初一数学《概率》复习检测题及答案
初一数学概率试题答案及解析
初一数学概率试题答案及解析1.用10个球设计一个摸球游戏,使得:(1)摸到红球的机会是。
(2)摸到红球的机会是,摸到黄球的机会是。
(3)你还能设计一个符合下列条件的游戏吗?为什么?摸到红球的机会是,摸到黄球的机会是,摸到绿球的机会是。
【答案】(1)设计的摸球游戏为:5个红球,5个其他颜色的球;(2)设计的摸球游戏为:5个红球,4个黄球,1个其他颜色的球;(3)不能设计.【解析】(1)(2)利用设计球的个数=球的总数×摸到该球的概率直接计算即可;(3)利用同一个实验中所有概率之和为1进行验证即可.试题解析:(1)红球的个数为:10×=5,故设计的摸球游戏为:5个红球,5个其他颜色的球;(2)红球的个数为:10×=5,黄球的个数为:10×=4,其他颜色的球的个数为:10-5-4=1,故设计的摸球游戏为:5个红球,4个黄球,1个其他颜色的球;(3)∵++>1,∴不能设计.【考点】概率公式.2.有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【答案】(1)树状图如下:(2)【解析】解:(1)树状图如下:所有等可能的结果有16种:(A,A),(A,B),(A,C),(A,D)(B,A),(B,B),(B,C),(B,D)(C,A),(C,B),(C,C),(C,D)(D,A),(D,B),(D,C),(D,D)列表如下:所有等可能的结果有16种;(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况,即:(B,B),(B,C),(C,B),(C,C)故所求概率是.本题涉及了概率的计算,该题是常考题,主要考查学生对概率、事件的概念以及事件发生的概率的计算。
2024年数学七年级上册概率统计基础练习题(含答案)
2024年数学七年级上册概率统计基础练习题(含答案)试题部分一、选择题:1. 下列哪个事件是随机事件?()A. 太阳从西边升起B. 掷一枚硬币,正面朝上C. 1+1=2D. 一年有12个月2. 下列哪个图形是条形统计图?()A. 扇形图B. 折线图C. 条形图D. 饼图3. 下列哪个统计量可以用来表示一组数据的平均水平?()A. 中位数B. 众数C. 平均数D. 方差A. 第一个骰子为1,第二个骰子为5B. 第一个骰子为2,第二个骰子为4C. 第一个骰子为3,第二个骰子为3D. 第一个骰子为6,第二个骰子为05. 下列哪个事件是必然事件?()A. 掷一枚硬币,正面朝上B. 掷一枚硬币,反面朝上C. 一天有24小时D. 随机抽取一个数字,它是76. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机抽取一个球,抽到红球的概率是多少?()A. 1/2B. 1/3C. 5/10D. 2/57. 下列哪个统计图可以清晰地表示出各部分数量与总数之间的关系?()A. 扇形图B. 折线图C. 条形图D. 饼图8. 下列哪个统计量可以用来表示一组数据的波动大小?()A. 中位数B. 众数C. 平均数D. 方差9. 一次考试中,小明、小华、小丽三人的成绩分别为80分、85分、90分,他们的平均成绩是多少?()A. 80分B. 82分C. 85分D. 87分10. 下列哪个事件是不可能事件?()A. 一年有365天B. 一天有25小时C. 掷一枚硬币,正面朝上D. 随机抽取一个数字,它是0二、判断题:1. 概率是指某个事件发生的可能性大小。
()2. 扇形统计图可以清晰地表示出各部分数量与总数之间的关系。
()3. 中位数是一组数据从小到大排列后,位于中间位置的数。
()4. 方差越大,表示一组数据的波动越小。
()5. 折线统计图可以用来表示一组数据的波动情况。
()6. 众数是一组数据中出现次数最多的数。
()7. 平均数是一组数据之和除以数据个数。
初一概率试题及答案
初一概率试题及答案一、选择题1. 从一副去掉大小王的扑克牌中随机抽取一张牌,抽到红桃的概率是多少?A. 1/4B. 2/5C. 3/13D. 1/13答案:C2. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到蓝球的概率是多少?A. 3/8B. 1/3C. 1/2D. 5/8答案:A3. 在一个装有10个球的袋子里,有6个白球和4个黑球,随机抽取一个球,抽到白球的概率是多少?A. 3/5B. 4/10C. 6/10D. 2/5答案:C4. 抛一枚硬币,正面朝上的概率是多少?A. 0B. 1/2C. 1D. 2/3答案:B5. 抛两枚硬币,两枚硬币都是正面朝上的概率是多少?A. 1/4B. 1/2C. 1D. 1/8答案:A二、填空题6. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A) = _______。
答案:m/n7. 一个袋子里有10个球,其中3个是红球,7个是蓝球,那么随机抽取一个球,抽到红球的概率是 _______。
答案:3/108. 一个袋子里有10个球,其中5个是红球,5个是蓝球,那么随机抽取一个球,抽到红球的概率是 _______。
答案:1/29. 一个袋子里有5个红球和5个蓝球,随机抽取一个球,抽到红球的概率是 _______。
答案:1/210. 抛一枚公平的六面骰子,掷出数字3的概率是 _______。
答案:1/6三、解答题11. 一个袋子里有8个球,其中4个是红球,4个是白球。
随机抽取两个球,求两个球都是红球的概率。
答案:首先计算抽取两个球的总组合数,即C(8,2) = 28种组合。
两个球都是红球的组合数为C(4,2) = 6种。
因此,两个球都是红球的概率为6/28 = 3/14。
12. 一个袋子里有3个红球,2个蓝球和1个绿球,随机抽取一个球,求抽到蓝球的概率。
答案:总共有6个球,其中2个是蓝球。
因此,抽到蓝球的概率为2/6 = 1/3。
《概率》数学测试题及答案
《概率》数学测试题及答案《概率》数学测试题及答案1.从装有2个红球和2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是()A.至少有一个白球和全是白球B.至少有一个白球和至少有一个红球C.恰有一个白球和恰有2个白球D.至少有一个白球和全是红球2.从甲,乙,丙三人中任选两名代表,甲被选中的的概率是()A. B. C. D.13.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是偶数的概率是()A. B. C. D.4.在两个袋内,分别写着装有0,1,2,3,4,5六个数字的6张卡片,今从每个袋中各任取一张卡片,则两数之和等于5的概率为()A. B. C. D.5.袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为()A. B. C. D.非以上答案6.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A. B. C. D.7.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3∶1的比分获胜的概率为()A. B. C. D.8.袋中有5个球,3个新球,2个旧球,每次取一个,无放回抽取2次,则第2次抽到新球的概率是()A. B. C. D.9.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()A. B. C. D.10.袋里装有大小相同的黑、白两色的手套,黑色手套15只,白色手套10只.现从中随机地取出两只手套,如果两只是同色手套则甲获胜,两只手套颜色不同则乙获胜. 试问:甲、乙获胜的机会是()A.一样多 B.甲多 C.乙多 D.不确定的11.在5件不同的产品中有2件不合格的产品,现再另外取n件不同的合格品,并在这n+5件产品中随机地抽取4件,要求2件不合格产品都不被抽到的概率大于0.6,则n的最小值是.12.