完全平方公式(二)公式变形试题讲解
14.2.2-2完全平方公式变形公式专题
![14.2.2-2完全平方公式变形公式专题](https://img.taocdn.com/s3/m/d762d9da998fcc22bcd10d75.png)
半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展: 拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+2)1(1222-+=+a a a a 2)1(1222+-=+aa a a 拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+ab b a b a 4)()(22+-=+ ab b a b a 4)()(22-+=-拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形3223333)(b ab b a a b a +++=+4322344464)(b ab b a b a a b a ++++=+拓展五: 立方和与立方差))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-二.常见题型:(一)公式倍比 例题:已知b a +=4,求ab b a ++222。
(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形(1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值; (2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。
完全平方公式变形公式专题
![完全平方公式变形公式专题](https://img.taocdn.com/s3/m/122042eff121dd36a32d8250.png)
半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:拓展二:拓展三:拓展四:杨辉三角形拓展五: 立方与与立方差二.常见题型:(一)公式倍比例题:已知=4,求。
(1),则=(2)已知=(二)公式变形(1)设(5a +3b)2=(5a -3b)2+A,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果,那么M 等于(4)已知(a+b)2=m,(a —b)2=n,则ab 等于(5)若,则N 得代数式就是(三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 得值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 得值;(2)求x 2+3xy+y 2得值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b)2(2)a 2﹣6ab+b 2得值.(四)整体代入例1:,,求代数式得值。
例2:已知a= x +20,b=x +19,c=x +21,求a 2+b 2+c 2-ab -bc -ac 得值⑴若,则=⑵若,则= 若,则=⑶已知a2+b2=6ab且a>b>0,求得值为⑷已知,,,则代数式得值就是.(五)杨辉三角请瞧杨辉三角(1),并观察下列等式(2):根据前面各式得规律,则(a+b)6=.(六)首尾互倒1.已知m2﹣6m﹣1=0,求2m2﹣6m+=.2.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:得值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)得值;(2)得值.(七)数形结合1.如图(1)就是一个长为2m,宽为2n得长方形,沿图中得虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)您认为图(2)中得阴影部分得正方形边长就是多少?(2)请用两种不同得方法求图(2)阴影部分得面积;(3)观察图(2),您能写出下列三个代数式之间得等量关系吗?三个代数式:(m+n)2,(m﹣n)2,mn.(4)根据(3)题中得等量关系,解决下列问题:若a+b=7,ab=5,求(a﹣b)2得值.2.附加题:课本中多项式与多项式相乘就是利用平面几何图形得面积来表示得,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2得面积来表示.(1)请写出图3图形得面积表示得代数恒等式;(2)试画出一个几何图形,使它得面积能表示(a+b)(a+3b)=a2+4ab+3b2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+ 1=292=(42+3×4+1)2…(1)根据您得观察、归纳、发现得规律,写出8×9×10×11+1得结果(2)试猜想n(n+1)(n+2)(n+3)+1就是哪一个数得平方,并予以证明.。
完全平方公式的变形与应用
![完全平方公式的变形与应用](https://img.taocdn.com/s3/m/2e52d06fddccda38376baf84.png)
完全平方公式的变形与应用我们学习了完全平方公式:2222)(b ab a b a +±=±,它是多项式乘法中非常重要的公式,如果将两个公式适当加以变形,其用途更广泛,作用更大.下面结合几例加以说明:一、移项变形1、222()2a b a b ab +=+-;2、222()2a b a b ab +=-+.例1 (1)(2010浙江宁波)若3=+y x ,1=xy ,则=+22y x ___________.(2)已知6,4a b ab -==,求22a b +的值.分析:(1)利用完全平方公式的变形1,先将22x y +变形为(x y +)2-2xy ,然后代入求值.(2)利用完全平方公式的变形2,先将22b a +变形为2()2a b ab -+,然后代入求值. 解:(1)x 2+y 2=(x y +)2-2xy =32-2=7;(2)2222()262436844a b a b ab +=-+=+⨯=+=.二、两公式相加变形3、2222()()2()a b a b a b ++-=+.例2 已知2222,3)(,7)(y x y x y x +=-=+求的值。
