0,则S n ≠0,所以-1=S n +1-S nS n S n +1,有1S n +1-1S n=1,所以数列1S n 是以1为首项,1为公差的等差数列.经典题型九:周期数列27.(2022·上海中学高二期末)数列{x n }满足x n +1=x n -x n -1,n ≥2,n ∈N *,x 1=a ,x 2=b ,则x 2019=_________.【答案】b -a .【解析】由题干中递推公式,可得:x 1=a ,x 2=b ,x 3=x 2-x 1=b -a ,x 4=x 3-x 2=b -a -b =-a ,x 5=x 4-x 3=-a -(b -a )=-b ,x 6=x 5-x 4=-b -(-a )=a -b ,x 7=x 6-x 5=a -b -(-b )=a ,x 8=x 7-x 6=a -(a -b )=b ,x 9=x 8-x 7=b -a ,⋯∴数列{x n }是以6为最小正周期的周期数列.∵2019÷6=336⋯3,∴x 2019=x 3=b -a .故答案为b -a .28.(2022·全国·高三专题练习)数列{a n }满足a 1=2,a 2=11-a 1,若对于大于2的正整数n ,a n =11-a n -1,则a 102=__________.【答案】12【解析】由题意知:a 2=11-2=-1,a 3=11--1 =12,a 4=11-12=2,a 5=11-2=-1,故{a n }是周期为3的周期数列,则a 102=a 3×34=a 3=12.故答案为:12.29.(2022·河南·模拟预测(文))设数列a n 满足a n +1=1+a n 1-a n ,且a 1=12,则a 2022=( )A.-2 B.-13C.12D.3【答案】D【解析】由题意可得:a 2=1+a 11-a 1=1+121-12=3,a 3=1+a 21-a 2=1+31-3=-2,a 4=1+a 31-a 3=1+-2 1--2 =-13,a 5=1+a 41-a 4=1-131+13=12=a 1,据此可得数列a n 是周期为4的周期数列,则a 2022=a 505×4+2=a 2=3.故选:D30.(2022·全国·高三专题练习)设数列a n 的通项公式为a n =-1 n 2n -1 ⋅cos n π2+1n ∈N * ,其前n 项和为S n ,则S 120=( )A.-60 B.-120C.180D.240【答案】D【解析】当n =4k -3,k ∈N *时,cos n π2=0,a 4k -3=1;当n =4k -2,k ∈N *时,cosn π2=-1,a 4k -2=2×4k -2 -1 ×-1 +1=-8k +6;当n =4k -1,k ∈N *时,cos n π2=0,a 4k -1=1;当n =4k ,k ∈N *时,cos n π2=1,a 4k =2×4k -1+1=8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =1+-8k +6 +1+8k =8,∴S 120=1204×8=240.故选:D 经典题型十:前n 项积型31.(2022·全国·高三专题练习)设数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * .(1)求证数列1T n 是等差数列;(2)设b n =1-a n 1-a n +1 ,求数列b n 的前n 项和S n .【解析】(1)因为数列a n 的前n 项积为T n ,且T n =2-2a n n ∈N * ,∴当n =1时,T 1=a 1=2-2a 1,则a 1=23,1T 1=32.当n ≥2时,T n =2-2T n T n -1⇒1=2T n -2T n -1,∴1T n -1T n -1=12,所以1T n 是以1T 1=32为首项,12为公差的等差数列;(2)由(1)知数列1T n =n +22,则由T n =2-2a n 得a n =n +1n +2,所以b n =1n +2 n +3=1n +2-1n +3,所以S n =13-14 +14-15 +⋯+1n +2-1n +3 =13-1n +3=n 3n +9.32.(2022·全国·高三专题练习)记T n 为数列a n 的前n 项积,已知1T n +3a n=3,则T 10=( )A.163B.154C.133D.114【答案】C 【解析】n =1,T 1=43,T n =a 1a 2a 3⋯a n ,则a n =T n T n -1(n ≥2),代入1T n +3a n =3,化简得:T n -T n -1=13,则T n =n +33,T 10=133.故选:C .33.(2022·全国·高三专题练习)记S n 为数列a n 的前n 项和,b n 为数列S n 的前n 项积,已知2S n +b n =2,则a 9=___________.【答案】1110【解析】因为b n =S 1∙S 2∙⋯S n ,所以b 1=S 1=a 1,b n -1=S 1∙S 2∙⋯S n -1(n ≥2),S n =b nb n -1(n ≥2), 又因为2S n +b n =2,当n =1时,得 a 1=23,所以b 1=S 1=a 1=23, 当n ≥2时, 2×b nb n -1+b n =2,即2b n =2b n -1+1,所以2b n 是等差数列,首项为2b 1=3,公差d =1, 所以2b n=3+(n -1)×1=n +2,所以b n =2n +2,满足 b 1=23,故b n =2n +2,即S 1∙S 2∙⋯S n =2n +2,所以S 1∙S 2∙⋯S n -1=2n +1(n ≥2),两式相除得:S n =n +1n +2,所以S n -1=nn +1(n ≥2),所以a n =S n -S n -1=n +1n +2-n n +1=1(n +1)(n +2),所以a 9=111×10=1110.故答案为:1110.经典题型十一:“和”型求通项34.(2022·山西·太原市外国语学校高三开学考试)在数列a n 中,a 1=1,且n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n .(1)求a n 的通项公式;(2)若b n =1a n a n +1,且数列b n 的前项n 和为S n ,证明:S n <3.【解析】(1)因为n ≥2,a 1+12a 2+13a 3+⋯+1n -1a n -1=a n ,所以当n ≥3,a 1+12a 2+13a 3+⋯+1n -2a n -2=a n -1,两式相减,得1n -1a n -1=a n -a n -1,即nn -1a n -1=a n ,当n =2时,a 2=a 1=1,所以当n ≥3时,a n a n -1=nn -1,所以当n ≥3时,a n =a n a n -1×a n -1a n -2×⋯×a 3a 2×a 2=n n -1×n -1n -2×⋯×32×1=n2,当n =2时,上式成立;当n =1时,上式不成立,所以a n =1,n =1n2,n ≥2.(2)证明:由(1)知b n =1,n =14n (n +1),n ≥2当n ≥2时,b n =4n (n +1)=41n -1n +1 ,所以当n =1,S 1=1<3;当n ≥2时,S n =1+412-13 +413-14 +⋯+41n -1n +1=1+412-13+13-14+⋯+1n -1n +1 =1+412-1n +1 =3-4n +1<3.综上,S n <3.35.(2022·全国·高三专题练习)数列a n 满足a 1∈Z ,a n +1+a n =2n +3,且其前n 项和为S n .若S 13=a m ,则正整数m =( )A.99 B.103C.107D.198【答案】B【解析】由a n +1+a n =2n +3得a n +1-(n +1)-1=-a n -n -1 ,∴a n-n-1为等比数列,∴a n-n-1=(-1)n-1a1-2,∴a n=(-1)n-1a1-2+n+1,a m=(-1)m-1a1-2+m+1,∴S13=a1+a2+a3+⋯+a12+a13=a1+2×(2+4+⋯+12)+3×6=a1+102,①m为奇数时,a1-2+m+1=a1+102,m=103;②m为偶数时,-a1-2+m+1=a1+102,m=2a1+99,∵a1∈Z,m=2a1+99只能为奇数,∴m为偶数时,无解,综上所述,m=103.故选:B.36.(2022·黑龙江·哈师大附中高三阶段练习(理))已知数列a n的前n项和为S n,若S n+1+S n=2n2n∈N*,且a1≠0,a10=28,则a1的值为A.-8B.6C.-5D.4【答案】C【解析】对于S n+1+S n=2n2,当n=1时有S2+S1=2,即a2-2=-2a1∵S n+1+S n=2n2,∴S n+S n-1=2(n-1)2,(n≥2)两式相减得:a n+1+a n=4n-2a n+1-2n=-a n-2(n-1),(n≥2)由a1≠0可得a2-2=-2a1≠0,∴a n+1-2na n-2(n-1)=-1(n≥2)即a n-2(n-1)从第二项起是等比数列,所以a n-2(n-1)=a2-2(-1)n-2,即a n=a2-2(-1)n-2+2(n-1),则a10=a2-2+18=28,故a2=12,由a2-2=-2a1可得a1=-5,故选C.经典题型十二:正负相间讨论、奇偶讨论型37.(2022·河南·高二阶段练习(文))数列a n满足a1=1,a n+a n+1=3n n∈N*,则a2018=__________ _.