甲用一枚硬币掷2次,记下国徽面(记为正面)朝上的次数为n. ,请填写下表:正面向上次数n21概率P(n)13.在集合内任取1个元素,能使代数式的概率是.14.20名运动员中有两名种子选手,现将运动员平均分为两组,种子选手分在同一组的概率是.15.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有一个红球的概率是.16.从1,2,3,…,9这9个数字中任取2个数字:(1)2个数字都是奇数的'概率为;(2)2个数字之和为偶数的概率为.17.有红,黄,白三种颜色,并各标有字母A,B,C,D,E的卡片15张,今随机一次取出4张,求4张卡片标号不同,颜色齐全的概率.18.从5双不同的鞋中任意取出4只,求下列事件的概率:(1)所取的4只鞋中恰好有2只是成双的;(2)所取的4只鞋中至少有2只是成双的.19.在10枝铅笔中,有8枝正品和2枝次品,从中不放回地任取2枝,至少取到1枝次品的概率是多少?20.10根签中有3根彩签,若甲先抽一签,然后由乙再抽一签,求下列事件的概率:(1)甲中彩;(2)甲、乙都中彩;(3)乙中彩21.设一元二次方程,根据下列条件分别求解(1)若A=1,B,C是一枚骰子先后掷两次出现的点数,求方程有实数根的概率;(2)若B=-A,C=A-3,且方程有实数根,求方程至少有一个非负实数根的概率.参考答案:1.A;2.C;3.A;4.B;5.C;6.D;7.A;8.D;9.B; 10.A; 11. 14; 12. ; 13. ;14. ; 15. ; 16. ;;17. 解:基本事件总数为,而符合题意的取法数,;18. 解:基本事件总数是=210(1)恰有两只成双的取法是=120∴所取的4只鞋中恰好有2只是成双的概率为(2)事件“4只鞋中至少有2只是成双”包含的事件是“恰有2只成双”和“4只恰成两双”,恰有两只成双的取法是=120,四只恰成两双的取法是=10∴所取的4只鞋中至少有2只是成双的概率为19. (直接法):至少取到1枝次品包括:A=“第一次取到次品,第二次取到正品”;B=“第一次取到正品,第二次取到次品”;C=“第一、二次均取到次品”三种互斥事件,所以所求事件的概率为P(A)+P(B)+P(C)==.20. 解:设A={甲中彩} B={乙中彩} C={甲、乙都中彩} 则C=AB(1)P(A)=;(2)P(C)=P(AB)=(2)21. 解.(1)当 A=1时变为方程有实数解得显然若时; 1种若时; 2种若时; 4种若时; 6种若时; 6种故有19种,方程有实数根的概率是.B=-A,C=A-3,且方程有实数根,得,得而方程有两个正数根的条件是:即,故方程有两个正数根的概率是而方程至少有一个非负实数根的对立事件是方程有两个正数根故所求的概率为.。
初中数学概率专题复习题及答案
初中数学概率专题复习题及答案1、宇宙飞船的速度比飞机的速度快是事件。
2、两直线平行,同旁内角相等,这个事件是事件。
3、过平面内三点作一条直线是事件。
4、在一个袋子中装有10个红球,2个黄球,每个球除颜色外都相同,搅匀后,摸到色的球可能性大。
5、有10张形状、大小都一样的卡片,分别写有1至10十个数,将它们反面朝上洗匀后,任意抽一张,抽得偶数的成功率为。
6、一只袋内装有2个红球,3个白球,5个黄球(这些球除颜色外没有其他区别),从中任意取出一球,那么取得红球的成功率是。
7、如图11-1所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片画一个正方形,将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)那么甲方赢;假设可以拼成一个蘑菇形(取出一张纸片画有半圆、一张纸片画有正方形)那么乙赢.你认为这个游戏公平吗?假设不公平,有利于谁?.8、如果把抢30改成抢40,其他规那么不变,甲先取,乙后取,那么对有利.9、小华从一副完整的中国象棋中摸出5枚炮是事件.10、任意掷一枚普通骰子,出现了的点数不大于6这是事件。
11、同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,以下事件中是不可能事件的是()A.点数之和为12B.点数之和小于8C.点数之和大于4小于8D.点数之和为1312、以下事件不可能发生的是()A.翻开电视机,CCTV-1正在播放新闻B.我们班的同学将来会有人中选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.假设实数,那么13、以下事件中,属于必然事件的是()A.明天我市下雨B.我走出校门,看到的第一辆汽车的牌照的末位数字是偶数C.抛一枚硬币,正面朝上D.一口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球14、某超级市场失窃,大量的商品在夜间被罪犯用汽车运走,三个嫌疑犯被警察局传讯,警察已经掌握了以下事实;(1)罪犯不在A、B、C三人之外;(2)C作案时总得有A作从犯;(3)B不会开车。
(好题)初中数学七年级数学下册第六单元《概率初步》检测(包含答案解析)
一、选择题1.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有|x|≥0C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 2.一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.233.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为13,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.下列说法正确的是()A.扔100次硬币,都是国徽面向上,是不可能事件B.小芳在扔图钉游戏中,扔10次,有6次都是钉尖朝下,所以钉尖朝下的可能性大C.王明同学一直是级部第一名,他能考上重点高中是必然事件D.投掷一枚均匀的骰子,投出的点数是10,是一个确定事件5.下列事件中,是确定事件的是()A.车辆随机经过一个路口,遇到红灯B.三条线段能组成一个三角形C.将油滴入水中,油会浮在水面D.掷一枚质地均匀的骰子,掷出的点数是质数6.在一个不透明的口袋中,装有3个红球2个白球,它们除颜色外其余都相同,从中任意摸出一个球,摸到白球的概率为()A.12B.15C.25D.357.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 8.下列说法正确的是()A.明天会下雨是必然事件B.不可能事件发生的概率是0C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次9.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定10.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是611.下列事件是随机事件的是()A.太阳东升西落 B.水中捞月 C.明天会下雨 D.人的生命有限12.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.0二、填空题13.如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.14.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.15.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.16.在一个不透明的口袋中装有4个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为___________.17.