解:利用以上变形3得:52372)()(2222=+=-++=+y x y x y x 例3 已知6,4a b a b +=-=求22a b +的值.分析:利用以上变形3可求出22a b +的值.解:因为2222()()2()a b a b a b ++-=+,6,4a b a b +=-=.所以36+16=222()a b +,即222()a b +=52.所以22a b +=26.三、两公式相减变形4、22()()4a b a b ab +--=例4 已知2()16a b +=,3ab =,求2()a b -的值. 分析:利用以上变形4,可求出2()a b -的值. 解:因为22()()4a b a b ab +--=,2()16a b +=,3ab =, 所以16-2()a b -=4×3,所以2()a b -=4.例5已知216,8c ab b a +==+,求2012()a b c -+的值。
8.3平方差公式与完全平方公式讲解与例题
![8.3平方差公式与完全平方公式讲解与例题](https://img.taocdn.com/s3/m/797ac7e0ce2f0066f53322b5.png)
8.3 完全平方公式与平方差公式1.了解乘法公式的几何背景,掌握公式的结构特征,并能熟练运用公式进行简单的计算.2.感受生活中两个乘法公式存在的意义,养成“观察—归纳—概括”的数学能力,体会数形结合的思想方法,提高学习数学的兴趣和运用知识解决问题的能力,进一步增强符号感和推理能力.1.完全平方公式(1)完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2.上式用语言叙述为:两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.(2)完全平方公式的证明:(a±b)2=(a±b)(a±b)=a2±ab±ab+b2(多项式乘多项式)=a2±2ab+b2(合并同类项).(3)完全平方公式的特点:①左边是一个二项式的完全平方,右边是一个二次三项式,其中有两项是公式左边二项式中每一项的平方,另一项是左边二项式中两项乘积的2倍.可简单概括为“首平方,尾平方,积的2倍夹中央”.②公式中的a,b可以是单项式,也可以是多项式.③对于符合两数和(或差)的平方的乘法,均可用上述公式计算.【例1-1】用完全平方公式计算(1)(x+2y)2;(2)(2a-5)2;(3)(-2s+t)2;(4)(-3x-4y)2;(5)(2x+y-3z)2.分析:第(1)、(2)两题可直接用和、差平方公式计算;第(3)题可先把它变成(t-2s)2,然后再计算,也可以把-2s看成一项,用和平方公式计算;第(4)题可看成-3x与4y差的平方,也可以看成-3x与-4y和的平方;(5)可把2x+y看成一项,用差平方公式计算,然后再用和平方公式计算,也可以把它看成2x与y-3z的和平方,再用差平方公式计算.解:(1)(x+2y)2=x2+2·x·2y+(2y)2=x2+4xy+4y2;(2)(2a-5)2=(2a)2-2·2a·5+52=4a2-20a+25;(3)(-2s +t )2=(t -2s )2=t 2-2·t ·2s +(2s )2=t 2-4ts +4s 2;(4)(-3x -4y )2=(-3x )2-2·(-3x )·4y +(4y )2=9x 2+24xy +16y 2;(5)(2x +y -3z )2=[2x +(y -3z )]2=(2x )2+2·2x ·(y -3z )+(y -3z )2=4x 2+4xy -12xz +y 2-2·y ·3z +(3z )2=4x 2+y 2+9z 2+4xy -12xz -6yz .(1)千万不要与公式(ab )2=a 2b 2混淆,发生类似(a ±b )2=a 2±b 2的错误;(2)切勿把“乘积项”2ab 中的2漏掉;(3)计算时,应先观察所给题目的特点是否符合公式的条件,如符合,则可以直接套用公式进行计算;如不符合,应先变形,使其具备公式的结构特点,再利用公式进行计算,如变形后仍不具备公式的结构特点,则应运用乘法法则进行计算.此外,在运用公式时要灵活,如第(4)题,由于(-3x -4y )2与(3x +4y )2是相等关系,故可以把(-3x -4y )2转化为(3x +4y )2,再进行计算,再如(5)题,也有许多不同的方法.(4)完全平方公式的几何解释.如图是对(a +b )2=a 2+2ab +b 2几何意义的阐释.大正方形的面积可以表示为(a +b )2,也可以表示为S =S Ⅰ+S Ⅱ+S Ⅲ+S Ⅳ,又S Ⅲ,S Ⅰ,S Ⅳ,S Ⅱ分别等于a 2,ab ,ab ,b 2,所以S =a 2+ab +ab +b 2=a 2+2ab +b 2.从而验证了完全平方公式(a +b )2=a 2+2ab +b 2.如图是对(a -b )2=a 2-2ab +b 2几何意义的阐释.正方形Ⅰ的面积可以表示为(a -b )2,也可以表示为S Ⅰ=S 大-S Ⅱ-S Ⅳ+S Ⅲ,又S 大,S Ⅱ,S Ⅲ,S Ⅳ分别等于a 2,ab ,b 2,ab ,所以SⅠ=a 2-ab -ab +b 2=a 2-2ab +b 2.从而验证了完全平方公式(a -b )2=a 2-2ab +b 2.【例1-2】下图是四张全等的矩形纸片拼成的图形,请利用图中的空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:__________________.解析:根据图中的面积写一个恒等式,需要用两种方法表示空白正方形的面积.首先观察大正方形是由四个矩形和一个空白正方形组成,所以空白正方形的面积等于大正方形的面积减去四个矩形的面积,即(a +b )2-4ab ,空白正方形的面积也等于它的边长的平方,即(a-b )2,根据面积相等有(a +b )2-4ab =(a -b )2.答案:(a +b )2-4ab =(a -b )22.平方差公式(1)平方差公式:(a+b)(a-b)=a2-b2.上式用语言叙述为:两个数的和与这两个数的差的积,等于这两个数的平方差.(2)平方差公式的证明:(a+b)(a-b)=a2-ab+ab+b2(多项式乘多项式)=a2-b2(合并同类项).(3)平方差公式的特点:①左边是两个二项式相乘,这两项中有一项完全相同,另一项互为相反数;②右边是乘式中两项的平方差(相同项的平方减去互为相反数项的平方);③公式中的a和b可以是具体的数,也可以是单项式或多项式.利用此公式进行乘法计算时,应仔细辨认题目是否符合公式特点,不符合平方差公式形式的两个二项式相乘,不能用平方差公式.如(a+b)(a-2b)不能用平方差公式计算.【例2-1】计算:(1)(3x+2y)(3x-2y);(2)(-m+n)(-m-n);(3)(-2x-3)(2x-3).分析:(1)本题符合平方差公式的结构特征,其中3x对应“a”,2y对应“b”;(2)题中相同项为-m,互为相反数的项为n与-n,故本题也符合平方差公式的结构特征;(3)利用加法交换律将原式变形为(-3+2x)(-3-2x),然后运用平方差公式计算.