【答案】3026【解析】∵a n+a n+1=3n,∴a n+1+a n+2=3n+1,得a n+2-a n=3,∵a1=1,a n+a n+1=3n n∈N*,∴a1+ a2=3⇒a2=2,所以a n的偶数项构成等差数列,首项为2,公差为3,∴a2018=a2+1008×3=2+3024= 3026.故答案为:302638.(2022·全国·高三专题练习)已知数列a n中,a1=1,a2=2,a n+2=-1n+1a n+2,则a18a19=( )A.3B.113C.213D.219【答案】D【解析】当n为奇数时,a n+2-a n=2,即数列a n中的奇数项依次构成首项为1,公差为2的等差数列,所以,a19=1+10-1×2=19,当n为偶数时,a n+2+a n=2,则a n+4+a n+2=2,两式相减得a n+4-a n=0,所以,a18=a4×4+2=a2=2,故a18a19=219,故选:D.39.(2022·广东·高三开学考试)已知数列a n满足a1=3,a2=2,a n+2=a n-1,n=2k-1 3a n,n=2k .(1)求数列a n的通项公式;(2)求数列a n的前2n项的和S2n.【解析】(1)当n为奇数时,a n+2-a n=-1,所以所有奇数项构成以a1=3为首项,公差为-1的等差数列,所以a n=3+(n-1)⋅-12=7-n2,当n为偶数时,a n+2=3a n,所以所有偶数项构成以a2=2为首项,公比为3的等比数列,所以a n=2×(3)n-2=2×3n-22,所以a n=7-n2,n=2k-1 2×3n-22,n=2k ;(2)S2n=a1+a2+⋯+a2n=a1+a3+a5+⋯+a2n-1+a2+a4+⋯+a2n=3n+(-1)⋅n(n-1)2+21-3n1-3=(7-n)n2+3n-1=-12n2+72n+3n-1.40.数列{a n}满足a n+2+(-1)n+1a n=3n-1,前16项和为540,则a2= .【解析】解:因为数列{a n}满足a n+2+(-1)n+1a n=3n-1,当n为奇数时,a n+2+a n=3n-1,所以a3+a1=2,a7+a5=14,a11+a9=26,a15+a13=38,则a1+a3+a5+a7+a9+a11+a13+a15=80,当n为偶数时,a n+2-a n=3n-1,所以a4-a2=5,a6-a4=11,a8-a6=17,a10-a8=23,a12-a10=29,a14-a12=35,a16-a14=41,故a4=5+a2,a6=16+a2,a8=33+a2,a10=56+a2,a12=85+a2,a14=120+a2,a16=161+a2,因为前16项和为540,所以a2+a4+a6+a8+a10+a12+a14+a16=540-80=460,所以8a2+476=460,解得a2=-2.故答案为:-2.41.(2022•夏津县校级开学)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为508,则a1= .【解析】解:由a n+2+(-1)n a n=3n-1,当n为奇数时,有a n+2-a n=3n-1,可得a n-a n-2=3(n-2)-1,⋯a3-a1=3⋅1-1,累加可得a n-a1=3[1+3+⋯+(n-2)]-n-12=(n-1)(3n-5)4;当n为偶数时,a n+2+a n=3n-1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+⋯+a16=92.∴a 1+a 3+⋯+a 15=416.∴8a 1+14(0+8+40+96+176+280+408+560)=416,∴8a 1=24,即a 1=3.故答案为:3.经典题型十三:因式分解型求通项42.(2022秋•安徽月考)已知正项数列{a n }满足:a 1=a ,a 2n +1-4a 2n +a n +1-2a n =0,n ∈N *.(Ⅰ)判断数列{a n }是否是等比数列,并说明理由;(Ⅱ)若a =2,设a n =b n -n .n ∈N *,求数列{b n }的前n 项和S n .【解析】解:(Ⅰ)∵a 2n +1-4a 2n +a n +1-2a n =0,∴(a n +1-2a n )(a n +1+2a n +1)=0,又∵数列{a n }为正项数列,∴a n +1=2a n ,∴①当a =0时,数列{a n }不是等比数列;②当a ≠0时,an +1a n=2,此时数列{a n }是首项为a ,公比为2的等比数列.(Ⅱ)由(Ⅰ)可知:a n =2n ,∴b n =2n +n ,∴S n =(21+22+⋯+2n)+(1+2+⋯+n )=2(1-2n )1-2+n (1+n )2=2n +1-2+n (n +1)2.43.(2022•怀化模拟)已知正项数列{a n }满足a 1=1,2a 2n -a n -1a n -6a 2n -1=0(n ≥2,n ∈N *)设b n =log 2a n .(1)求b 1,b 2b 3;(2)判断数列{b n }是否为等差数列,并说明理由;(3){b n }的通项公式,并求其前n 项和为S n .【解析】解:(1)a 1=1,2a 2n -a n -1a n -6a 2n -1=0,a n >0,可得(2a n +3a n -1)(a n -2a n -1)=0,则a n =2a n -1,数列{a n }为首项为1,公比为2的等比数列,可得a n =2n -1;b n =log 2a n =n -1,b 1=0,b 2b 3=1×2=2;(2)数列{b n }为等差数列,理由:b n +1-b n =n -(n -1)=1,则数列{b n }为首项为0,公差为1的等差数列;(3)b n =log 2a n =log 22n -1=n -1,前n 项和为S n =12n (0+n -1)=n 2-n2.44.(2022秋•仓山区校级月考)已知正项数列{a n }满足a 1=2且(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *)(Ⅰ)证明数列{a n }为等差数列;(Ⅱ)若记b n =4a n a n +1,求数列{b n }的前n 项和S n .【解析】(I )证明:由(n +1)a 2n +a n a n +1-na 2n +1=0(n ∈N *),变形得:(a n +a n +1)[(n +1)a n -na n +1]=0,由于{a n }为正项数列,∴a n +1a n =n +1n,利用累乘法得:a n =2n (n ∈N *)从而得知:数列{a n }是以2为首项,以2为公差的等差数列.(Ⅱ)解:由(Ⅰ)知:b n=42n∙2(n+1)=1n(n+1)=1n-1n+1,从而S n=b1+b2+⋯+b n=1-1 2+12-13+13-15+⋯+1n-1-1n+1=1-1n+1=n n+1.经典题型十四:其他几类特殊数列求通项45.(2022·全国·高三专题练习)在数列{a n}中,已知各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0.(1)证明数列{a n+a n+1}为等比数列;(2)若a1=15,a2=125,求{a n}的通项公式.【解析】(1)各项都为正数的数列{a n}满足5a n+2+4a n+1-a n=0,得a n+1+a n+2=15(a n+1+a n),即a n+1+a n+2 a n+a n+1=15所以数列{a n+a n+1}是公比为15的等比数列;(2)因为a1=15,a2=125,所以a1+a2=625,由(1)知数列{a n+a n+1}是首项为625,公比为15的等比数列,所以a n+a n+1=625×15n-1,于是a n+1-15n+1=-an-15 n=(-1)n a1-15,又因为a1-15=0,所以a n-15 n=0,即a n=15 n.46.(2022·湖北·天门市教育科学研究院模拟预测)已知数列a n满足a1=1,a2=6,且a n+1=4a n-4a n-1, n≥2,n∈N*.(1)证明数列a n+1-2a n是等比数列,并求数列a n的通项公式;(2)求数列a n的前n项和S n.【解析】(1)因为a n+1=4a n-4a n-1,n≥2,n∈N*所以a n+1-2a n=2a n-4a n-1=2(a n-2a n-1)又因为a2-2a1=4所以a n+1-2a n是以4为首项,2为公比的等比数列.所以a n+1-2a n=4×2n-1=2n+1变形得a n+12n+1-a n2n=1所以a n2n是以a12=12为首项,1为公差的等差数列所以a n2n=12+n-1=n-12,所以a n=(2n-1)2n-1(2)因为T n=1×20+3×21+5×22+⋅⋅⋅+(2n-1)2n-1⋯①所以2T n=1×21+3×22+5×23+⋅⋅⋅+(2n-1)2n⋯②①-②得:-T n=1+22+23+⋅⋅⋅+2n-1-(2n-1)2n=1+22(1-2n-1)1-2-(2n-1)2n所以T n=(2n-1)2n-2n+1+3=(2n-3)2n+347.(2022·内蒙古·赤峰红旗中学松山分校模拟预测(理))设数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,则下列说法正确的是( )A.a2021⋅a2022<1B.a2021⋅a2022>1C.a2022<-22022D.a2022>22022【答案】A【解析】因为数列{a n}的前n项和为S n,满足2S n=a2n+1a n n∈N*,。