从一副扑克牌中任意抽取 1 张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)18.一个不透明的袋子中装有除颜色外完全相同的三个黄球和两个红球,现从中随机摸出球,则摸出的球是红球的概率等于______.19.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数1302342113根据以上数据,估算袋中的白棋子数量为_______枚.20.一个布袋内只装有1个红球和2个黄球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黄球的概率是________.三、解答题21.如图为一个封闭的圆形装置,整个装置内部为A、B、C三个区域(A、B两区域为圆环,C区域为小圆),具体数据如图.(1)求出A、B、C三个区域三个区域的面积:S A=,S B=,S C=;(2)随机往装置内扔一粒豆子,多次重复试验,豆子落在B区域的概率P B为多少?(3)随机往装置内扔180粒豆子,请问大约有多少粒豆子落在A区域?22.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.23.某餐厅新开业,为了吸引顾客,推出“模球有礼”优惠活动,餐厅在一个不透明的纸箱中装入除颜色外完全相同的小球共50个,其中红色球3个、黄色球5个、蓝色球12个,剩余为绿色。
2023年北师大版七年级数学下册第六章《概率初步》试题卷附答案解析
2023年北师大版七年级数学下册第六章《概率初步》试题卷一、单选题1.下列事件中,是确定事件的是()A.掷一枚硬币,正面朝上B.三角形的内角和是180C.明天会下雨D.明天的数学测验,小明会得满分2.下列语句所描述的事件是随机事件的是()A.两点决定一直线B.清明时节雨纷纷C.没有水分,种子发芽D.太阳从东方升起3.小明过马路时,恰好是红灯.这个事件是()A.必然事件B.随机事件C.不可能事件D.不确定事件4.在“石头、剪刀、布”游戏中,对方出“剪刀”.这个事件是()A.必然事件B.随机事件C.不可能事件D.确定性事件5.一个不透明的袋子里装有3个红球,2个黄球,1个白球,这些球除颜色外无其他差别,从袋子中随机取出一个球,取出球的颜色可能性最大的是()A.红色B.黄色C.白色D.可能性一样大6.一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是()A.12B.14C.18D.387.不透明的袋子中装有3个红球和2个白球,这些球除了颜色外都相同,从袋子中随机地摸出1个球,则这个球都是红球..的概率是()A.15B.35C.23D.138.有20瓶饮料,其中有2瓶已过保质期,小明从20瓶饮料中任取1瓶,那么他取到没有过保质期的饮料的概率是()A.910 B.110 C.118 D.1209.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是()A.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B.掷一枚质地均匀的硬币,落地时结果是“正面向上”C.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是2D.从一副扑克牌中随机抽取一张,抽到的牌是梅花10.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同,若从布袋里任意摸出1个球是红球的概率为14,则a等于()A.1B.2C.3D.4二、填空题11.一只不透明的袋子中有1个白球,100个黄球,这些球除颜色外都相同,将球搅匀,从中任意摸出一个球是白球;这一事件是___________事件.(填“必然”、“随机”、“不可能”)12.一个不透明的布袋里装有6个只有颜色不同的球,其中有1个黑球、2个白球、3个红球,从布袋里随机摸出1个球,摸出白球的概率为_________.13.现分别有长2cm和5cm的两条线段,再从下列长度:1cm、2cm、3cm、4cm、5cm、6cm、7cm、8cm的线段中随机选取一条组成一个三角形,那么能组成三角形的概率是_____.14.在一个不透明的箱子中有黄球和红球共6个,它们除颜色外都相同,若任意摸出一个球,摸到红球的概率为23,则这个箱子中红球的个数为________个.15.某公司组织内部抽奖活动,共准备了100张奖券,设一等奖10个,二等奖20个,三等奖30个.若每张奖券获奖的可能性相同,则随机抽一张奖券中一等奖的概率为______.16.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),则击中阴影区域的概率是___________.17.一个不透明的口袋中装有红色、黄色、蓝色玻璃球共200个,这些球除颜色外都相同.小明通过大量随机摸球试验后,发现摸到红球的频率稳定在30%左右,则可估计红球的个数约为_______.18.不透明的布袋中装有除颜色外完全相同的10个球,其中红色球有m个,如果从布袋中任意摸出一个球恰好为红色球的概率是15,那么m ________.19.不透明袋子中装有7个球,其中有4个红球,3个白球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.20.因疫情原因,杭州亚运会定于2023年9月23日至10月8日举行,名称仍为杭州2022年第19届亚运会.莲莲从网上购买杭州2022年第19届亚运会吉祥物(如图)一件,则物流配送的恰好是“莲莲”的概率为________.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.21.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?26如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?解答1.B2.B3.B4.B5.A6.A7.B8.A9.C10.C11.随机12.1313.3814.415.0.116.5917.6018.2194720.1321.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是1 3.(1)求任意摸出一个球是黑球的概率;(2)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率1 4若能,请写出如何调整白球数量;若不能,请说明理由.(1)解:∵红球3个,白球5个,黑球若干个,从中任意摸出一个白球的概率是1 3,∴盒子中球的总数为:15153÷=(个),∴盒子中黑球的个数为:15357--=(个);∴任意摸出一个球是黑球的概率为:7 15;(2)解:∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:13124÷=,∴可以将盒子中的白球拿出3个.14.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.23.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,请你根据大转盘(如图)来计算:(1)享受七折优惠的概率;(2)得20元的概率;(3)得10元的概率;(4)中奖得钱的概率是多少?解:(1)享受七折优惠的概率为802 3609=;(2)得20元的概率为901 3604=;(3)得10元的概率为1201 3603=;(4)中奖得钱的概率是906060736012++=.24.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是3162=;(3)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是4263=.25.