解:(1)(3x+2y)(3x-2y)=(3x)2-(2y)2=9x2-4y2.(2)(-m+n)(-m-n)=(-m)2-n2.(3)(-2x-3)(2x-3)=(-3+2x)(-3-2x)=(-3)2-(2x)2=9-4x2.利用公式计算,关键是分清哪一项相当于公式中的a,哪一项相当于公式中的b,通常情况下,为防止出错,利用公式前把相同项放在前面,互为相反数的项放在后面,然后套用公式.(4)平方差公式的几何解释如图,阴影部分的面积可以看成是大正方形的面积减去小正方形的面积,即a2-b2;若把小长方形Ⅲ旋转到小长方形Ⅳ的位置,则此时的阴影部分的面积又可以看成SⅠ+SⅢ=SⅠ+SⅣ=(a+b)(a-b).从而验证了平方差公式(a+b)(a-b)=a2-b2.【例2-2】下图由边长为a和b的两个正方形组成,通过用不同的方法,计算图中阴影部分的面积,可以验证的一个乘法公式是____________________.分析:要表示阴影部分的面积,可以从两个方面出发:一是观察阴影部分是由边长为a的正方形除去边长为b 的正方形得到的,所以它的面积等于a 2-b 2;二是阴影部分是由两个直角梯形构成的,所以它的面积又等于两个梯形的面积之和.这两个梯形的面积都等于12(b+a )(a -b ),所以梯形的面积和是(a +b )(a -b ),根据阴影部分的面积不变,得(a +b )(a-b )=a 2-b 2.因此验证的一个乘法公式是(a +b )(a -b )=a 2-b 2.答案:(a +b )(a -b )=a 2-b23.运用乘法公式简便计算平方差公式、完全平方公式不但是研究整式运算的基础,而且在许多的数字运算中也有广泛地运用.不少数字计算题看似与平方差公式、完全平方公式无关,但若根据数字的结构特点,灵活巧妙地运用平方差公式、完全平方公式,常可以使运算变繁为简,化难为易.解答此类题,关键是分析数的特点,看能否将数改写成两数和的形式及两数差的形式,若改写成两数和的形式乘以两数差的形式,则用平方差公式;若改写成两数和的平方形式或两数差的平方形式,则用完全平方公式.【例3】计算:(1)2 0132-2 014×2 012;(2)1032;(3)1982.分析:(1)2 014=2 013+1,2 012=2 013-1,正好符合平方差公式,可利用平方差公式进行简便运算;(2)可将1032改写为(100+3)2,利用两数和的平方公式进行简便运算;(3)可将1982改写为(200-2)2,利用两数差的平方公式进行简便运算.解:(1)2 0132-2 014×2 012=2 0132-(2 013+1)×(2 013-1)=2 0132-(2 0132-12)=2 0132-2 0132+1=1.(2)1032=(100+3)2=1002+2×100×3+32=10 000+600+9=10 613.(3)1982=(200-2)2=2002-2×200×2+22=40 000-800+4=39 204. 4.利用乘法公式化简求值求代数式的值时,一般情况是先化简,再把字母的值代入化简后的式子中求值.在化简的过程中,合理地利用乘法公式能使整式的运算过程变得简单.在代数式化简过程中,用到平方差公式及完全平方公式时,要特别注意应用公式的准确性.【例4】先化简,再求值:5(m +n )(m -n )-2(m +n )2-3(m -n )2,其中m =-2,n =15.解:5(m +n )(m -n )-2(m +n )2-3(m -n )2=5(m 2-n 2)-2(m 2+2mn +n 2)-3(m 2-2mn +n 2)=5m 2-5n 2-2m 2-4mn -2n 2-3m 2+6mn -3n 2=-10n 2+2mn .当m =-2,n =15时,原式=-10n2+2mn =-10×⎝ ⎛⎭⎪⎫152+2×(-2)×15=-65.5.乘法公式的运用技巧一些多项式的乘法或计算几个有理数的积时,表面上看起来不能利用乘法公式,实际上经过简单的变形后,就能直接运用乘法公式进行计算了.有些题目往往可用不同的公式来解,此时要选择最恰当的公式以使计算更简便.在运用平方差公式时,注意以下几种常见的变化形式:①位置变化:(b+a)(-b+a)=a2-b2.②符号变化:(-a+b)(-a-b)=(-a)2-b2=a2-b2.③系数变化:(0.5a+3b)(0.5a-3b)=(0.5a)2-(3b)2.④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4.⑤增项变化:(a-b-c)(a-b+c)=(a-b)2-c2,(a+b-c)(a-b+c)=a2-(b-c)2.⑥增因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a2-b2)(a2-b2)=(a2-b2)2.⑦连用公式变化:(a-b)(a+b)(a2+b2)(a4+b4)=a8-b8.【例5-1】计算:(1)(a+b+1)(a+b-1);(2)(m-2n+p)2;(3)(2x-3y)2(2x+3y)2.解:(1)(a+b+1)(a+b-1)=[(a+b)+1][(a+b)-1]=(a+b)2-1=a2+2ab+b2-1.(2)(m-2n+p)2=[(m-2n)+p]2=(m-2n)2+2·(m-2n)·p+p2=m2-4mn+4n2+2mp-4np+p2.(3)(2x-3y)2(2x+3y)2=[(2x-3y)(2x+3y)]2=(4x2-9y2)2=(4x2)2-2×4x2×9y2+(9y2)2=16x4-72x2y2+81y4.在运用平方差公式时,应分清两个因式是否是两项之和与差的形式,符合形式才可以用平方差公式,否则不能用;完全平方公式就是求一个二项式的平方,其结果是一个三项式,在计算时不要发生:(a+b)2=a2+b2或(a-b)2=a2-b2这样的错误;当因式中含有三项或三项以上时,要适当的分组,看成是两项,从而应用平方差公式或完全平方公式.【例5-2】计算:(2+1)(22+1)(24+1)(28+1)…(22n+1)的值.分析:为了能便于运用平方差公式,观察到待求式中都是和的形式,没有差的形式,可设法构造出差的因数,于是可乘以(2-1),这样就可巧妙地运用平方差公式了.解:(2+1)(22+1)(24+1)(28+1)…(22n+1)=(2-1)(2+1)(22+1)(24+1)(28+1)…(22n+1)=(22-1)(22+1)(24+1)(28+1)…(22n+1)=(24-1)(24+1)(28+1)…(22n+1)=…=(22n-1)(22n+1)=24n-1.6.乘法公式的实际应用 在解决生活中的实际问题时,经常把其中的一个量或几个量先用字母表示,然后列出相关式子,进而化简,这往往涉及到整式的运算.