巧思妙解高考数学题

巧思妙解高考数学题

巧思妙解高考数学题[转载]1.(Ⅰ卷,文21)已知函数.(1)证明:曲线y= f(x)在x = 0处的切线过点(2,2);(2)若f(x)在x = x0处取得极小值,x0∈(1,3),求a的取值范围.【参考答案】(1).由得曲线y= f(x)在x = 0处的切线方程为.由此可知曲线y= f(x)在x= 0处的切线过点(2,2).(2)由得①当 --1≤ a ≤-1时,没有极小值;②当或时,由得故x0 =x2 .由题设知,当时,不等式无解;当时,解不等式得.综合①②得的取值范围是.·巧思·①(1)中,利用“k切= k PQ”(P、Q为定点、切点),根据“两点决定一条直线”,可以避免求出切线方程,而“直截了当”地证明。

②(2)中,利用三次函数的中心对称性,先将f(x)化为“中心式”,求出对称中心(- a,c);再利用x 3系数为正的三次函数的极大值点和极小值点分别在“中心点”的左、右,便得x0 >- a。

③将方程f ’(x0)= 0中含x0的项配平方,得到(x0+ a)2,“0<x0+ a<3 + a”便就有了作用;再将含a的项合并,得到2a(1-x0),“x0>1”也就有了作用……如此,可避免解方程和分类讨论。

·妙解·(1)设P(2,2),切点Q(0,12a- 4).k切= 3 - 6a = k PQ切线PQ.(2)f(x)可化为(x + a)3 + b(x + a)+c曲线y = f(x)关于点(- a,c)对称x0>- a.题设f’(x0)=3(x02 + 2ax0+1 - 2a)= 00<(x0+ a)2= a2 + 2a -1<(3 + a)2,且2a(1- x0)= x02 + 1>0(x0>1)a<0a∈(-2.5,--1)即为所求.【评注】①(1)中,证明过一已知点、斜率也已知的直线必过另一定点,不等于一定要先求出直线方程、再将坐标代入检验;解题要做到“能省则省”、能不“绕弯子”则尽量不“绕弯子”。

高考数学复习点拨 一题多思 大胆创新

高考数学复习点拨 一题多思 大胆创新

高考数学复习点拨 一题多思 大胆创新幂函数一节的例题非常典型,希望同学们在学习过程中不能只停留在表面,要善于联想、归纳、创新,不断提高自己的思维素质.思考1:请你总结证明函数单调性的步骤(前面已学过,在此不再细说).思考2:本题在证明过程中使用了一种很重要的“非正常”处理的数学方法——分子有理化,它是代数恒等变换的一种重要手段,在解决相等问题时有着重要作用.例1设函数()f x ax =,其中1a ≥,判断并证明函数()f x 在区间[)0+,∞上的单调性.证明:设[)120x x ∈+,,∞,且12x x <.1212()()f x f x ax ax -=21ax ax =-21()a x x =-2212()a x x =--12()x x a ⎛⎫⎪=--⎪⎭1<,又12x x <,1a ≥, 则可得120x x -<0a <.故得12()()0f x f x ->,所以函数()f x 在区间[)0+,∞上单调递减.思考3:根据定义判断或证明单调性的一般步骤中,对12()()f x f x -进行变形是最重要的,除了分子有理化以外,还有因式分解法、配方法和判别式法等.例2 根据函数单调性定义,证明函数3()1f x x =-+在()-+,∞∞上是减函数. 分析:依题意,本题即要求证明:对任意实数12x x ,,如果12x x <时,必有12()()0f x f x ->.因为33221221211212()()()()f x f x x x x x x x x x -=-=-++,又21()0x x ->,所以,关键是证明221212()0x x x x ++>,由于12x x ,不能同时为零,所以难点是如何处理120x x <这种情况.证法1:在()-+,∞∞上任取12x x ,,且12x x <,则33221221211212()()()()f x f x x x x x x x x x -=-=-++,12210x x x x <∴->,.若12x x ≥0时,由12x x ,不能同时为零,∴2212120x x x x ++>; 若120x x <时,有22212122121()0x x x x x x x x ++=+->.33221221211212()()()()0f x f x x x x x x x x x ∴-=-=-++>,即12()()f x f x >,根据函数单调性的定义,可知3()1f x x =-+在()-+,∞∞上是减函数.证法2:在()-+,∞∞上任取12x x ,,且12x x <,则12x x ,不能同时为零,210x x ->,22120x x +>, 因此33221221211212()()()()f x f x x x x x x x x x -=-=-++22221121211()()()022x x x x x x ⎡⎤=-+++>⎢⎥⎣⎦,即12()()f x f x >,故函数3()1f x x =-+在()-+,∞∞上是减函数. 证法3:在()-+,∞∞上任取12x x ,,且12x x <,则12x x ,不能同时为零,210x x ->,222123024x x x ⎛⎫++> ⎪⎝⎭,因此,33221221211212()()()()f x f x x x x x x x x x -=-=-++22221123()024x x x x x ⎡⎤⎛⎫=-++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即12()()f x f x >,故函数3()1f x x =-+在()-+,∞∞上是减函数. 证法4:(详证略)提示:证明2212120x x x x ++>时,可把1x 或2x 看作未知量,由于二次项系数是大于0的,所以只需证0∆<即可.点评:通过本例的学习与理解,希望同学们今后要重视用概念和定义解题,本题尽管综合性不太强,但对知识的考查还是很有深度的.当然,本题还有一些其他的证法,有兴趣的同学可以自己探究.思考4:如果两个幂函数复合以后,那么它的图象与性质又将如何呢? 例3 求函数1()(0)f x x x x=+>的最小值. 解:不妨设1200x x >>,,且12x x <, 则12121212121111()()f x f x x x x x x x x x -=+--=-+- 121212121211()1()x x x x x x x x x x ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,当(]01x ∈,时,12()()0f x f x ->,即12()()f x f x >, 所以1()f x x x=+在(01],上单调递减; 当[1)x ∈+∞,时,12()()0f x f x -<,即12()()f x f x <, 所以1()f x x x=+在[)1+,∞上单调递增; 所以当1x =时,函数()f x 取最小值为1(1)121f =+=.点评:利用函数的单调性求函数的最值是求函数最值的一种重要的方法,解题时要注意取得最值时自变量是否在定义域范围内,有时要用到分类讨论的思想,尤其是解数学建模一类的数学习题时更要小心,防止漏解.。

