完全平方公式(二)公式变形试题讲解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 2 3ab 2 (5) a +______+9b =( a+3b)2 2 4
你会吗?
选择题 (1)如果x2+mx+4是一个完全平方公式, 那么m的值是(c)
A .4
B.-4
C.±4
D.±8
(2)将正方形的边长由acm增加6cm,则 正方形的面积增加了( c ) A.36cm2 B.12acm2
达标检测 反思目标
1.( )2=x2+6xy+_____ 2.a2-kab+9b2是完全平方式,则k= _____. 3.计算(-a-b)2结果是( ) A. a2-2ab+b2 B. a2+2ab+b2 C. a2+b2 D. a2-b2 4运用乘法公式计算 1 (1) ( x 1) 2 (2) 1052 (3) (a b 3)(a b 3)
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(1) (3a+__ )2=9a2- ___ +16 D (2)代数式2xy-x2-y2= ( A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2 )
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
2
5. x y 8, x y 4, 求xy. xy 12
完全平方式. 4 k
4k
k 4
是 4 2
拓展:
思考题:
1 已知: x 3 x 1 2 1 2 求: x 和 (x ) 2 x x
的值
拓展延伸
若 ( x y) 12 , ( x y) 16 , 求xy的值。
(9)已知 : a b c 2a 4b 6c 14 0,
2 2 2
求 : c a b的值.
1 1 2 (10)已知 a 3,求 a 2 的值. a a
例3.若 a b 5, ab 6, 求 a b ,a ab b .
2 2 2 2
2.
2008 2 2008 2009 2009 =__;
2 2
2 2
3. 若 x 8 x k
是一个完全平方公式,
则k
___;
)
4. 已知a+b=5,ab=6,则(a-b)2的值为( (A)1 (B)4 (C)9 (D)16
5
“拓”公式,挑战自我
(1)已知(a+b)2 = 21, (a-b)2 =5,则ab=( A ) A.4 B.-4 C.0 D.4或-4
拓展思维
更上一层
±5 则 k=_____.
(3)如果x2+kx+25是完全平方式, (4)如果9x2-mxy+16y2 可化为一个
±24 整式的平方,则 m=_____.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(5)已知 a+b = 4,ab = -12, 则a2 + b2= . 40 (6)已知 m+n= 3,mn = 5, 求:(m+3)(n+3)的值. (7)已知 x+y=4,xy =-13, 2 2 求: x 3xy y的值.
填空:
1) 2ab 2 2 2 2) 4a +(-4ab) +b =(2a - b) 2 2 2 3) ( 2a ) +4ab+b =( 2a +b) 2 2 2 4) a -8ab+ 16b =( a-4b )
2 a+
2 2 +b =(a+b)
拓展思维,更上一层
1、小兵计算一个完全平方式时,得到 正染了,这一项应是( D ) A 10xy B 20xy C±10xy D±20xy
二、分析完全平方公式
2+2ab+b 2= = a2 +2ab+b2 (a+b) ( a+b) 2= 2−2ab+b2 . = a −b) a2 −2ab+b ((a a−b )
结构特征: 左边是 两数和 (差) 的平方; 右边是 两数的平方和 加上 (减去) 这两数乘积的两倍. 公式中的字母a,b可以表示数,单项式和多项式.
1.
2008 2 2008 2009 2009 =_______;
2 2
1
2.若 x 2kx 9 是一个完全平方公式, 3 则 k _______; 3.若 x 2 8 x k 2是一个完全平方公式, 则 k _______; 4
2
4.请添加一项________,使得 k
拓展思维
更上一层
±5 则 k=_____.
(3)如果x2+kx+25是完全平方式, (4)如果9x2-mxy+16y2 可化为一个
±24 整式的平方,则 m=_____.
拓展延伸
若 ( x y) 12 , ( x y) 16 , 求xy的值。
2 2
拓 展 练 习
试一试:计算 ( m −2n + 3 )2 2.完全平方公式的变形应用: (1) 已知:x +y =3 ; x y =2 求 x2+y2
33
求 (a b) 的值。
2
你会吗?