解题时,灵活运用乘法公式,往往能事半功倍,使问题得到快速解答.【例6】一个正方形的边长增加3 cm ,它的面积就增加39 cm 2,这个正方形的边长是多少?分析:如果设原正方形的边长为x cm ,根据题意和正方形的面积公式可列出方程(x +3)2=x 2+39,求解即可.解:设原正方形的边长为x cm ,则(x +3)2=x 2+39,即x 2+6x +9=x 2+39,解得x =5(cm). 故这个正方形的边长是5 cm. 7.完全平方公式的综合运用学习乘法公式应注意掌握公式的特征,认清公式中的“两数”,注意为使用公式创造条件.(1)完全平方公式变形后可得到以下一些新公式: ①a 2+b 2=(a +b )2-2ab ; ②a 2+b 2=(a -b )2+2ab ;③(a +b )2=(a -b )2+4ab ;④(a -b )2=(a +b )2-4ab ;⑤(a +b )2+(a -b )2=2(a 2+b 2);⑥(a +b )2-(a -b )2=4ab 等.在公式(a ±b )2=a 2±2ab +b 2中,如果把a +b ,ab 和a 2+b 2分别看做一个整体,则知道了其中两个就可以求第三个.(2)注意公式的逆用不仅会熟练地正用公式,而且也要求会逆用公式,乘法公式均可逆用,特别是完全平方公式的逆用——a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.【例7-1】已知a 2+b 2+4a -2b +5=0,则a +b a -b的值是__________.解析:原等式可化为(a 2+4a +4)+(b 2-2b +1)=0,即(a +2)2+(b -1)2=0,根据非负数的特点知a +2=0且b -1=0,从而可知a =-2且b =1.然后将其代入求a +ba -b的值即可.答案:13【例7-2】已知a +b =2,ab =1,求a 2+b 2的值.分析:利用完全平方公式有(a +b )2=a 2+2ab +b 2,把2ab 移到等式的左边,可得(a +b )2-2ab =a 2+b 2,然后代入求值即可.解:∵(a +b )2=a 2+2ab +b 2,∴a 2+b 2=(a +b )2-2aB .∵a +b =2,ab =1,∴a 2+b 2=22-2×1=2.涉及两数和或两数差及其乘积的问题,就要联想到完全平方公式.本题也可从条件出发解答,如因为a +b =2,所以(a +b )2=22,即a 2+2ab +b 2=4.把ab =1代入,得a 2+2×1+b 2=4,于是可得a 2+b 2=4-2=2.。
完全平方公式知识点例题变式
![完全平方公式知识点例题变式](https://img.taocdn.com/s3/m/5ce7fba64128915f804d2b160b4e767f5bcf8013.png)
完全平方公式知识点例题变式完全平方公式知识点、例题、变式。
一、完全平方公式知识点。
1. 公式内容。
- (a + b)^2=a^2 + 2ab+b^2- (a - b)^2=a^2-2ab + b^22. 公式结构特点。
- 左边是一个二项式的完全平方,右边是一个三项式。
- 右边第一项是左边第一项的平方,右边第三项是左边第二项的平方,右边第二项是左边两项乘积的2倍(对于(a + b)^2是正的2ab,对于(a - b)^2是负的2ab)。
二、例题。
1. 计算(3x + 2y)^2。
- 解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 3x,b=2y。
- 计算过程:- (3x+2y)^2=(3x)^2+2×(3x)×(2y)+(2y)^2- = 9x^2+12xy + 4y^2。
2. 计算(2m - 5n)^2。
- 解析:根据完全平方公式(a - b)^2=a^2-2ab + b^2,这里a = 2m,b = 5n。
- 计算过程:- (2m - 5n)^2=(2m)^2-2×(2m)×(5n)+(5n)^2- =4m^2-20mn + 25n^2。
三、变式。
1. 已知(x + 3)^2=x^2+ax + 9,求a的值。
- 解析:根据完全平方公式(x + 3)^2=x^2+2× x×3+9=x^2 + 6x+9,因为(x + 3)^2=x^2+ax + 9,所以a = 6。
2. 若(m - n)^2=16,m^2 + n^2=20,求mn的值。
- 解析:- 由完全平方公式(m - n)^2=m^2-2mn + n^2,已知(m - n)^2 = 16,即m^2-2mn + n^2=16。
- 又已知m^2 + n^2=20,将其代入m^2-2mn + n^2=16中,得到20-2mn = 16。
- 移项可得-2mn=16 - 20=-4,解得mn = 2。
完全平方公式的知识点及题目3篇
![完全平方公式的知识点及题目3篇](https://img.taocdn.com/s3/m/6f283262e55c3b3567ec102de2bd960590c6d921.png)
完全平方公式的知识点及题目3篇奋战百日,让七彩的梦在六月放飞。
让我们拼搏,用行动实现青春的诺言;让我们努力,用汗水浇灌理想的花蕾。
下面是小编给大家带来的完全平方公式的知识点及题目,欢迎大家阅读参考,我们一起来看看吧!完全平方公式的公式特征(一)学会推导公式:(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(三)这两个公式的结构特征:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内).3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.完全平方公式运用公式常规四变运用公式常规四变一、变符号:例1:运用完全平方公式计算:(1)(2y+3x)^2 (2)3(3x+4y)^2分析:本例改变了公式中a、b的符号,处理方法一:把两式分别变形为再用公式计算(反思得:)方法二:把两式分别变形为:后直接用公式计算方法三:把两式分别变形为:后直接用公式计算(此法是在把两个公式统一的基础上进行,易于理解不会混淆)。
二、变项数:例2:计算:分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。
所以在运用公式时,可先变形为或或者,再进行计算。