高考数学填空题巧思妙填一点通试题

高考数学填空题巧思妙填一点通试题

卜人入州八九几市潮王学校2021年高考数学填空题巧思妙填一点通填空题是数学高考的三种基此题型之一,其求解方法分为:直接运算推理法、赋值计算法、规律发现法、特值猜想法、数形互助法等等.在解答问题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完好.合情推理、优化思路、少算多思将是快速、准确地解答填空题的根本要求,在草纸上少写一点,在头脑里多考虑一点,这可能会加快解的速度.下面将按知识分类加以例说.1. 函数、不等式与导数例1〔2021年春季高考题〕函数]1,0[,53)(∈+=x x x f 的反函数=-)(1x f.点通:由35,[0,1]y x x =+∈,得[]5,8y ∈.解出15,33x y =-,从而115()33f x x -=-,[]5,8.x ∈从而应填[]8,5),5(31∈-x x .说明:原函数的值域是反函数的定义域.求反函数的程序为:先求原函数的值域,再反解.例2 〔2021年春季高考题〕不等式0121>+-x x的解集是. 点通:不等式0121>+-x x 等价于()()1210x x -+>,也就是()1102x x ⎛⎫-+< ⎪⎝⎭,所以112x -<<,从而应填11,2x x x R ⎧⎫-<<∈⎨⎬⎩⎭. 说明:快速解答此题需要记住小结论:应用小结论:00aab b>⇔>. 例3 〔2021年春季高考题〕直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O为坐标原点,那么三角形OAB 面积的最小值为.点通:设直线l 为()10,0x y a b a b +=>>,那么有关系211a b+=.对211a b +=应用2元均值不等式,得211a b =+≥=8ab ≥.于是,三角形OAB 面积为142S ab =≥.从而应填4.说明:也可由211a b+=,得28ab a b ab =+≥⇒≥.特别注意,不等式中的等号是可以成立的.例4 〔2021年高考试题〕a ,b 为常数,假设22()43,()1024,f x x x f ax b x x =+++=++那么5a b -=.点通:由f(x)=x 2+4x+3,f(ax+b)=x 2+10x+24,得〔ax+b 〕2+4(ax+b)+3=x 2+10x+24,即a 2x 2+2abx+b 2+4ax+4b+3=x 2+10x+24,比较系数,得221,2410,4324.a ab a b b ⎧=⎪+=⎨⎪++=⎩解得1,7ab =-=-,或者1,3a b ==,所以52a b -=.说明:此题考察了复合函数解析式的运用,待定系数法及其相关的计算.例5假设函数3()3f x x x a =--在区间[0,3]上的最大值和最小值之差为_______.点通:显然有2()33f x x '=-.易知当1x =时,函数()f x 获得最小值2a --;当3x =时,函数()f x 取最大值18a -,后者与前者的差为20.说明:三次函数是高考的一个热门话题.连续函数在闭区间上必有最大值和最小值.2. 三角、向量与复数例64sin 5θ=,且sin cos 1θθ->,那么sin 2θ=________. 点通:由4sin 5θ=可以读出3cos 5θ=±.而有条件sin cos 1θθ->,所以知道3cos 5θ=-,24sin 22sin cos 25θθθ==-.说明:记住一些常用的结论,有时可以快速解答问题,如:当5sin 13θ=时,12cos 13θ=±.看看上面的"读出",“取舍〞,“用公式〞,想想解题思维的流程,会有什么启发?例7复数2lg(2)(331)()x x zx i x R -=+-+-∈在复平面内对应的点位于第______象限.点通:显然有2lg(3)lg30,x +>>而由222x x -+≥=,知道(221)0x x --+-<.说明:在解答当中,222xx -+≥你能直接看出来吗?复数在高考中是一个淡化的知识点,一般命制一道选择题或者填空题.例822ππθ-<<,且sin cos ,a θθ+=其中()0,1a ∈,那么关于tan θ的值,在以下四个数值:①3-②13③13-④15-其中,a 的值可以是________. 点通:由题意知02πθ-<<,从而tan 0θ<.此时有即有1tan 0,θ-<<于是,排除①和②,应该填③,④.说明:应用范围估计,有时可以巧妙的解答一些选择或者填空题.试问:你有这样的解题经历吗?知识积累〔量的增加〕的过程也就是才能逐渐提升〔质的变化〕的过程.例9如图,设点O 在ABC ∆内部,且有02=++OC OB OA ,那么ABC ∆的面积与AOC ∆的面积的比为________. 点通:由条件得知1()2OBOA OC =-+,所以点O 是AC 边上的中线的中点,于是,那么ABC ∆的面积与AOC ∆的面积之比为2.说明:我们知道,等底等高的三角形,其面积相等;一共底三角形的面积之比,等于该底上对应高的比.3. 数列、排列组合、二项式定理与概率统计例10{}n a 是公差不为零的等差数列,假设n S 是{}n a 的前n 项和,那么._____lim=∞→nnn S na点通:特别取n a n =,有()21+=n n S n ,于是有CB().211212lim lim lim 2=+=+=∞→∞→∞→nn n n S na n n n n n 故应填2.说明:有时,选择特殊的数值、函数、数列、图形等,可快速解答某写填空题,这点应引起读者的重视.例11〔2021年高考题〕假设常数b 满足|b|>1,那么=++++-∞→n n n bb b b 121lim . 点通:一般解答:=++++-∞→nn n b b b b 121lim 11111lim lim lim (1)1nn n n n n n n n b b b b b b b b b →∞→∞→∞----==--=11b -.简便解答:2211111limlim nn nn n b b b b b b b -→∞→∞⎡⎤++++⎛⎫⎛⎫=++⋅⋅⋅+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦11111b b b==--. 说明:比较两个解答,你能想到什么?看来,活学活用是应时时提倡的.例12〔2021年高考试题〕用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不.相邻,这样的八位数一共有___________个.〔用数字答题〕点通:将1与2,3与4,5与6捆绑在一起排成一列有482333=⋅A 种,再将7、8插入4个空位中的两个有1224=A 种,故有5761248=⨯种.说明:相邻用捆绑法,不相邻用插空法.例13二项展开式12nx x ⎛⎫- ⎪⎝⎭的各项系数的绝对值之和为729,那么展开式中的常数项是.点通:二项展开式12nx x ⎛⎫- ⎪⎝⎭的各项系数的绝对值之和就是12nx x ⎛⎫+ ⎪⎝⎭展开式的各项系数之和,取1x =,得()213nn+=,那么有637293n ==,所以6n =.于是612x x ⎛⎫- ⎪⎝⎭的通项为66621661(2)()2(1)r r r r rr r r T C x C x x---+=-=-.令620r-=,得3r =.所以常数项为33362(1)160C -=-. 说明:只要细心计算,就不难得出正确之答案.当中的转化你能想的到吗?请多考虑,多体会.例14如图是一个边长为4的正方形及其内切圆,假设随机向正方形内丢一粒豆子,那么豆子落入圆内的概率是________.点通:因为正方形的面积是16,内切圆的面积是4π,所以豆子落入圆内的概率是4164ππ=.说明:概率是高中的新知识,学习时应当紧扣课本的概念,透彻地理解概念的本质,这样就能快速解答问题.4.立体几何 例15三棱柱'''ABC A B C -的体积为1,P 为侧棱1B B 上的一点,那么四棱锥''P ACC A -的体积为____________.点通:设点P 到面ABC ,面'''A B C 的间隔分别为12,h h ,那么棱柱的高为12hh h =+,又记'''ABCA B C S SS==,那么三棱柱的体积为1V sh ==.而从三棱柱中取去四棱锥''P ACC A -的剩余体积为''''12121111()3333P ABC P A B C V V V sh sh s h h --=+=+=+=,从而''/121.33P ACC AV V V -=-=-=说明:立几试题的解答常用到几何体的割与补法,这种分与合思想需要我们反复的琢磨和体味.例16正三棱锥P -ABC 的底面边长为1,E 、F 、G 、H 分别是PA 、AC 、BC 、PB 的中点,四边形EFGH 的面积为S ,那么S 的取值范围是.点通:由题意可知AB PC ⊥,因此四边形EFGH 为矩形.设正三棱锥的侧棱4221,xx S x PA =⋅==则,设P 在平面上的射影为O ,连AO ,那么中,在ABC Rt AO ∆=,33AO PA >,从而123,33>>S x 即.故应填,12⎛⎫+∞ ⎪ ⎪⎝⎭. 说明:显然,点P 到平面ABC 的间隔可以无限大,这时S 也可以无限大.该问题可以在课本上找到它的影子,你知道吗?数学学习请别远离课本,因为有些考题的生长点就在课本上的. 5.解析几何例17如图,椭圆中心在坐标原点,F 为左焦点,当FB ⊥AB 时,,此类椭圆被称为“黄金椭圆〞.类比黄金椭圆, 可推算出“黄金双曲线〞的离心率e 等于_____________.点通:猜想出“黄金双曲线〞的离心率e 等于215+.事实上 对直角ABF 应用勾股定理,得222AF BF AB=+,即有()()()22222a c b c a b +=+++,注意到222,c bc a e a=-=,变形得210e e --=,从而1.2e = 说明:类比推理、类比发现是今年高考的一个新的亮点.这种问题的情景比较清新,构造比较巧妙,变化比较合理,是用"活题"考才能的典范.例18〔2021年高考试题〕连接抛物线上任意四点组成的四边形可能是〔填写上所有正确选项的序号〕. ①菱形 ②有3条边相等的四边形 ③梯形④平行四边形⑤有一组对角相等的四边形点通:①菱形不可能.假设这个四边形是菱形,那么菱形的一条对角线垂直抛物线的对称轴,这时四xPABCEFGH边形的必有一个顶点在抛物线的对称轴上(非抛物线的顶点);④平行四边形也不可能.因为抛物上四个点组成的四边形最多有一组对边平行.故连接抛物线上任意四点组成的四边形可能是②③⑤.说明:针对②③⑤,你能构造出详细的图形吗? 6.综合创新题例19有些计算机对表达式的运算处理过程实行“后缀表达式〞:运算符号紧跟在运算对象的后面,按照从左到右的顺序运算,如表达式7)2(3+-⨯x ,其运算为:+-,7,*,,2,,3x ,假设计算机进展运算:lg ,*,,2,,-x x ,那么使此表达式有意义的x 的范围为_____________.点通:计算机进展运算:lg ,*,,2,,-x x 时,它表示的表达式是()lg 2x x -,当其有意义时,得()20x x ->,解得02x x <>或.说明:解答问题的关键是:仔细地阅读问题,深入的理解题意,在此根底上,准确的写出所叙运算的表示式.例20某种汽车平安行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e-λt,其中μ0、λ是正常数.经检测,当t =2时,μμ0μ0时,该种汽车的使用年数为(结果准确到1,参考数据:lg2=0.3010,lg3=0.4771).点通:μ0=μ0(e-λ)2,得e -λ=,于是μ0=μ0(e -λ)t ⇒()t ,两边取常用对数,lg , 解出t ==1.说明:对一个等式的两边取对数,平方,取倒数,移项,等等细小的技巧我们可要熟滥于心呀.这种细节有时可能是解题思维受阻的关节所在.难怪说:成在细节,败也在细节.例21在某电视歌曲大奖赛中,最有六位选手争夺一个特别奖,观众A ,B ,C ,D 猜想如下:A 说:获奖的不是1号就是2号;A 说:获奖的不可能是3号;C 说:4号、5号、6号都不可能获奖;D 说:获奖的是4号、5号、6号中的一个.比赛结果说明,四个人中恰好有一个人猜对,那么猜对者一定是观众获特别奖的是号选手.点通:推理如下:因为只有一人猜对,而C 与D 互相否认,故C 、D 中一人猜对。

巧借三角函数定义妙解2024年高考题

巧借三角函数定义妙解2024年高考题

在2024年的高考数学试卷中,有一道与三角函数相关的题目引起了广泛的关注和讨论。

这道题目涉及到了三角函数的性质和运算,需要学生巧妙运用三角函数的定义和定理进行分析和解决。

下面我就来详细解析一下这道题目。

题目如下:已知函数 f(x) = sin(x) + 2cos(x) ,其中 -π/2 ≤ x ≤ π/2则f(x)的最小值是多少?要解决这道题目,首先我们需要明确三角函数的定义和性质。