如图,有一个可以自由转动的转盘,被均匀分成5等份,分别标上1、2、3、4、5五个数字,转动转盘一次,当转盘停止后,指针指向的数字即为转出的数字.(1)转出的数字是3的概率是多少?(2)转出的数字小于4的概率是多少?(3)转出的数字是偶数的概率是多少?(4)甲乙两人玩一个游戏,其规则如下:任意转动转盘一次,如果转出的数字是偶数,则甲胜;如果转出的数字是奇数,则乙胜.你认为这样的游戏规则对甲、乙两人是否公平?为什么?解:(1)转盘共分为5份,数字3占其中一份,故转出的数字是3的概率为15(2)共有5种等可能结果,转出的数字小于4的有1、2、3共3个,所以转出的数字小于4的概率为35(3)共有5种等可能结果,转出的数字是偶数的有2、4两个数字,所以转出的数字是偶数的概率为25(4)不公平,转出的数字是偶数的概率为5转出的数字是奇数的概率为35.2355<,所以这样的游戏规则对甲、乙两人不公平26.如图,转盘被分成六个相同的扇形,并在上面依次写上数字:2,3,4,5,6,7.指针的位置固定,转动转盘后任其自由停止.(1)当转盘停止时,指针指向奇数区域的概率是多少?(2)当转盘停止时,指针指向的数小于或等于5的概率是多少?(1)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向奇数区域3,5,7有3种结果,所以指针指向奇数区域的概率是31 62 =;(2)解:当转盘停止转动时,指针指向数字区域2,3,4,5,6,7的机会是均等的,故共有6种均等的结果,其中指针指向的数小于或等于5区域2,3,4,5有4种结果,所以指针指向的数小于或等于5的概率是42 63 =.。
初中数学概率经典测试题及答案
初中数学概率经典测试题及答案一、选择题1.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内【答案】C【解析】【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.2.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流 B.锄禾日当午 C.大漠孤烟直 D.手可摘星辰【答案】D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【答案】D【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.4.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a ,则数a 使关于x 的不等式组()1242122123x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x 的分式方程233a x x x ++--=1有非负整数解的概率是( ) A .29B .13C .49D .59【答案】C 【解析】 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩ , 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a- , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C . 【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.5.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是( ) A .23B .12C .13D .14【答案】C 【解析】【分析】【详解】用数组(X,Y)中的X表示征征选择的社团,Y表示舟舟选择的社团.A,B,C分别表示航模、彩绘、泥塑三个社团,于是可得到(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9中不同的选择结果,而征征和舟舟选到同一社团的只有(A,A),(B,B),(C,C)三种,所以,所求概率为3193,故选C.考点:简单事件的概率.6.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为( )A.12B.14C.35D.23【答案】D【解析】【分析】首先利用列举法可得:用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;且排出的数是偶数的有:234、324、342、432,然后直接利用概率公式求解即可求得答案【详解】解:∵用2,3,4三个数字排成一个三位数,等可能的结果有:234,243,324,342,423,432;∵排出的数是偶数的有:234、324、342、432;∴排出的数是偶数的概率为:46=23.【点睛】此题考查了列举法求概率.用到的知识点为:概率=所求情况数与总情况数之比.7.动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是()A.35B.38C.58D.310【答案】B【解析】【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.【详解】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到30岁的只数为0.3x,故现年20岁到这种动物活到30岁的概率为0.30.8xx=38.故选:B.【点睛】本题考查概率的简单应用,用到的知识点为:概率=所求情况数与总情况数之比.8.下表显示的是某种大豆在相同条件下的发芽试验结果:下面有三个推断:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955;②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95;③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒.其中推断合理的是()A.①②③B.①②C.①③D.②③【答案】D【解析】【分析】利用频率估计概率,大量反复试验下频率稳定值即为概率可解题.【详解】解:①当n为400时,发芽的大豆粒数为382,发芽的频率为0.955,所以大豆发芽的概率是0.955,此推断错误,②随着试验时大豆的粒数的增加,大豆发芽的频率总在0.95附近摆动,显示出一定的稳定性,可以估计大豆发芽的概率是0.95,此结论正确,③若大豆粒数n为4000,估计大豆发芽的粒数大约为3800粒,此结论正确,故选D.【点睛】本题考查了利用频率估计概率, 大量反复试验下频率稳定值即为概率,属于简单题,熟悉概念是解题关键.9.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同. 搅均后从中随机一次模出两个球.......,这两个球都是红球的概率是()A.12B.13C.23D.14【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可.【详解】画树形图得:一共有12种情况,两个球都是红球的有6种情况,故这两个球都是红球相同的概率是61= 122,故选A.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字2,3,5,6,将这四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是( )A.16B.13C.23D.14【答案】A【解析】【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【详解】根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是21= 126.故选A.【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.11.