三、变结构例3:运用公式计算:(1)(x+y)(2x+2y)(2)(a+b)(-a-b)(3)(a-b)(b-a)分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即(1)(x+y)(2x+2y)=2(x+y)^2(2)(a+b)(-a-b)=-(a+b)^2(3)(a-b)(b-a)=-(a-b)^2四、简便运算例4:计算:(1)999^2(2)100.1^2分析:本例中的999接近1000,100.1接近100,故可化成两个数的和或差,从而运用完全平方公式计算。
完整版)完全平方公式变形公式专题
![完整版)完全平方公式变形公式专题](https://img.taocdn.com/s3/m/923953e96e1aff00bed5b9f3f90f76c661374c0c.png)
完整版)完全平方公式变形公式专题半期复(3)——完全平方公式变形公式及常见题型一、公式拓展:拓展一:$a+b=(a+b)^2-2ab$a-b=(a-b)^2-2ab$拓展二:$(a+b)-(a-b)=4ab$a+b)=(a-b)+4ab$拓展三:$a+b+c=(a+b+c)-2ab-2ac-2bc$拓展四:杨辉三角形a+b)^2=a^2+2ab+b^2$a+b)^3=a^3+3a^2b+3ab^2+b^3$拓展五:立方和与立方差a^3+b^3=(a+b)(a^2-ab+b^2)$a^3-b^3=(a-b)(a^2+ab+b^2)$二、常见题型:一)公式倍比已知$a+b=4$,求$\frac{a^2+b^2}{2ab}$ 1)$x+y=1$,求$x^2+xy+y^2$2)已知$x(x-1)-(x-y)=-2$,求$x^2-y^2$ 二)公式变形1)设$(5a+3b)^2=(5a-3b)^2+A$,求$A$2)若$(2a-3b)=(2a+3b)+N$,求$N$3)如果$(x-y)+M=(x+y)$,求$M$4)已知$(a+b)=m$,$(a-b)=n$,求$ab$5)若$(2a-3b)=(2a+3b)+N$,求$N$的代数式三)“知二求一”1.已知$x-y=1$,$x^2+y^2=25$,求$xy$的值2.若$x+y=3$,$(x+2)(y+2)=12$,求$xy$和$x^2+3xy+y^2$的值3.已知$x+y=3$,$xy=-8$,求$x^2+y^2$和$(x^2-1)(y^2-1)$的值4.已知$a-b=3$,$ab=2$,求$(a+b)^2$和$a^2-6ab+b^2$的值四)整体代入例1:已知$x-y=24$,$x+y=6$,求$5x+3y$的值例2:已知$a=x+20$,$b=x+19$,$c=x+21$,求$a^2+b^2+c^2-ab-bc-ac$的值⑴若$x-3y=7$,$x-9y=49$,求$x+3y$的值⑵若$a+b=2$,求$a-4b$的值⑶已知$a^2+b^2=6ab$且$a>b$,求$a+b$的值已知$a=2005x+2004$,$b=2005x+2006$,$c=2005x+2008$,则代数式$a^2+b^2+c^2-ab-bc-ca$的值为:begin{aligned}a^2+b^2+c^2-ab-bc-ca&=(2005x+2004)^2+(2005x+2006)^2+(2005x+2008)^2\\ quad-(2005x+2004)(2005x+2006)-(2005x+2006)(2005x+2008)-(2005x+2008)(2005x+2004)\\ 3\cdot(2005x)^2+3\cdot2\cdot2005x+3\cdot(2004^2+2006^2 +2008^2)-3\cdot(2004\cdot2006+2006\cdot2008+2008\cdot2004)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot(2004+2006+2008)^2+3\cdot(2004^2+2006^2+2008^2)\\ 3\cdot2005^2x^2+6\cdot2005x+3\cdot(2004^2+2006^2+2008 ^2)-3\cdot2018^2+6\cdot(2004^2+2006^2+2008^2)\\10\cdot(2005^2x^2+2005)+10\cdot(2004^2+2006^2+2008^2) -3\cdot2018^2\\10\cdot(2005^2x^2+2005)+10\cdot(2005^2-1)-3\cdot2018^2\\10\cdot2005^2x^2+10\cdot2005^2-10\cdot2005+10\cdot2005^2-10-3\cdot2018^2\\10\cdot2005^2x^2+20\cdot2005^2-10\cdot2005-3\cdot2018^2-10\\end{aligned}五)杨辉三角观察杨辉三角(1),发现每个数都是上面两个数之和,可以得到如下规律:a+b)^1=a+b$$a+b)^2=a^2+2ab+b^2$$a+b)^3=a^3+3a^2b+3ab^2+b^3$$a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4$$a+b)^5=a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5$$根据规律,$(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6 $。
1.6完全平方公式(二)公式变形试题讲解
![1.6完全平方公式(二)公式变形试题讲解](https://img.taocdn.com/s3/m/d50164d505087632311212d4.png)
拓展思维
更上一层
2 2
(8)已知: a ab b , 求: (a b) 2 4, (a b) 2 36 的值.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(9)已知 : a b c 2a 4b 6c 14 0,
拓展思维
更上一层
(5)已知 a+b = 4,ab = -12, 则a2 + b2= . 40 (6)已知 m+n= 3,mn = 5, 求:(m+3)(n+3)的值. (7)已知 x+y=4,xy =-13, 2 2 求: x 3xy y的值.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
(4)(2x-8y)2=4x2-32xy -32xy+64y2
夯实基础,厚积薄发
填空:
1) 2ab 2 2 2 2) 4a +(-4ab)+b =(2a - b) 2 2 2 3) ( 2a ) +4ab+b =( 2a +b) 2 2 2 4) a -8ab+ 16b =( a-4b )
2 a+
(3)如果x2+kx+25是完全平方式, (4)如果9x2-mxy+16y2 可化为一个
±24 整式的平方,则 m=_____.