首先,正弦函数 sin(x) 定义为对于任意实数 x ,在单位圆上以点(x,y) 为终点的弧所对应的 y 坐标值。

也就是说,sin(x) = y。

根据上述定义,我们可以发现sin(x) 的最大值是1,最小值是-1其次,余弦函数 cos(x) 定义为对于任意实数 x ,在单位圆上以点(x,y) 为终点的弧所对应的 x 坐标值。

也就是说,cos(x) = x。

根据上述定义,我们可以发现cos(x) 的最大值是1,最小值是-1接下来,我们来具体解答这道题目。

已知函数 f(x) = sin(x) + 2cos(x) ,其中 -π/2 ≤ x ≤ π/2我们知道 sin(x) 的最大值是1,最小值是-1而 cos(x) 的最大值是1,最小值是-1那么,sin(x) + 2cos(x) 的最大值应该是1 + 2 × 1 = 3 ,最小值应该是 -1 + 2 × (-1) = -3但是这里要注意题目给出了函数的定义域是-π/2≤x≤π/2,所以我们只需要考虑该区间内函数的取值情况。

我们知道,在该区间内,sin(x) 的最大值是1,最小值是-1而 cos(x) 的最大值是1,最小值是-1那么 f(x) = sin(x) + 2cos(x) 的最大值是1 + 2 × 1 = 3 ,最小值是 -1 + 2 × (-1) = -3所以我们得出结论,函数 f(x) = sin(x) + 2cos(x) 的最小值是 -3综上所述,我们巧妙运用了三角函数的定义和定理,解答了这道涉及到三角函数的高考题目。

高考数学巧解题目答案1

高考数学巧解题目答案1

1【巧解】设,由已知得到,且,,(1)垂线的方程为:,由得垂足,设重心所以解得由可得即为重心所在曲线方程2【巧解】设,,,由,得∴,设过点斜率为的直线方程为,由消去得:,∴,将代入得化简得,∴,化简得:,∴,,即。

故本题选(A)3【巧解】∵,∴∴函数为周期函数,且,∴故选(C)巧练一:若上是减函数,则b的取值范围是()A.B.C.D.巧练二:长方体ABCD—A1B1C1D1的8个顶点在同一个球面上,且AB=2,AD=AA1=1,则顶点A、B间的球面距离是()A.B.C.D.4【巧解】先在2号盒子里放1个小球,在3号盒子里放2个小球,余下的6个小球排成一排为:,只需在6个小球的5个空位之间插入2块挡板,如:,每一种插法对应着一种放法,故共有不同的放法为种. 故选B5【巧解】由可得,为与的等差中项,令,,其中,则,即,又,则,故,解之得,即,∴,故选(C)6【巧解】观察四个选项中有三个答案不含2,那么就取代入验证是否符合题意即可,取,则有,这个二次函数的函数值对且恒成立,现只需考虑当时函数值是否为正数即可。

这显然为正数。

故符合题意,排除不含的选项A、C、D。

所以选B7【巧解】当时,,,,故,所以选B8【巧解】∵,又是锐角,∴,∴,即,故选9【巧解】直线l过点M(0,1)设其斜率为k,则l的方程为记、由题设可得点A、B的坐标、是方程组的解.将①代入②并化简得,,所以于是设点P的坐标为则消去参数k得③当k不存在时,A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方程为10【巧解】(Ⅰ)设点M,N坐标分别为由题意可设直线方程为y=kx+b,(Ⅱ)当b=2时,由(Ⅰ)知∵函数y=x2的导数y′=2x,抛物线在两点处切线的斜率分别为∴在点M,N处的切线方程分别为11【巧解】不妨设以、所在直线为轴,轴,且,,由已知得,整理得即,所以向量的坐标是以为圆心,为半径的一个圆且过原点,故的最大值即为圆的直径为,故本题选(C)12【巧解】建立如图平面直角坐标系,设,,,由即,∴,化简得配方得,所以点轨迹是以为圆心,为半径的一个圆(除去与轴的两个交点),所以当点纵坐标绝对值为,即时,有最大值为,所以答案为13【巧解】设的中点为,,,则,又,两式相减,得,即,∴∴,又,∴,故选(B)14【巧解】(1)点在直线上,即且数列是以为首项,为公差的等差数列(2),是单调递增的,故的最小值是15【巧解】(Ⅰ)点(n,S n)在曲线上,所以当n=1时,a1= S1=3,当n≥2时,a n= S n- S n-1=9-6n,(Ⅱ)利用错位相减法,存在最大值16【巧解】∵,∴令,∵,,∴∴,∴,当且仅当,即时取等号,此时,即或,∴,因而,故的值域为[-] 17【巧解】由二倍角公式及同角三角函数的基本关系得:=,∵∴,利用均值定理,,当且仅当时取“=”,∴,所以应填.巧练一:函数的最小值是。

2024年高考数学(新高考卷)(全解全析)

2024年高考数学(新高考卷)(全解全析)