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【答案】A【解析】【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.12.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.15【答案】B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.13.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14.如图,小明随意向水平放置的大正方形内部区域抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为()A.34B.13C.12D.14【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【详解】解:设小正方形的边长为1,则其面积为1.圆的直径正好是大正方形边长,∴22,∴2,222=,则小球停在小正方形内部(阴影)区域的概率为12.故选:C.【点睛】概率=相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比.设较小吧边长为单位1是在选择填空题中求比的常见方法.15.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:黑色笔芯数01456盒数24121下列结论:①黑色笔芯一共有16支;②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.【详解】解:① 根据表格的信息,得到黑色笔芯数=021*********⨯+⨯+⨯+⨯+⨯=,故①错误;② 每盒笔芯的数量为20支,∵每盒黑色笔芯的数量都≤6,∴每盒红色笔芯≥14,因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,故②正确;③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7故③正确④ 10盒笔芯一共有10×20=200(支),由详解①知黑色笔芯共有24支,将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,故④正确;综上有三个正确结论,故答案为C.【点睛】本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.16.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A.12B.14C.16D.116【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得佳佳和琪琪恰好从同一个入口进入该公园的情况,再利用概率公式求解即可求得答案.【详解】画树状图如下:由树状图可知,共有16种等可能结果,其中佳佳和琪琪恰好从同一个入口进入该公园的有4种等可能结果,所以佳佳和琪琪恰好从同一个入口进入该公园的概率为41= 164,故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和是180°B.经过有交通信号灯的路口,遇到红灯C.掷一次骰子,向上一面的点数是6D.射击运动员射击一次,命中靶心【答案】A【解析】【分析】根据必然事件、不可能事件、随机事件的概念对各个选项进行判断即可.【详解】A.任意画一个三角形,其内角和是180°是必然事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.掷一次骰子,向上一面的点数是6是随机事件;D.射击运动员射击一次,命中靶心是随机事件;故选:A.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.18.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=12S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.14D.34【答案】D【解析】【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到选项A,B,C都是正确的,当EF=AP 始终相等时,可推出222AP PF=,由AP的长为定值,而PF的长为变化值可知选项D不正确.从而求出正确的结论的概率.【详解】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴1245EAP BAC∠=∠=︒,12AP BC CP==.(1)在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP∴AE=CF.(1)正确;(2)由(1)知,△AEP≌△CFP,∴PE=PF,又∵∠EPF=90°,∴△EPF是等腰直角三角形.(2)正确;(3)∵△AEP≌△CFP,同理可证△APF≌△BPE.∴12AEP APF CPF BPE ABCAEPFS S S S S S=+=+=四边形.(3)正确;(4)当EF=AP始终相等时,由勾股定理可得:222EF PF=则有:222AP PF=,∵AP的长为定值,而PF的长为变化值,∴2AP与22PF不可能始终相等,即EF 与AP 不可能始终相等,(4)错误,综上所述,正确的个数有3个, 故正确的结论的概率是34. 故选:D .【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.19.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上【答案】C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C .点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.下列事件中,属于随机事件的是( ).A .凸多边形的内角和为500︒B .凸多边形的外角和为360︒C .四边形绕它的对角线交点旋转180︒能与它本身重合D .任何一个三角形的中位线都平行于这个三角形的第三边【答案】C【解析】【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件.根据随机事件的定义即可解答.【详解】解:A 、凸n 多边形的内角和180(2)n =︒-,故不可能为500︒,所以凸多边形的内角和为500︒是不可能事件;B、所有凸多边形外角和为360︒,故凸多边形的外角和为360︒是必然事件;C、四边形中,平行四边形绕它的对角线交点旋转180︒能与它本身重合,故四边形绕它的对角线交点旋转180︒能与它本身重合是随机事件;D、任何一个三角形的中位线都平行于这个三角形的第三边,即三角形中位线定理,故是必然事件.故选:C.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.解决本题关键是正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.。
初一概率试题及答案
初一概率试题及答案一、选择题1. 如果一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是多少?A. 1/2B. 3/8C. 5/8D. 8/11答案:C2. 在一个班级中,有30个男生和20个女生,随机抽取一个学生,抽到女生的概率是多少?A. 1/2B. 2/5C. 3/5D. 4/5答案:B3. 如果一个骰子是公平的,掷一次骰子得到偶数的概率是多少?A. 1/2B. 1/3C. 1/6D. 2/3答案:A4. 一个袋子里有10个球,其中3个是白球,7个是黑球。