拓展延伸
若 ( x y) 12 , ( x y) 16 , 求xy的值。
2 2
拓 展 练 习
试一试:计算 ( m −2n + 3 )2 2.完全平方公式的变形应用: (1) 已知:x +y =3 ; x y =2 求 x2+y2
完全平方公式的变形及其应用
![完全平方公式的变形及其应用](https://img.taocdn.com/s3/m/b56023ce7d1cfad6195f312b3169a4517723e590.png)
完全平方公式的变形及其应用完全平方公式的变形及其应用多项式乘法的完全平方公式的变形形式很多,且应用广泛。
下面结合例题,介绍完全平方公式的变形及其应用。
一、变式1:$a^2+b^2=(a+b)^2-2ab$这是因为:由$(a+b)=a^2+b^2+2ab$,移项,得$a^2+b^2=(a+b)^2-2ab$。
例1:已知$x+y=5$,$xy=2$,求下列各式的值:(1)$x^2+y^2$;(2)$x^4+y^4$。
解:由变式1,得(1)$x^2+y^2=(x+y)^2-2xy=5^2-2\times2=21$;(2)$x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=21^2-2\times4=433$。
二、变式2:$a^2+b^2=(a-b)^2+2ab$这是因为:由$(a-b)=a^2-2ab+b^2$,移项,得$a^2+b^2=(a-b)^2+2ab$。
例2:已知$a-\sqrt{11}=5$,求$a^2+11$的值。
解:由变式2,得$a^2+11=\left(a-\sqrt{11}\right)^2+2\sqrt{11}=5^2+2\sqrt{11}=27$。
三、变式3:$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$这是因为:由$(a+b)=a^2+b^2+2ab$,得$2ab=(a+b)-\left(a^2+b^2\right)$,两边同除以2,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$。
例3:已知$a+b=7$,$a^2+b^2=29$,求$ab$的值。
解:由变式3,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)=\dfrac{1}{2}\left(2a+b-\sqrt{7^2-29}\right)=10$。
初中数学 完全平方公式公式变形讲解
![初中数学 完全平方公式公式变形讲解](https://img.taocdn.com/s3/m/b06359a1f242336c1fb95e18.png)
中数学完全平方公式知识点归纳完全平方公式是初中学习当中一个比较重要的知识点,今天极客数学帮就为大家总结了完全平方公式的知识点以及练习题。
帮助同学们学习、掌握完全平方公式的知识内容。
完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
(a+b)2=a^2+2ab+b^2,(a-b)2=a^2-2ab+b^2。
(1)公式中的a、b可以是单项式,也就可以是多项式。
(2)不能直接应用公式的,要善于转化变形,运用公式。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用。
难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
结构特征:1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2.左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.记忆口诀:首平方,尾平方,2倍首尾。
使用误解:①漏下了一次项;②混淆公式;③运算结果中符号错误;④变式应用难于掌握。
注意事项:1、左边是一个二项式的完全平方。
2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可以是数,单项式,多项式。
3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。
完全平方公式例题解析:(一)、变符号例:运用完全平方公式计算:(1)(-4x+3y)2(2)(-a-b)2分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
完全平方公式变形公式专题
![完全平方公式变形公式专题](https://img.taocdn.com/s3/m/909ebec8a26925c52cc5bfd2.png)
完全平方公式变形公式专题文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]半期复习(3)—— 完全平方公式变形公式及常见题型一.公式拓展:拓展一:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+拓展二:ab b a b a 4)()(22=--+ ()()222222a b a b a b ++-=+拓展三:bc ac ab c b a c b a 222)(2222---++=++拓展四:杨辉三角形拓展五: 立方和与立方差二.常见题型:(一)公式倍比例题:已知b a +=4,求ab b a ++222。
(1)1=+y x ,则222121y xy x ++= (2)已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式变形 (1)设(5a +3b )2=(5a -3b )2+A ,则A=(2)若()()x y x y a-=++22,则a 为 (3)如果22)()(y x M y x +=+-,那么M 等于(4)已知(a+b)2=m ,(a —b)2=n ,则ab 等于(5)若N b a b a ++=-22)32()32(,则N 的代数式是 (三)“知二求一”1.已知x ﹣y=1,x 2+y 2=25,求xy 的值.2.若x+y=3,且(x+2)(y+2)=12.(1)求xy 的值;(2)求x 2+3xy+y 2的值.3.已知:x+y=3,xy=﹣8,求:(1)x 2+y 2(2)(x 2﹣1)(y 2﹣1).4.已知a ﹣b=3,ab=2,求:(1)(a+b )2(2)a 2﹣6ab+b 2的值.(四)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。
例2:已知a= 201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+=⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 ba b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值是 .(五)杨辉三角请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a+b )6= .(六)首尾互倒1.已知m 2﹣6m ﹣1=0,求2m 2﹣6m+= .2.阅读下列解答过程:已知:x ≠0,且满足x 2﹣3x=1.求:的值. 解:∵x 2﹣3x=1,∴x 2﹣3x ﹣1=0∴,即. ∴==32+2=11. 请通过阅读以上内容,解答下列问题:已知a ≠0,且满足(2a+1)(1﹣2a )﹣(3﹣2a )2+9a 2=14a ﹣7,求:(1)的值;(2)的值.(七)数形结合1.如图(1)是一个长为2m ,宽为2n 的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能写出下列三个代数式之间的等量关系吗三个代数式:(m+n )2,(m ﹣n )2,mn .(4)根据(3)题中的等量关系,解决下列问题:若a+b=7,ab=5,求(a ﹣b )2的值.2.附加题:课本中多项式与多项式相乘是利用平面几何图形的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用图1或图2的面积来表示.(1)请写出图3图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2.(八)规律探求15.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.。
初一完全平方公式的变形题
![初一完全平方公式的变形题](https://img.taocdn.com/s3/m/62551014f342336c1eb91a37f111f18583d00cb5.png)
初一完全平方公式的变形题初一完全平方公式的变形题,是一道让很多同学头疼的数学题目。
但是,如果你能够掌握这个公式的变形方法,那么你就会变得非常厉害!我们来看看这个公式是什么样子的。
它叫做“完全平方公式”,可以用来计算一个数的平方根。
这个公式看起来很复杂,但是其实很简单。
只要你掌握了它的变形方法,就可以轻松地解决各种问题。
那么,什么是完全平方公式呢?它是由两个平方相等的数相乘得到的。
比如说,2×2=4,4×4=16。
这两个式子都可以用完全平方公式来表示:2×2=√(2×2),4×4=√(4×4)。
这个公式可以变成很多不同的形式,比如说:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2等等。
接下来,我们来看看如何运用这个公式来解决实际问题。
假设你想要计算9的平方根,你会怎么做呢?很简单,你只需要把9代入公式中就可以了:√(9)=3。
这是因为3×3=9,所以9的平方根就是3。
除了计算平方根之外,完全平方公式还可以用来解决其他的问题。
比如说,如果你想要计算一个数的平均数,你可以把这个数除以它的个数,然后再开平方根就可以了。
比如说,如果你有5个苹果,它们的总重量是15斤,那么它们的平均重量就是√(15/5)=√(3)斤。
完全平方公式还有很多其他的变形方法,这里就不一一介绍了。
只要你掌握了这个公式的基本原理和变形方法,就可以轻松地解决各种数学问题。
不过,要想真正掌握这个公式,还需要多做一些练习才行。
你可以找一些相关的练习题来做做看,或者向老师请教一下。
相信只要你努力学习,就一定能够掌握这个公式,成为一名优秀的数学家!我想说的是:数学并不是一门难学的科目,只要你用心去学,就一定能够取得好成绩。
所以,不要害怕数学,要勇敢地面对它!。
完全平方公式变形讲解讲课文档
![完全平方公式变形讲解讲课文档](https://img.taocdn.com/s3/m/78e72b621fb91a37f111f18583d049649b660ee2.png)
完全平方式
计算
①(a+b+3)2
② (2x-y-1)2
三个数和的完全平方等 于这三个数的平方和,
现在十六页,总共二十七页。
现在十七页,总共二十七页。
• 1、已知 m 2 n 2 6 m 1 n 3 0 0 4 ,求m+n的值
2.已知 x2y24x6y1 30 x,y都是有理数,求 x y
现在四页,总共二十七页。
公式变形的应用
( 1 ) 已 知 a b 1, a b 2 , 则 a 2 b2 ________ 。
( 2) 已 知 x y 9 , x y 8 , 则 x2 y 2 ________ 。
( 3) 已 知 (x y )2 25, ( x y )2 16, ) 请 把 4 x 4 1添 加 一 项 后 是 完 全 平 方 式 ,
可 以 添 加 ____________.