2024年高考押题预测卷【新高考卷】数学·全解全析第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

12345678BDBCABCD1.定义差集{M N x x M -=∈且}x N ∉,已知集合{}2,3,5A =,{}3,5,8B =,则()A A B -= ()A.∅B.{}2 C.{}8 D.{}3,51.【答案】B 【解析】因为{}2,3,5A =,{}3,5,8B =,所以{}3,5A B = ,所以(){}2A A B -= .故选:B2.已知函数()2sin cos (0)f x x x x ωωωω=+>的最小正周期为π,下列结论中正确的是()A.函数()f x 的图象关于π6x =对称B.函数()f x 的对称中心是()ππ,0122k k ⎛⎫+∈ ⎪⎝⎭Z C.函数()f x 在区间5π,1212π⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象可以由()1cos22g x x =+的图象向右平移π3个单位长度得到2.【答案】D【解析】A 选项,()21cos23sin2sin cos 22x xf x x x x ωωωωω-=+=+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭,因为函数()f x 的最小正周期为2ππ2ω=,解得1ω=,所以()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,当π6x =时,πππ1sin 2sin 6362x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;B 选项,令π2π,6x k k -=∈Z ,即ππ,122k x k =+∈Z ,函数()f x 的对称中心是()ππ1,1222k k ⎛⎫+∈⎪⎝⎭Z ,故B 错误;C 选项,π5π,1212x ⎡⎤∈⎢⎥⎣⎦时,π2π20,63u x ⎡⎤=-∈⎢⎥⎣⎦,显然()1sin 2f x u =+在其上不单调,故C 错误;D 选项,()1cos22g x x =+的图象向右平移π3个单位长度,得到()π2π1π1cos 2sin 233262g x x x f x ⎛⎫⎛⎫⎛⎫-=-+=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确.故选:D .3.2024年3月16日下午3点,在贵州省黔东南苗族侗族自治州榕江县“村超”足球场,伴随平地村足球队在对阵口寨村足球队中踢出的第一脚球,2024年第二届贵州“村超”总决赛阶段的比赛正式拉开帷幕.某校足球社的五位同学准备前往村超球队所在村寨调研,将在第一天前往平地村、口寨村、忠诚村,已知每个村至少有一位同学前往,五位同学都会进行选择并且每位同学只能选择其中一个村,若学生甲和学生乙必须选同一个村,则不同的选法种数是()A.18B.36C.54D.723.【答案】B【解析】若五位同学最终选择为3,1,1,先选择一位同学和学生甲和学生乙组成3人小组,剩余两人各去一个村,进行全排列,此时有1333C A 18=种选择,若五位同学最终选择为2,2,1,将除了甲乙外的三位同学分为两组,再进行全排列,此时有213313C C A 18=种选择,综上,共有181836+=种选择.故选:B4.南丁格尔玫瑰图是由近代护理学和护士教育创始人南丁格尔()Florence Nightingale 设计的,图中每个扇形圆心角都是相等的,半径长短表示数量大小.某机构统计了近几年中国知识付费用户数量(单位:亿人次),并绘制成南丁格尔玫瑰图(如图所示),根据此图,以下说法错误..的是()A.2015年至2022年,知识付费用户数量逐年增加B.2015年至2022年,知识付费用户数量逐年增加量2018年最多C.2015年至2022年,知识付费用户数量的逐年增加量逐年递增D.2022年知识付费用户数量超过2015年知识付费用户数量的10倍4.【答案】C【解析】对于A ,由图可知,2015年至2022年,知识付费用户数量逐年增加,故A 说法正确;对于B 和C ,知识付费用户数量的逐年增加量分别为:2016年,0.960.480.48-=;2017年,1.880.960.92-=;2018年,2.95 1.88 1.07-=;2019年,3.56 2.950.61-=;2020年,4.15 3.560.59-=;2021年,4.77 4.150.62-=;2022年,5.27 4.770.5-=;则知识付费用户数量逐年增加量2018年最多,知识付费用户数量的逐年增加量不是逐年递增,故B 说法正确,C 说法错误;对于D ,由5.27100.48>⨯,则2022年知识付费用户数量超过2015年知识付费用户数量的10倍,故D 说法正确.综上,说法错误的选项为C.故选:C5.在ABC 中,D 为边BC 上一点,2π,4,23DAC AD AB BD ∠===,且ADC △的面积为43,则sin ABD ∠=()A.1538 B.1538+ C.534- D.534+5.【答案】A【解析】因为113sin 4222ADC S AD AC DAC AC =⋅∠=⨯⨯⨯=△,解得4AC =,所以ADC △为等腰三角形,则π6ADC ∠=,在ADB 中由正弦定理可得sin sin AB DB ADB BAD=∠∠,即21sin 2DB DBBAD =∠,解得1sin 4BAD ∠=,因为5π6ADB ∠=,所以BAD ∠为锐角,所以15cos 4BAD ∠==,所以()πsin sin sin 6ABD ADC BAD BAD ⎛⎫∠=∠-∠=-∠⎪⎝⎭ππsin cos cos 81sin 5663BAD BAD =∠=-∠.故选:A6.已知正项数列{}n a 的前n 项和为1,1n S a =,若13n n n n S a S a ++=,且13242111n n M a a a a a a ++++< 恒成立,则实数M 的最小值为()A.13 B.49C.43D.36.【答案】B【解析】因为13n n n nS a S a ++=,所以()133n n n n n n n a S a S a S S +==++,即()13n n n n a S S S +-=,即13n n n a a S +=,则1213n n n a a S +++=,与上式作差后可得()()121133n n n n n n a S a a S a ++++-=-=,因为正项数列{}n a ,所以23n n a a +-=,所以22223111113n n n n n n n n a a a a a a a a ++++⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭,因为11a =,11212333n n n a S a a a a a +=⇒=⇒=,所以1324213243521111111111113n n n n a a a a a a a a a a a a a a ++⎛⎫+++=-+-+-+- ⎪⎝⎭1212121111111111333n n n n a a a a a a ++++⎛⎫⎛⎫⎛⎫=+--=⨯+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12411499n n a a ++⎛⎫=-+< ⎪⎝⎭,所以实数M 的最小值为49,故选:B.7.设方程33log 1xx ⋅=的两根为1x ,()212x x x <,则()A.101x <<,23x >B.121x x >C.1201x x <<D.124x x +>7.【答案】C【解析】由33log 1xx ⋅=可得311log 33xx x ⎛⎫== ⎪⎝⎭,在同一直角坐标系中同时画出函数3log y x =和13xy ⎛⎫= ⎪⎝⎭的图象,如图所示:由图象可知,因为1311log 133⎛⎫<= ⎪⎝⎭,23311log 2log 239⎛⎫=>= ⎪⎝⎭,所以12012x x <<<<,所以1213x x <+<故A ,D 错误;()12312313211log log log 33x xx x x x ⎛⎫⎛⎫=+=-+ ⎪ ⎪⎝⎭⎝⎭,因为12x x <,所以121133x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以()312log 0x x <,所以1201x x <<,即121x x <,故B 错误,C 正确.故选:C8.在棱长为2的正方体1111ABCD A B C D -中,P ,Q ,R 分别为棱BC ,CD ,1CC 的中点,平面PQR 截正方体1111ABCD A B C D -外接球所得的截面面积为()A.215π3B.8π3C.35π3D.5π3【答案】D【解析】取正方体的中心为O ,连接,,OP OQ OR,由于正方体的棱长为2,所以正方体的面对角线长为,体对角线长为正方体外接球球心为点O,半径12R =⨯=,又易得12OP OQ OR ===⨯=,且12PQ PR QR ===⨯=,所以三棱锥O PQR -为正四面体,如图所示,取底面正三角形PQR 的中心为M,即点O 到平面PQR 的距离为OM ,又正三角形PQR 的外接圆半径为MQ ,由正弦定理可得262sin 60332PQMQ ===︒,即63MQ =,所以233OM==,即正方体1111ABCD A B C D-外接球的球心O到截面PQR的距离为3OM=,所以截面PQR被球O所截圆的半径r==,则截面圆的面积为25ππ3r=.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011AB AD BD9.已知,z z∈C是z的共轭复数,则()A.若13i13iz+=-,则43i5z--=B.若z为纯虚数,则20z<C.若(2i)0z-+>,则2iz>+D.若{||3i3}M z z=+≤∣,则集合M所构成区域的面积为6π9.【答案】AB【解析】()()()213i13i43i13i13i13i5z++-+===--+,所以43i5z--=,故A正确;由z为纯虚数,可设()i R,0z b b b=∈≠,所以222iz b=,因为2i1=-且0b≠,所以20z<,故B正确;由()2i0z-+>,得i(2)z a a=+>,因为i(2)z a a=+>与2i+均为虚数,所以二者之间不能比较大小,故C错误;设复数i,,Rz a b a b∈=+,所以()3ia b++由|3i3z +≤∣得()2239a b ++≤,所以集合M 所构成区域是以()0,3-为圆心3为半径的圆,所以面积为9π,故D 错误.故选:AB.10.已知向量a 在向量b 方向上的投影向量为33,22⎛⎫ ⎪ ⎪⎝⎭,向量(b = ,且a 与b 夹角π6,则向量a 可以为()A.()0,2 B.()2,0C.(D.)10.【答案】AD【解析】由题设可得(233,22a b b ⎛⎫⋅= ⎪ ⎪⎝⎭,故22a b b ⋅=,而2b = ,a 与b 夹角π6,故33242a b ⨯= ,故2a = ,对于A ,233cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π6,a b = ,故A 正确.对于B ,21cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π,3a b = ,故B 错误.对于C ,4cos ,122a b ==⨯ ,因[],0,πa b ∈ ,故,0a b = ,故C 错误.对于D ,233cos ,222a b ==⨯ ,因[],0,πa b ∈ ,故π6,a b = ,故D 错误.故选:AD.11.已知抛物线2:2(0)C y px p =>的焦点为()()()112233,,,,,,F A x y B x y D x y 为抛物线C 上的任意三点(异于坐标原点O ),0FA FB FD ++=,且6FA FB FD ++=,则下列说法正确的有()A.4p =B.若FA FB ⊥,则FD AB=C.设,A B 到直线=1x -的距离分别为12,d d ,则12d d AB+<D.若直线,,AB AD BD 的斜率分别为,,AB AD BD k k k ,则1110AB AD BDk k k ++=11.【答案】BD【解析】对于A ,因为,,A B D 为抛物线上任意三点,且0FA FB FD ++=,所以F 为ABD 的重心,,02p F ⎛⎫⎪⎝⎭,所以1231233,02px x x y y y ++=++=又123362pFA FB FD x x x ++=+++=,即2p =,故A 错误;对于B ,延长FD 交AB 于点E ,因为F 为ABD 的重心,所以2FD FE =,且F 是AB 的中点,因为FA FB ⊥,在Rt FAB 中,有2AB FE =,所以FD AB =,故B 正确;对于C ,抛物线方程为24y x =,所以抛物线的准线为=1x -,所以,A B 到直线=1x -的距离之和12d d FA FB +=+,因为,,F A B 三点不一定共线,所以FA FB AB +≥,即12d d AB +≥,故C 错误;对于D ,因为2114y x =,2224y x =,两式相减,得:()()()1212124y y y y x x +-=-,所以1212124AB y y k x x y y -==-+,同理可得324BD k y y =+,134AD k y y =+,所以()123211104AB AD BD y y y k k k ++++==,故D 正确.故选:BD.第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。