选择题 (1)如果x2+mx+4是一个完全平方公式, 那么m的值是(c)
A .4
B.-4
C.±4
D.±8
(2)将正方形的边长由acm增加6cm,则 正方形的面积增加了( c ) A.36cm2 B.12acm2
C.(36+12a)cm2 D.以上都不对
拓展:
2 2
( x y) 9,( x y) 5, 则xy= 1 2 2 29 x y 4.若x-y=3,xy=10,则
3.若
2 2
5.用完全平方公式计算:
(1) 499 (3) 53
2
2
(2) 998 (4) 88
2
答案
(1) 249001 (2)996004
2
(3) 2809
(4) 7744
变式:已知a+b=2,ab=1,求a2+b2、(a-b)2 的值. 1 2 1 (2)如果a + a =4,则 a + 2 =( B ) a A.16 B.14 C.10 D.11
2.已知a+b=5,ab=6,则(a-b)2的值为( ) (A)1 (B)4 (C)9 (D)16 【解析】选A.(a-b)2=(a+b)2-4ab=52-4×6=1.
2
5.已知x+y=9,xy=20,求(x-y)2的值.
当堂训练(18分钟)
1.代数式2xy-x2-y2= ( ) D A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2
2.若a+b=7,ab=12,则 a ab b 的值为( B ) A. -11 B. 13 C. 37 D. 61
C.(36+12a)cm2 D.以上都不对
拓展:
1.
2008 2 2008 2009 2009 =_______;
2 2
1
2.若 x 2kx 9 是一个完全平方公式, 3 则 k _______; 3.若 x 2 8 x k 2是一个完全平方公式, 则 k _______; 4
;
2 (a+b+c) 可以用完全平方公式进行计算吗? 1.思考:
(x −y)2 的值.
(2)已知:a −b =1 ; a2 +b2 =25 求 ab 的值. (3)已知:(x +y )2 =9 ; ( x − y)2= 5 求 xy ; x2+y2 的值.
2 2
综合训练:
填空题:
2 2 2 (1)(-3x+4y) =_____________.
9x -24xy+16y
2 2 2 (2)(-2a-b) =____________.
4a +4ab+b
2 2 (3)x -4xy+________=(x-2y)2.
4y
(-2ab) . (4)a2+b2=(a+b)2+_________
编成口诀吧! 顺口又好记!
2. 游戏闯关
下面的计算中有些地方用纸牌盖上了,我 们来比一比谁能最快地说出纸牌下盖的是 什么式子。
2 2 2 2 9x +12xy+4y (1)(3x+2y) =9x 2 (2)(5m-4n)2=25m2-40mn+16n +16n
2 (3)(4a+3b) 2=16a2+24ab+9b +24ab
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
2 2
(8)已知: a ab b , 求: (a b) 2 4, (a b) 2 36 的值.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
2
4.请添加一项________,使得 k
2
5. x y 8, x y 4, 求xy. xy 12
完全平方式. 4 k
4k
k 4
是 4 2
拓展:
思考题:
1 已知: x 3 x 1 2 1 2 求: x 和 (x ) 2 x x
的值
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
2 (a+b) =
语言表述:
2 a
2 +2ab+b
2 (a-b) =
2 a
-
2 2ab+b
两数和 (差) 的平方, 等于这两数的平方和, 加上 (减去) 这两数积的2倍.
用自己的语 言叙述上面 的公式
(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
口诀:首平方加尾平方, 首尾2倍放中央,符号看前方。
(4)(2x-8y)2=4x2-32xy -32xy+64y2
3. 你来当老师
小明学习了完全平方公式以后,做了一 道题,可他不知道自己做对了没有,请你帮 小明检查一下。如果有错误,请你帮他改正。
2 (-3x-5y)
解:原式= -
2 2 3x -3x· 5y-5y
= - 3x2-15xy-5y2
夯实基础,厚积薄发
(选做题)
6.若a+b+c=0, a b c =1 试求下列各式的值. (1)bc+ac+ab;
2 2 2
(2)
a b c
4 4
4
1 1 1 - ; 2 答案: 2 2
思考题:
2 x 1.若一个二项式的平方的计算结果是 mx 36
则m的值是
12或-12
2.已知
a b 5, ab 2