现在十二页,总共二十七页。
完全平方式
现在十三页,总共二十七页。
完全平方式
现在十四页,总共二十七页。
完全平方式
证明:x, y不论是什么有理数, 多项式x2+y2 4x8y25的值 总是正数。并求出它的最小值。
现在十一页,总共二十七页。
完全平方式
( 1 ) 已 知 , x 2 a x 1 6是 完 全 平 方 式 ,
则a
_______ 。
( 2) 已 知 , 4 x 2
k x y 2 5 y 2是 完 全 平 方 式 ,
则k
___________ 。
(3)x 2
12 x m是 完 全 平 方 式 , 则 m
现在三页,总共二十七页。
公式变形的应用
2021年完全平方公式变形的应用练习题_2(转摘)
![2021年完全平方公式变形的应用练习题_2(转摘)](https://img.taocdn.com/s3/m/8cec67b027d3240c8547ef6a.png)
乘法公式的拓展及常见题型整理欧阳光明(2021.03.07)一.公式拓展:拓展一:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ 拓展二:ab b a b a 4)()(22=--+()()222222a b a b a b ++-=+ 拓展三:bc ac ab c b a c b a 222)(2222---++=++ 拓展四:杨辉三角形 拓展五: 立方和与立方差 二.常见题型: (一)公式倍比例题:已知b a +=4,求ab b a ++222。
⑴如果1,3=-=-c a b a ,那么()()()222a c c b b a -+-+-的值是 ⑵1=+y x ,则222121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---2222)()1(则=(二)公式组合例题:已知(a+b)2=7,(a-b)2=3, 求值: (1)a 2+b 2 (2)ab⑴若()()a b a b -=+=22713,,则a b 22+=____________,a b =_________⑵设(5a +3b )2=(5a -3b )2+A ,则A=⑶若()()x y x y a-=++22,则a 为⑷如果22)()(y x M y x +=+-,那么M 等于 ⑸已知(a+b)2=m ,(a —b)2=n ,则ab 等于⑹若N b a b a ++=-22)32()32(,则N 的代数式是⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为。
⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求))((2222d c b a ++(三)整体代入例1:2422=-y x ,6=+y x ,求代数式y x 35+的值。
例2:已知a=201x +20,b=201x +19,c=201x +21,求a 2+b 2+c 2-ab -bc -ac 的值⑴若499,7322=-=-y x y x ,则y x 3+=⑵若2=+b a ,则b b a 422+-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求ba ba -+的值为 ⑷已知20042005+=x a ,20062005+=xb ,20082005+=xc ,则代数式ca bc ab c b a ---++222的值是. (四)步步为营例题:3⨯(22+1)⨯(24+1)⨯(28+1)⨯(162+1)6⨯)17(+⨯(72+1)⨯(74+1)⨯(78+1)+1()()()()()224488a b a b a b a b a b -++++222222122009201020112012-++-+- ⎪⎭⎫ ⎝⎛-2211⎪⎭⎫⎝⎛-2311⎪⎭⎫⎝⎛-2411…⎪⎭⎫ ⎝⎛-2201011(五)分类配方例题:已知03410622=++-+n m n m ,求n m +的值。
完全平方公式常考题型(经典)
![完全平方公式常考题型(经典)](https://img.taocdn.com/s3/m/91834e40852458fb770b5663.png)
完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1);题型二、配完全平方式 1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______.4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy+=_______.5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 2 3ab 2 (5) a +______+9b =( a+3b)2 2 4
你会吗?
选择题 (1)如果x2+mx+4是一个完全平方公式, 那么m的值是(c)
A .4
B.-4
C.±4
D.±8
(2)将正方形的边长由acm增加6cm,则 正方形的面积增加了( c ) A.36cm2 B.12acm2
达标检测 反思目标
1.( )2=x2+6xy+_____ 2.a2-kab+9b2是完全平方式,则k= _____. 3.计算(-a-b)2结果是( ) A. a2-2ab+b2 B. a2+2ab+b2 C. a2+b2 D. a2-b2 4运用乘法公式计算 1 (1) ( x 1) 2 (2) 1052 (3) (a b 3)(a b 3)
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(1) (3a+__ )2=9a2- ___ +16 D (2)代数式2xy-x2-y2= ( A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2 )
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
2
5. x y 8, x y 4, 求xy. xy 12
完全平方式. 4 k
4k
k 4
是 4 2
拓展:
思考题:
1 已知: x 3 x 1 2 1 2 求: x 和 (x ) 2 x x
的值
拓展延伸
若 ( x y) 12 , ( x y) 16 , 求xy的值。
(9)已知 : a b c 2a 4b 6c 14 0,
2 2 2
求 : c a b的值.