巧思维切入,妙方法破解——以一道高考题为例

巧思维切入,妙方法破解——以一道高考题为例

试题研究2024年1月上半月㊀㊀㊀巧思维切入,妙方法破解以一道高考题为例◉江苏省张家港市乐余高级中学㊀刘晨玉㊀㊀双变元代数式的最值(最大值或最小值)或取值范围问题,是天津高考试卷中一副不变的熟悉 面孔 ,创新新颖,常考常新.破解此类问题,结合双变元代数式的基本特征,借助基本不等式思维㊁函数或方程思维㊁导数思维或其他重要不等式思维等加以切入与破解,合理融合基本不等式㊁函数与方程㊁导数等相关数学知识与数学思想方法,巧妙处理,正确破解.1真题呈现高考真题㊀(2021年高考数学天津卷第13题)已知a>0,b>0,则1a+a b2+b的最小值为.2真题剖析此题以两个正参数所对应的代数式为问题背景,进而确定对应代数式的最值问题.题目代数关系式中两参数之间没有明显的线性联系,又不具有明显的对称性,剖析两参数之间的次数㊁加减与乘积等方面的关系,为进一步破解问题提供条件.结合所求解的代数关系式的特征,合理配凑,巧妙拆分,整体设参,正确构建等,借助基本不等式思维㊁其他重要不等式思维㊁函数或方程思维㊁导数思维等,合理转化,巧妙变换,进而得以确定相应的代数式的最值问题.3真题破解思维视角一:不等式思维.方法1:两步基本不等式法1.解析:由于a>0,b>0,利用基本不等式,可得1a+ab2+bȡ21aˑab2+b=2b+bȡ22bˑb=22,当且仅当1a=a b2,且2b=b,即a=b=2时,等号成立.所以1a+a b2+b的最小值为22.故填答案:22.点评:根据所求代数式的基本特征,利用基本不等式,分两步来处理,第一步先消去参数a,结合代数式的变形与转化再进行第二步消参数b,进而得以确定代数式的最值.抓住代数式的基本特征,合理分步,巧妙借助基本不等式两步走,合理消参,确定最值.方法2:两步基本不等式法2.解析:由于a>0,b>0,利用基本不等式,可得1a+ab2+b=1a+b2+ab2+b2ȡ21aˑb2+2a b2ˑb2=2b2a+2a2b=2b a+2a bȡ22b aˑ2a b=22,当且仅当1a=b2,a b2=b2,且2ba=2ab,即a=b=2时,等号成立.所以1a+a b2+b的最小值为22.故填答案:22.点评:根据所求代数式的基本特征,巧妙配凑,合理分拆,借助合理的分配与组合,分别利用基本不等式,变形转化后再次利用基本不等式来处理,进而得以确定代数式的最值.抓住代数式的基本特征,合理分拆与分步,巧妙借助基本不等式,保留参数,巧妙两步走,确定最值.方法3:均值不等式法.解析:由于a>0,b>0,由均值不等式可得1a+ab2+b=1a+ab2+b2+b2ȡ441aˑab2ˑb2ˑb2=22,662024年1月上半月㊀试题研究㊀㊀㊀㊀当且仅当1a =a b 2=b2,即a =b =2时,等号成立.所以1a +a b2+b 的最小值为22.故填答案:22.点评:根据所求代数式的基本特征,巧妙配凑,合理分拆,利用代数式进行巧妙平均拆分处理,结合拆分后所对应的代数关系式,巧妙利用四次均值不等式,进而得以确定对应代数式的最值问题.抓住代数式的基本特征,巧妙配凑,合理分拆,巧妙借助均值不等式,直接确定最值.思维视角二:方程思维.方法4:待定系数法.解析:由于a >0,b >0,令1a +ab2+b =t >0,变形整理,可得a 2+(b 3-t b 2)a +b 2=0.要使得关于参数a 的二次方程有正数解,则需满足b 3-t b 2<0且Δ=(b 3-t b 2)2-4b 2ȡ0.整理,可得b 3-t b 2<0且(b 3-t b 2)2ȡ4b 2.又b >0,则b 3-t b 2ɤ-2b ,即t ȡb +2b.利用基本不等式,可得t ȡb +2b ȡ2b ˑ2b=22,当且仅当b =2b,即a =b =2时,等号成立.所以1a +a b 2+b 的最小值为22.故填答案:22.点评:根据所求代数式进行待定系数法处理,将问题方程化,结合关于参数a 的二次方程有正数解,建立对应的不等式,分离参数,利用基本不等式来确定参数t 的最小值,进而得以求解代数式的最值问题.引入参数进行待定系数法处理,结合方程思维,利用不等式的求解以及基本不等式的应用来巧妙破解.思维视角三:导数思维.方法5:导数法.解析:由于a >0,b >0,构造函数f (a )=1a +ab 2+b .求导,可得f ᶄ(a )=-1a 2+1b 2=a 2-b2a 2b2=(a +b )(a -b )a 2b2.当a >b 时,f ᶄ(a )>0,f (a )单调递增;当a <b 时,f ᶄ(a )<0,f (a )单调递增.故f (a )在(0,b )上单调递减,在(b ,+ɕ)上单调递增.令f ᶄ(a )=0,可得a =b ,此时f (a )ȡ1b +bb2+b =2b +b ȡ22b ˑb =22,当且仅当2b=b ,即a =b =2时,等号成立.所以1a +ab2+b 的最小值为22.故填答案:22.点评:通过构造函数,结合相应函数的求导运算,利用导函数的零点确定函数的最值,进而确定此时对应的最值关系式,利用基本不等式确定相应的最值问题.导数法处理代数式的最值问题,是破解此类最值问题常见的思维方式,导数思维是解决函数最值问题的基本思维方法之一.4教学启示破解双变量或多变量代数式的最值问题,结合代数式的特征,合理借助不等式思维㊁函数与方程或导数思维等,合理配凑,巧妙拆分,整体设参,正确构建,利用不同的思维方式加以分析与破解.(1)首选不等式思维破解双变量或多变量关系条件下的代数式最值问题,关键是借助已知条件中的关系式,合理恒等变形,巧妙运算转化,结合不等式思维,特别是基本不等式以及不等式性质等加以合理转化与处理,进而直接确定对应代数式的最值问题.(2)函数与方程或导数思维函数与方程思维或导数思维,也是破解双变量或多变量关系条件下代数式最值问题的基本思维方式.通过函数与方程思维加以转化,或利用函数思维,结合函数的图象与性质进行求解;或利用方程思维,结合判别式的应用加以处理;或利用导数思维,通过求导来确定单调性㊁极值与最值等来分析与处理.(3)拓展思维,形成能力对于此类问题,要合理挖掘其丰富内涵,不断探究反思,举一反三,灵活变通,学会变式拓展,探究提升,真正达到融会贯通.从数学知识㊁数学思想方法与数学能力等层面融合,形成数学知识体系,转变为数学能力,有效应用于相应的数学解题中,真正形成良好的数学品质,有效提高数学能力,培养数学核心素养.Z76。

高考思维试题及答案

高考思维试题及答案

高考思维试题及答案1. 题目:在数学中,函数f(x)=x^2+2x+1的最小值是多少?答案:函数f(x)=x^2+2x+1可以重写为f(x)=(x+1)^2,这是一个完全平方的形式。

由于平方项(x+1)^2总是非负的,所以函数的最小值出现在x=-1时,此时函数值为0。

2. 题目:在物理学中,如果一个物体以9.8m/s^2的加速度自由下落,那么它在第3秒末的速度是多少?答案:根据自由落体运动的速度公式v=gt,其中g是重力加速度,t是时间。

将g=9.8m/s^2和t=3s代入公式,得到v=9.8m/s^2*3s=29.4m/s。

因此,物体在第3秒末的速度是29.4m/s。

3. 题目:在化学中,如果1摩尔的氢气(H2)与1摩尔的氧气(O2)完全反应生成水(H2O),那么生成的水的摩尔数是多少?答案:根据化学反应方程式2H2 + O2 → 2H2O,2摩尔的氢气与1摩尔的氧气反应生成2摩尔的水。

因此,1摩尔的氢气与0.5摩尔的氧气反应生成1摩尔的水。

所以,生成的水的摩尔数是1摩尔。

4. 题目:在生物学中,如果一个种群的增长率是指数型的,那么它的增长公式是什么?答案:指数型增长的公式是N(t)=N0*e^(rt),其中N(t)是时间t时的种群数量,N0是初始种群数量,r是增长率,e是自然对数的底数。

5. 题目:在历史学中,文艺复兴时期最著名的艺术家之一是达芬奇,他最著名的作品之一是《蒙娜丽莎》。

请问《蒙娜丽莎》的创作时间大约是什么时候?答案:《蒙娜丽莎》的创作时间大约是1503年至1506年之间,这幅画是达芬奇在文艺复兴时期的代表作之一,以其神秘的微笑和精湛的绘画技巧闻名于世。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧思妙解高考数学题目巧思妙解2011年高考数学题(上海卷)1.(理20,文21)已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0.(1)若ab>0,判断函数f(x)的单调性;(2)若ab<0,求f(x+1)>f(x)时x的取值范围.【参考答案】(1)当a>0,b>0时,任意x1,x2∈R, x1<x2,则f(x1)-f(x2)=a(2x1-2x2)+b(3x1-3x2).∵2x1<2x2,a>0a(2x1-2x2)<0,3x1<3x2,b>0b(3x1-3x2)<0,∴f(x1)-f(x2)<0,函数f(x)在R上是增函数.当a<0,b<0时,同理,函数f(x)在R上是减函数.(2)略·巧思·①利用“增函数的正数倍是增函数”、“增函数的和还是增函数”,情况1的结论便显而易见。

②利用“增函数的负数倍是减函数”、“减函数的和还是减函数”,情况2的结论便显而易见。

·妙解·若a>0,b>0,则a·2x和b·3x在R上递增 f(x)在R上递增;若a<0,b<0,则a·2x和b·3x在R上递减 f(x)在R上递减.【评注】①利用定义判断或证明固然很好,如能利用某些性质解决问题,则更显得轻松、方便。