随机抽取一个球,抽到白球的概率是多少?A. 3/10B. 7/10C. 1/3D. 2/7答案:A5. 在一个装有红、黄、蓝三种颜色球的袋子里,红球占总数的1/4,黄球占总数的1/3,那么抽到蓝球的概率是多少?A. 1/4B. 1/3C. 5/12D. 2/3答案:C二、填空题6. 如果一个袋子里有8个球,其中2个是红球,那么随机抽取一个球,抽到红球的概率是________。
答案:1/47. 在一个班级中,有50个学生,其中25个是男生,那么随机抽取一个学生,抽到男生的概率是________。
答案:1/28. 如果一个骰子是公平的,掷一次骰子得到3的概率是________。
答案:1/69. 一个袋子里有5个红球和5个蓝球,随机抽取一个球,抽到红球的概率是________。
答案:1/210. 在一个装有红、黄、蓝三种颜色球的袋子里,红球占总数的1/5,黄球占总数的2/5,那么抽到蓝球的概率是________。
答案:2/5三、解答题11. 一个袋子里有5个红球,3个蓝球和2个绿球。
如果随机抽取一个球,抽到蓝球的概率是多少?答案:抽到蓝球的概率是3/10。
12. 一个班级有40个学生,其中20个男生和20个女生。
如果随机抽取一个学生,抽到女生的概率是多少?答案:抽到女生的概率是1/2。
13. 一个袋子里有10个球,其中4个是白球,6个是黑球。
初一数学概率测试题及答案
初一数学概率测试题及答案《概率》复习检测题一、细心填一填(每题3分,计30 分)1.抛掷一枚伍角的硬币,印有国徽一面朝上的概率是___;2.12瓶装的啤酒中有2瓶有奖,则P摸出有奖)=—;3. 盒子里放有2个黑球和1 个红球,它们除了颜色不同外,其余都相同. 甲、乙、丙三人规定每人摸出一球,摸到红球者算胜.如果摸球顺序按先甲,后乙,最后轮到丙进行,那么这种游戏公平吗?答:___(填公平或不公平);4. 在第3 题中,三人中有一人摸到红球是___事件(填必然或不可能或不确定);5. 如图是商场里为了招揽生意,设立的有奖转盘,转盘被分成相同的四部分.当转动的盘子静止后,顾客就可以得到指针所指的奖品.凡购买 5 元的商品,便有一次转盘的机会,小颖购买了20 元的商品,获得了一次转盘的机会,则P(获得铅笔)—1填或二6•小明从一副扑克牌中随意抽出一张,贝S P抽到老K)=___;7. 抽屉里有2只黑色和1 只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是___;8. 小猫在如图所示的地板砖上随意地走来走去,然后随意停留在某块砖上,则P(停在三角形砖上)=—;9. 随意抛掷两个均匀的骰子,P(朝上面的点数之和为1)=—;10. 为迎接新年,学校准备了外观一样的80个红包,里边装有100元的20 个,50元的60个,贝S P摸到50元)比P摸到100元)多_;二、选择题(每题3分,计30分)11. 三双白色的袜子和1 双黑色的袜子均混合在一起,随机摸出三只能够配成同色的一双是( )A.不可能事件;B•不确定事件;。
必然事件;D.以上都不是.12. 甲、乙两人玩抽扑克牌游戏,他们准备了13张从1到K的牌,并规定如果甲抽到10到K的牌,那么算甲胜;如果抽到是10以下的牌,则算乙胜•这种游戏对甲、乙来说,正确的说法是()A.是公平的^不公平,甲胜的机会大些;C.不公平,乙胜的机会大些;D.无法确定.13. 某农夫在如图甲,乙,丙,丁四块田里插秧时,不慎将手表丢入土里,直到收工时才发现,则手表丢在哪一块田里的可能性大些?( )A.甲;B.乙;C.丙;D.xx.14. 袋子里装有红球15 个,黑球若干个.经测验知道摸出红球的概率为,则黑球的个数是( )A.35;B.40;C.45;D.50.15. 小明和小颖玩抛掷硬币游戏,他们在硬币的正面涂上红色,背面涂上白色,每次抛掷三枚,如果面朝上的是2枚或3枚红色的,则算小明输,小颖赢;如果面朝上的是2枚或3枚白色的,则算小明赢,小颖输.这种游戏对小明和小颖来说,正确的说法是( )A.是公平的旧不公平,小明输的机会较大;C.不公平,小颖输的机会较大;D.不能确定.16. 一种转盘游戏,每转一次赢得奖品的概率是,小明转了2次,他获得奖品的概率是( )A.1;B. ;C. ;D. .17. 一种彩票每发行1 百万张设特等奖1 名,小新的爸爸中了特等奖,人们对他购买彩票的张数说三道四,其中说法正确的是( )A.起码买了几十万张;B•起码买了几万张;C.起码买了几千张;D.有可能只买一张.18. 甲乙两人在玩抛掷硬币游戏,每次抛出2 枚,规定如果两枚硬币都是正面朝上,那么甲得3分,否则乙得 1 分,最后以得分多的为胜.如此游戏对两人来说,正确的是( )A.是公平的;B•甲获胜的机会大;C•乙获胜的机会大;D.不能确定.19. 下列事件为必然事件的是( )A.28 日的明天是29日; B .冬天哈尔滨会下雪;C.星期天没人在读书;D.老师不会做错题.20. 抛掷一颗正方体骰子朝上一面出现数字1 的概率是,那么同时抛掷 2 颗这样相同的骰子,朝上一面至少有一个出现数字 1 的概率是( )A. ;B. ;C. ;D. .三、解答题(每题8 分,计40分)21. 一个正方体骰子,其中一个面上标有1,两个面上标有2,三个面上标有3,求将这个骰子掷出后:(1)2朝上的概率;(2)朝上概率最大的数;(3)如果规定朝上的数为1或2时,甲胜;朝上的数为3时乙胜,则甲、乙谁获胜的机会大些?22. 袋子里装有红球42 个,黑球若干个.经测验知道摸出黑球的概率为,求黑球的个数.23. 甲、乙两人玩一种赌博游戏,他们设置大小一样,编号依次从1到37的37 个小球,由甲随意摇出一球,然后让乙猜测.如果乙猜对了,甲付给乙30 元; 如果乙猜错了,则乙输给甲 1 元.请你用学过的概率知识,分析一下甲、乙两人谁获胜的机会大些?24. 小明、小亮和小新三人在玩摸球游戏,他们轮流从一只口袋里各摸出一个球,结果发现摸出红球的概率是,摸出蓝球的概率是,摸出白球的概率是.已知口袋里红球的个数是 6 个,为了使摸出各色球的概率相同,小明建议说应再分别放入不等的各色球才能使摸出各色球的概率相同;小亮说能再放入的红球只有10 只;小新说蓝球虽然还有很多,但白球却只剩 3 个.请你设计一个满足他们三人要求的方案,并且使口袋里的球尽可能多.25. 阅读以下故事,回答后面问题:话说某村子里有一座关帝庙,庙里供奉着一樽关二爷雕像,据老人们说关二爷非常灵验,有求必应.因此,慕名而来抽签卜挂的善男信女络绎不绝,村子里凡难于决断的大事小事,人们也总是喜欢到庙里烧上三拄香,请关二爷定夺.话说这一日,为了人们赶庙会时出入的方便,有人建议在庙宇的围墙北面再放一个偏门,但同时也有人担心这样会破坏庙宇的风水,一时间公说公有理,婆说婆有理,双方争执不下,大家自然一致想到请关二爷定夺.按照习惯,争议双方到关二爷面前,请村里的长辈点上三根香,拿出两块一模一样、十分精致的竹板,竹板只有正面和反面之分,然后口中念道:关二爷在上,弟子今有一事不明,恭请关二爷定夺.如果可以放个北门请关二爷连允三次(如果竹板落地后一个正面朝上反面朝上,则称为允,否则称为不允).(1)请你先算一算:关二爷允许的概率有多大?(2)由于村里大多数人都认为放这个北门十分必要的,但老人们还是坚持要让关二爷定夺,你有什么方法能提高关二爷允许的概率?参考答案:一、填空题1. ;2. ;3.公平;4.不确定;5.7. ;8. ;9.0;10.0.5;二、选择题11.C;12.C;13.D;14.A;15.A;D.17.D;18.A; 19.B;20.C;三、解答题21. (1) ;(2)3;(3)甲、乙一样大;22. 设黑球的个数为x,则球的总数为x+42,由题意,得,解得x=18.23. 甲每次猜对的概率为,赢钱30= (元);乙每次获胜的概率为,赢钱1= (元),故乙获胜的机会大些.24. 原来口袋里的球共有36个,其中红球6个,蓝球18个,白球12个,为了使摸出的各色球的概率相同,三色球的数量应相等,为了使口袋里的球尽量多,各色球也应尽量多,但红球最多只能达16个,白球只能达15个,因此,唯一的方案是再放入白球3个,红球9 个,然后取出蓝球 3 个.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