1 1 2 (10)已知 a 3,求 a 2 的值. a a
例3.若 a b 5, ab 6, 求 a b ,a ab b .
2 2 2 2
2.
2008 2 2008 2009 2009 =__;
2 2
2 2
3. 若 x 8 x k
是一个完全平方公式,
则k
___;
)
4. 已知a+b=5,ab=6,则(a-b)2的值为( (A)1 (B)4 (C)9 (D)16
5
“拓”公式,挑战自我
(1)已知(a+b)2 = 21, (a-b)2 =5,则ab=( A ) A.4 B.-4 C.0 D.4或-4
拓展思维
更上一层
±5 则 k=_____.
(3)如果x2+kx+25是完全平方式, (4)如果9x2-mxy+16y2 可化为一个
±24 整式的平方,则 m=_____.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
(5)已知 a+b = 4,ab = -12, 则a2 + b2= . 40 (6)已知 m+n= 3,mn = 5, 求:(m+3)(n+3)的值. (7)已知 x+y=4,xy =-13, 2 2 求: x 3xy y的值.
填空:
1) 2ab 2 2 2 2) 4a +(-4ab) +b =(2a - b) 2 2 2 3) ( 2a ) +4ab+b =( 2a +b) 2 2 2 4) a -8ab+ 16b =( a-4b )
2 a+
2 2 +b =(a+b)
拓展思维,更上一层
1、小兵计算一个完全平方式时,得到 正染了,这一项应是( D ) A 10xy B 20xy C±10xy D±20xy
二、分析完全平方公式
2+2ab+b 2= = a2 +2ab+b2 (a+b) ( a+b) 2= 2−2ab+b2 . = a −b) a2 −2ab+b ((a a−b )
结构特征: 左边是 两数和 (差) 的平方; 右边是 两数的平方和 加上 (减去) 这两数乘积的两倍. 公式中的字母a,b可以表示数,单项式和多项式.
1.
2008 2 2008 2009 2009 =_______;
2 2
1
2.若 x 2kx 9 是一个完全平方公式, 3 则 k _______; 3.若 x 2 8 x k 2是一个完全平方公式, 则 k _______; 4
2
4.请添加一项________,使得 k
拓展思维
更上一层
±5 则 k=_____.
(3)如果x2+kx+25是完全平方式, (4)如果9x2-mxy+16y2 可化为一个
±24 整式的平方,则 m=_____.
拓展延伸
若 ( x y) 12 , ( x y) 16 , 求xy的值。
2 2
拓 展 练 习
试一试:计算 ( m −2n + 3 )2 2.完全平方公式的变形应用: (1) 已知:x +y =3 ; x y =2 求 x2+y2
33
求 (a b) 的值。
2
你会吗?
选择题 (1)如果x2+mx+4是一个完全平方公式, 那么m的值是(c)
A .4
B.-4
C.±4
D.±8
(2)将正方形的边长由acm增加6cm,则 正方形的面积增加了( c ) A.36cm2 B.12acm2
C.(36+12a)cm2 D.以上都不对
拓展:
2 2
( x y) 9,( x y) 5, 则xy= 1 2 2 29 x y 4.若x-y=3,xy=10,则
3.若
2 2
5.用完全平方公式计算:
(1) 499 (3) 53
2
2
(2) 998 (4) 88
2
答案
(1) 249001 (2)996004
2
(3) 2809
(4) 7744
变式:已知a+b=2,ab=1,求a2+b2、(a-b)2 的值. 1 2 1 (2)如果a + a =4,则 a + 2 =( B ) a A.16 B.14 C.10 D.11
2.已知a+b=5,ab=6,则(a-b)2的值为( ) (A)1 (B)4 (C)9 (D)16 【解析】选A.(a-b)2=(a+b)2-4ab=52-4×6=1.
2
5.已知x+y=9,xy=20,求(x-y)2的值.
当堂训练(18分钟)
1.代数式2xy-x2-y2= ( ) D A.(x-y)2 B.(-x-y)2 C.(y-x)2 D.-(x-y)2
2.若a+b=7,ab=12,则 a ab b 的值为( B ) A. -11 B. 13 C. 37 D. 61
C.(36+12a)cm2 D.以上都不对
拓展:
1.
2008 2 2008 2009 2009 =_______;
2 2
1
2.若 x 2kx 9 是一个完全平方公式, 3 则 k _______; 3.若 x 2 8 x k 2是一个完全平方公式, 则 k _______; 4
;
2 (a+b+c) 可以用完全平方公式进行计算吗? 1.思考:
(x −y)2 的值.
(2)已知:a −b =1 ; a2 +b2 =25 求 ab 的值. (3)已知:(x +y )2 =9 ; ( x − y)2= 5 求 xy ; x2+y2 的值.
2 2
综合训练:
填空题:
2 2 2 (1)(-3x+4y) =_____________.
9x -24xy+16y
2 2 2 (2)(-2a-b) =____________.
4a +4ab+b
2 2 (3)x -4xy+________=(x-2y)2.
4y
(-2ab) . (4)a2+b2=(a+b)2+_________
编成口诀吧! 顺口又好记!
2. 游戏闯关
下面的计算中有些地方用纸牌盖上了,我 们来比一比谁能最快地说出纸牌下盖的是 什么式子。
2 2 2 2 9x +12xy+4y (1)(3x+2y) =9x 2 (2)(5m-4n)2=25m2-40mn+16n +16n
2 (3)(4a+3b) 2=16a2+24ab+9b +24ab
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
2 2
(8)已知: a ab b , 求: (a b) 2 4, (a b) 2 36 的值.
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
拓展思维
更上一层
2
4.请添加一项________,使得 k
2
5. x y 8, x y 4, 求xy. xy 12
完全平方式. 4 k
4k
k 4