②上述单调函数的性质经常用到,教师应向学生补充讲解,使之牢固掌握、灵活运用。

③“奇函数的和还是奇函数,偶函数的和还是偶函数”,“奇函数与偶函数的积是奇函数”,“奇数个奇函数的积是奇函数,偶数个奇函数的积是偶函数,”这些性质也应当能够掌握。

2.(文22)已知椭圆C:(常数m>1),P是曲线C上的动点,M 是曲线C的右顶点,定点A的坐标为(2,0).(1)若M与A重合,求曲线C的焦点坐标;(2)若m=3,求∣PA∣的最大值和最小值;(3)若∣PA∣的最小值为∣MA∣,求实数m的取值范围.【参考答案】(1)略(2)m=3,椭圆方程为.设P(x,y),则∣PA∣2 ==(-3≤x≤3).当x=时, ∣PA∣min=;当x =-3时, ∣PA∣max=5.(3)设动点P(x,y),则∣PA∣2 ==+5(-m≤x≤m).∵当x=m时,∣PA∣取最小值,且>0,∴≥m,且m>1,解得1<m≤1+.·巧思·①利用椭圆的参数方程设点P的坐标,则将“设P(x,y)”与“代入”两步合为一步,而利用余弦函数的有界性也可求出∣PA∣的最值。

②将∣PA∣2含有m的表达式(关于x的二次函数)先化为“顶点式”,后再分别代入m的值进行运算,便避免了重复过程,而节省文字、减少篇幅。

·妙解·设P(m co sθ, sinθ)∣PA∣2 =(m co sθ-2)2 + sin2θ=(m2 -1)co s2θ-4m co sθ+ 5=(m2 -1)(2)m=3co sθ=时,∣PA∣min=;co sθ=-1时,∣PA∣max=5.(3)θ=0时, ∣PA∣最小≥1(m>1)1<m≤1+.【评注】①椭圆(a>b>0)的参数方程为x=a cosθ,y=b binθ;双曲线=1(a>0, b>0)的参数方程为x=a cscθ,y=b tanθ;抛物线y2=2px 的参数方程为x=2pt2,y=2pt;这些将普通方程与参数方程“互换”的手法,教师应当指导学生掌握。

②正如将多项式分解因式并非只是解答“因式分解”的习题时才使用一样,将普通方程化为参数方程也并非只是解答“方程转化”的习题时才使用。

由此及彼,其它亦然。

3.(理22)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+ 7(n∈N﹡).将集合{x│x=a n , n∈N﹡}{x│x=b n , n∈N﹡}中的元素从小到大依次排列,构成数列c1, c2 , c3 ,…, c n ,….(1)求c1 , c2 , c3 , c4 ;(2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2 , c4 ,…,a2n,…;(3)求数列{c n}的通项公式.【参考答案】(1)略(2)①任意n∈N﹡,设a2n-1 =3(2n-1)+6=6n+3= b k =2k+7,则k=3n–2,即a2n-1 = b3n-2;②假设a2n=6n+6= b k =2k+7k=3n-∈N﹡(矛盾),∴a2n{b n},∴在数列{c n}中,但不在数列{b n}中的项恰为a2 , c4 ,…, a2n ,….(3)b3k-2=2(3k-2)+7=6k+3= a2k+1 ,b3k-1=6k+5,a2k=6k+6,b3k=6k+7.∵6k+3<6k+5<6k+6<6k+7,∴当k=1时,依次有b1 = a1 = c1,b2 = c2,a2 = c3,b3 = c4 ,…,∴c n=(k∈N﹡).·巧思·①由6n+6=2k+7便知矛盾(偶数不能等于奇数),而无须化为k=3n-再判断。

②由a n=3n+6便知,a2n-1是奇数,a2n是偶数,而无须分别检验是否属于{b n}。

③在{c n}的首项前增加一项7,得新数列{d n},就使得排列更加“整齐”,观察更加方便;规律更加“明显”,归纳更加容易。

·妙解·(2)题设a n>7,a2n- 1是奇数,a2n 是偶数,{b n}是全体大于7的奇数命题得证.(3)令d1=7,d n+1= c n,(n∈N﹡),则{d n}:7,9,11,12,13,15,17,18,19,21,23,24,….可知d4k-3=6k+1,d4k-2=6k+3,d4k -1=6k+5,d4k=6k+6c n=(k∈N﹡).【评注】①认为“k=3n-∈N﹡(矛盾)”的依据是“整数-分数=分数,而分数≠整数”,认为“6n+6≠2k+7”的依据是“偶数+偶数=偶数,偶数+奇数=奇数,而偶数≠奇数”。

二者的依据都是显然的事实、浅显的道理,所以没有必要利用前者说明后者。

②将数列{c n}的首项“扩充”为易于分析的新数列{d n},此法可以推广使用。

4.(文23)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+ 7(n∈N﹡).将集合{x│x=a n , n∈N﹡}{x│x=b n , n∈N﹡}中的元素从小到大依次排列,构成数列c1, c2 , c3 ,…, c n ,….(1)求三个最小的数,使它们既是数列{a n}中的项,又是数列{b n}中的项;(2)数列c1, c2 , c3 ,…, c40中有多少项不是数列{b n}中的项?请说明理由;(3)求数列{c n}的前4n项和S4n.【参考答案】(1)设a m=b n(m,n∈N﹡),即3m+6=2n+7, ∴n=,∴m应该是奇数,∴当m=1,3,5时,对应{x│x=a n , n∈N﹡}{x│x=b n , n∈N﹡}中的三个最小的数依次为a1 =9, a3 =15, a5 =21,即三项分别为9,15,21.(2)列表:n 1 2 3 4 5 6 7 8 9 10 11 12 …a n9 12 15 18 21 24 27 30 33 36 39 42 …b n9 113 15 17 19 21 23 25 27 29 31 …1可知6是数列{c n}在自然数中的截取周期,即在从9开始连续的6个自然数中,第一个一定是{a n}与{b n}的公共项,第二个不存在于{c n}中,第三个一定是{b n}中的项,第四个一定是{a n}中的项,第五个一定是{b n}中的项,第六个不存在于{c n}中.这样的话,{c n}是以4为截取周期的,故{c n}的通项公式为c n=(k∈N﹡).故不是{b n}中的项只占了,这样在c1到c40中只有10项不在{b n}中.(3)∵b3k -2 =2(3k-2)+7=6k+3,b3k -1 =6k+5,a2k =6k+6,b3k =6k+7,∴c n=(k∈N﹡).∴c4k-3+c4k-2+c4k -1+c4k=24k+21,S4n=(c1+c2+c3 +c4)+…+(c4n-3+c4n-2+c4n -1+c4n)=24×+21nk=12n2+33n.·巧思·①由3m+6=2n+7便知m应是奇数,而无须化为n=后再予判断。

②在{c n}的首项前增加一项7,得新数列{d n},就使得排列更加“整齐”,观察更加方便;规律更加“明显”,归纳更加容易。

③将“{c n}的前4n项和”看成“{d n}的前4n+1项和与首项之差”,便可利用{d n}的“整齐”排列和“明显”规律进行计算。

④将(1)(2)(3)合并解答,则既避免了含义重复的叙述,从而节省文字、缩减篇幅,又显得前后连贯、联系密切、节奏紧凑。

·妙解·令d1=7,d n+1= c n,(n∈N﹡),则{d n}:7,9,11,12,13,15,17,18,19,21,23,24,….可知:(1)所求三个数为9,15,21.(2)数列c1, c2 , c3 ,…, c40中共有10项不是数列{b n}中的项.(3)d4k-3=6k+1,d4k-2=6k+3,d4k -1=6k+5,d4k=6k+6S4n===12n2+33n.【评注】①“n=m应该是奇数”的依据是“奇数±奇数=偶数”,“3m+6=2n+ 7m是奇数”的依据也是“奇数±奇数=偶数”,所以没有必要利用前者说明后者。

②原解法是列出表格“看出”规律来的,新解法也可写出数列“看出”规律来。

【小结】①数学是美的,“简洁美”是其中之一,也是主要的数学美,解决数学问题应当——力求简明、简便、简洁、简单,力求创优创新、尽善尽美。

亦即:应当——探求尽可能简明的思路、尽可能简便的解法,探求尽可能简洁的语句、尽可能简单的表述。

②如果某个问题的解答过程较复杂、步骤较冗长,我们就要思考:这个解法算得上“较好”吗?“很好”吗?“极好”吗?还能够“改变”吗?“改造”吗?“改进”吗?精品好文档,推荐学习交流亦即:教师传给学生的知识,不仅应当是“正品”,而且还应当是“精品”、“极品”。

③如同长跑比赛不仅是比耐力、而且是比速度一样,数学高考不仅测验“会不会”,而且测验“好不好”、“快不快”:看你能否在很短的时间内顺利地完成答卷。

因此,探求“巧思妙解”就不仅仅是理论上的需要,而且更是实际的需要、迫切的需要。

仅供学习与交流,如有侵权请联系网站删除谢谢6。

相关文档
最新文档