初一概率试题及答案
初一概率试题及答案试题一:抛硬币问题问题:一个公正的硬币被抛掷5次,求以下事件发生的概率:1. 至少出现一次正面的概率。
2. 恰好出现三次正面的概率。
答案:1. 至少出现一次正面的概率可以通过计算没有出现正面的概率,然后用1减去这个概率得到。
没有出现正面意味着5次都是反面,其概率为(1/2)^5。
所以至少出现一次正面的概率为1 - (1/2)^5 = 31/32。
2. 恰好出现三次正面的概率可以通过组合公式计算。
总共有5次抛掷,选择3次为正面的组合数为C(5,3),即从5次中选择3次的组合数。
概率为C(5,3) * (1/2)^5 = 10 * (1/32) = 5/32。
试题二:掷骰子问题问题:一个公正的六面骰子被掷出,求以下事件发生的概率:1. 掷出数字6的概率。
2. 掷出偶数的概率。
答案:1. 一个公正的六面骰子,每个面出现的概率都是1/6。
所以掷出数字6的概率为1/6。
2. 骰子的偶数面有2、4、6,所以掷出偶数的概率是这三个面出现的概率之和。
概率为3/6 = 1/2。
试题三:抽牌问题问题:一副去掉大小王的扑克牌共有52张,其中有4种花色,每种花色有13张牌。
求以下事件发生的概率:1. 抽到红心A的概率。
2. 抽到任意一种花色的A的概率。
答案:1. 一副牌中只有1张红心A,所以抽到红心A的概率为1/52。
2. 每种花色都有1张A,共有4张A,所以抽到任意一种花色的A的概率为4/52 = 1/13。
试题四:生日问题问题:一个班级有30名学生,求至少有两个人生日相同的概率。
答案:这个问题可以通过计算没有两个人生日相同的概率来解决,然后用1减去这个概率。
假设一年有365天,忽略闰年。
第一个学生的生日可以是任何一天,所以概率是365/365。
第二个学生的生日要与第一个不同,概率是364/365,以此类推。
至少有两个人生日相同的概率为1 - (365/365) * (364/365) * ... * (365-29)/365。
2024年数学七年级下册概率统计基础练习题(含答案)
2024年数学七年级下册概率统计基础练习题(含答案)试题部分一、选择题:1. 下列哪个事件是随机事件?()A. 掷一枚硬币,正面朝上B. 太阳从西方升起C. 一辆汽车行驶1小时,路程为60公里D. 一个数既是偶数又是奇数2. 下列哪个图形是概率论中的样本空间?()A. 长方形B. 正方形C. 圆D. 线段3. 抛掷一个正常的六面骰子,得到偶数点的概率是?()A. 1/6B. 1/3C. 1/2D. 2/34. 下列哪个说法是正确的?()A. 必然事件的概率为0B. 不可能事件的概率为1C. 随机事件的概率介于0和1之间D. 互斥事件的概率之和为15. 下列哪个图形可以用来表示事件A和事件B的并集?()A. Venn图中的A区域B. Venn图中的B区域C. Venn图中的A和B的交集区域D. Venn图中的A和B的并集区域6. 下列哪个统计量可以用来描述一组数据的离散程度?()A. 平均数B. 中位数C. 众数D. 方差7. 下列哪个说法是错误的?()A. 频率可以作为概率的估计值B. 概率是长期频率的稳定值C. 随机抽样时,每个样本被抽中的概率相等D. 概率大于18. 一个袋子里有5个红球,3个蓝球,2个绿球,从中随机抽取一个球,得到红球的概率是多少?()A. 1/5B. 1/3C. 1/2D. 2/59. 下列哪个事件是不可能事件?()A. 抛掷一枚硬币,正面朝上B. 抽取一张红桃牌C. 任意选择一个整数,它是素数D. 任意选择一个整数,它是大于10的偶数10. 下列哪个统计量可以用来描述一组数据的集中趋势?()A. 极差B. 四分位数C. 平均数D. 方差二、判断题:1. 概率论中的事件分为必然事件、不可能事件和随机事件。
()2. 随机事件的概率一定是1。
()3. 抛掷一枚硬币,正面朝上和反面朝上的概率相等。
()4. 两个互斥事件的概率之和一定为1。
()5. 频率是概率的精确值。
()6. 从一个袋子里随机抽取一个球,第二次抽取的概率与第一次抽取的概率相同。
概率测试题及答案
概率测试题及答案一、单项选择题(每题2分,共10分)1. 随机变量X服从标准正态分布,P(X>0)的值是多少?A. 0.5B. 0.3C. 0.7D. 0.9答案:A2. 已知随机变量X服从二项分布B(n, p),n=10,p=0.3,求P(X>=3)的值。
A. 0.3B. 0.5C. 0.7D. 0.9答案:B3. 随机变量X和Y独立同分布,且都服从正态分布N(0,1),求P(X+Y>0)的值。
A. 0.5B. 0.3C. 0.7D. 0.9答案:A4. 随机变量X服从泊松分布,参数λ=4,求P(X=2)的值。
A. 0.25B. 0.125C. 0.0625D. 0.5答案:C5. 随机变量X服从几何分布,参数p=0.4,求P(X>=3)的值。
A. 0.16B. 0.24C. 0.36D. 0.48答案:C二、填空题(每题3分,共15分)1. 随机变量X服从正态分布N(μ, σ^2),其中μ=2,σ^2=4,求P(X<1)的值。
答案:0.15872. 随机变量X服从均匀分布U(a, b),其中a=1,b=3,求P(X>2)的值。
答案:0.53. 随机变量X服从指数分布,参数λ=0.5,求P(X>1)的值。
答案:0.60654. 随机变量X服从二项分布B(n, p),其中n=5,p=0.2,求P(X=3)的值。
答案:0.02645. 随机变量X服从超几何分布,总体大小N=100,成功次数M=30,样本大小n=10,求P(X=5)的值。
答案:0.0864三、计算题(每题10分,共20分)1. 随机变量X服从正态分布N(3, 9),求P(1<X<5)的值。
答案:0.68262. 随机变量X服从指数分布,参数λ=0.2,求P(X<3)的值。
答案:0.8187结束语:本测试题及答案旨在帮助学生理解和掌握概率论的基本概念和计算方法,希望同学们通过练习能够提高解题能力。
初一数学概率测试卷及解析
初一数学概率测试卷及解析《概率》复习检测题一、细心填一填(每题3分,计30分)1.抛掷一枚伍角的硬币,印有国徽一面朝上的概率是___;2.12瓶装的啤酒中有2瓶有奖,则P(摸出有奖)=___;3.盒子里放有2个黑球和1个红球,它们除了颜色不同外,其余都相同.甲、乙、丙三人规定每人摸出一球,摸到红球者算胜.假如摸球顺序按先甲,后乙,最后轮到丙进行,那么这种游戏公平吗?答:___(填公平或不公平);4.在第3题中,三人中有一人摸到红球是___事件(填必定或不可能或不确定);5.如图是商场里为了招揽生意,设立的有奖转盘,转盘被分成相同的四部分.当转动的盘子静止后,顾客就能够得到指针所指的奖品.凡购买5元的商品,便有一次转盘的机会,小颖购买了20元的商品,获得了一次转盘的机会,则P(获得铅笔)___1(填或=6.小明从一副扑克牌中随意抽出一张,则P(抽到老K)=___;7.抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是___;8.小猫在如图所示的地板砖上随意地走来走去,然后随意停留在某块砖上,则P(停在三角形砖上)=___;9.随意抛掷两个平均的骰子,P(朝上面的点数之和为1)=___;10.为迎接新年,学校预备了外观一样的80个红包,里边装有100元的20个,50元的60个,则P(摸到50元)比P(摸到100元)多___;二、选择题(每题3分,计30分)11.三双白色的袜子和1双黑色的袜子均混合在一起,随机摸出三只能够配成同色的一双是( )A.不可能事件;B.不确定事件;C.必定事件;D.以上都不是.12.甲、乙两人玩抽扑克牌游戏,他们预备了13张从1到K的牌,并规定假如甲抽到10到K的牌,那么算甲胜;假如抽到是10以下的牌,则算乙胜.这种游戏对甲、乙来说,正确的说法是( )A.是公平的;B.不公平,甲胜的机会大些;C.不公平,乙胜的机会大些;D.无法确定.13.某农夫在如图甲,乙,丙,丁四块田里插秧时,不慎将手表丢入土里,直到收工时才发觉,则手表丢在哪一块田里的可能性大些?( )A.甲;B.乙;C.丙;D.丁.14.袋子里装有红球15个,黑球若干个.经测验明白摸出红球的概率为,则黑球的个数是( )A.35;B.40;C.45;D.50.15.小明和小颖玩抛掷硬币游戏,他们在硬币的正面涂上红色,背面涂上白色,每次抛掷三枚,假如面朝上的是2枚或3枚红色的,则算小明输,小颖赢;假如面朝上的是2枚或3枚白色的,则算小明赢,小颖输.这种游戏对小明和小颖来说,正确的说法是( )A.是公平的;B.不公平,小明输的机会较大;C.不公平,小颖输的机会较大;D.不能确定.16.一种转盘游戏,每转一次赢得奖品的概率是,小明转了2次,他获得奖品的概率是( )A.1;B. ;C. ;D. .17.一种彩票每发行1百万张设特等奖1名,小新的爸爸中了特等奖,人们对他购买彩票的张数说三道四,其中说法正确的是( )A.起码买了几十万张;B.起码买了几万张;C.起码买了几千张;D.有可能只买一张.18.甲乙两人在玩抛掷硬币游戏,每次抛出2枚,规定假如两枚硬币差不多上正面朝上,那么甲得3分,否则乙得1分,最后以得分多的为胜.如此游戏对两人来说,正确的是( )A.是公平的;B.甲获胜的机会大;C.乙获胜的机会大;D.不能确定.19.下列事件为必定事件的是( )A.28日的改日是29日;B.冬天哈尔滨会下雪;C.星期天没人在读书;D.老师可不能做错题.20.抛掷一颗正方体骰子朝上一面显现数字1的概率是,那么同时抛掷2颗如此相同的骰子,朝上一面至少有一个显现数字1的概率是( )A. ;B. ;C. ;D. .三、解答题(每题8分,计40分)21.一个正方体骰子,其中一个面上标有1,两个面上标有2,三个面上标有3,求将那个骰子掷出后:(1)2朝上的概率;(2)朝上概率最大的数;(3)假如规定朝上的数为1或2时,甲胜;朝上的数为3时乙胜,则甲、乙谁获胜的机会大些?22.袋子里装有红球42个,黑球若干个.经测验明白摸出黑球的概率为,求黑球的个数.23.甲、乙两人玩一种赌博游戏,他们设置大小一样,编号依次从1到37的37个小球,由甲随意摇出一球,然后让乙推测.假如乙猜对了,甲付给乙30元;假如乙猜错了,则乙输给甲1元.请你用学过的概率知识,分析一下甲、乙两人谁获胜的机会大些?24.小明、小亮和小新三人在玩摸球游戏,他们轮番从一只口袋里各摸出一个球,结果发觉摸出红球的概率是,摸出蓝球的概率是,摸出白球的概率是.已知口袋里红球的个数是6个,为了使摸出各色球的概率相同,小明建议说应再分别放入不等的各色球才能使摸出各色球的概率相同;小亮说能再放入的红球只有10只;小新说蓝球尽管还有专门多,但白球却只剩3个.请你设计一个满足他们三人要求的方案,同时使口袋里的球尽可能多.25.阅读以下故事,回答后面问题:话说某村子里有一座关帝庙,庙里供奉着一樽关二爷雕像,据老人们说关二爷专门灵验,有求必应.因此,慕名而来抽签卜挂的善男信女川流不息,村子里凡难于决断的大事小事,人们也总是喜爱到庙里烧上三拄香,请关二爷定夺.话说这一日,为了人们赶庙会时出入的方便,有人建议在庙宇的围墙北面再放一个偏门,但同时也有人担忧如此会破坏庙宇的风水,一时刻公说公有理,婆说婆有理,双方争吵不下,大伙儿自然一致想到请关二爷定夺.按照适应,争议双方到关二爷面前,请村里的长辈点上三根香,拿出两块一模一样、十分精巧的竹板,竹板只有正面和反面之分,然后口中念道:关二爷在上,弟子今有一事不明,恭请关二爷定夺.假如能够放个北门请关二爷连允三次(假如竹板落地后一个正面朝上反面朝上,则称为允,否则称为不允).(1)请你先算一算:关二爷承诺的概率有多大?(2)由于村里大多数人都认为放那个北门十分必要的,但老人们依旧坚持要让关二爷定夺,你有什么方法能提高关二爷承诺的概率?参考答案:一、填空题1. ;2. ;3.公平;4.不确定;5.7. ;8. ;9.0;10.0.5;二、选择题11.C;12.C;13.D;14.A;15.A;D.17.D;18.A; 19.B;20.C;三、解答题21.(1) ;(2)3;(3)甲、乙一样大;22.设黑球的个数为x,则球的总数为x+42,由题意,得,解得x=18.23.甲每次猜对的概率为,赢钱30= (元);乙每次获胜的概率为,赢钱1= (元),故乙获胜的机会大些.24.原先口袋里的球共有36个,其中红球6个,蓝球18个,白球12个,为了使摸出的各色球的概率相同,三色球的数量应相等,为了使口袋里的球尽量多,各色球也应尽量多,但红球最多只能达16个,白球只能达15个,因此,唯独的方案是再放入白球3个,红球9个,然后取出蓝球3个.课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。
初一数学概率试题答案及解析
初一数学概率试题答案及解析1.小明和妹妹做游戏:在一个不透明的箱子里放入20张纸条(除所标字母外其余相同),其中12张纸条上字母为A,8张纸条上的字母为B,将纸条摇匀后任意摸出一张,如果摸到纸条上的字母为A,则小明胜;如果摸到纸条上的字母为B,则妹妹胜。
(1)这个游戏公平吗?请说明理由;(2)若妹妹在箱子中再放入3张与前面相同的纸条,所标字母为B,此时这个游戏对谁有利?【答案】这个游戏对小明有利【解析】(1)不公平,可通过计算他们各自的概率比较即可;(2)这个游戏对小明有利.可分别计算小明和妹妹的概率试题解析:(1)游戏不公平,理由如下:∵P(小明胜)==,P(妹妹胜)==∴P(小明胜)>P(妹妹)∴这个游戏不公平;(2)这个游戏对小明有利.理由如下:∵P(小明胜)=,P(妹妹胜)=∴P(小明胜)>P(妹妹胜)∴这个游戏对小明有利.【考点】游戏公平性2.将100个数据分成8个组,如下表:则第六组的频数为()A.12B.13C.14D.15【答案】D.【解析】根据表格,得第六组的频数x=100-(11+14+12+13+13+12+10)=15.故选D.【考点】频数与频率.3.在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A.B.C.D.【答案】C【解析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.∵等腰梯形、等腰三角形只是轴对称图形,平行四边形、圆、菱形是中心对称图形∴一次过关的概率是故选C.本题涉及了轴对称图形与中心对称图形的定义,概率的求法,本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.4.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为___________.【答案】【解析】概率的求法:概率=所求情况数与总情况数的比值.解:由题意得取到字母e的概率为.【考点】概率的求法点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.5.袋中有红色和黄色两种球:①若红色球有10个,黄色球有5个,那么从袋中摸出一个球是红颜色的可能性P是多少?②若黄色球有5个,如何配置袋中的红色球使摸出的黄色球的概率为25%?【答案】解:① P(红)= =②设袋中有x个红球, 则 P(黄)= = 25% , ,【解析】①求红色球占总数的几分之几②设袋中有x个红球,根据黄色球占总数的25%进行求解6.小亮周末去奶奶家,因为修路,他这次走了一条他不太熟悉的新路,走到一个有三岔路的路口突然迷了路,而这三个岔路中只有一个通往奶奶家,小亮能一次选对的概率是 .【答案】【解析】解:在这三个岔路中能一次选对的概率.7.小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是.【答案】【解析】根据题意,小明在4个选项中随意选了一个答案,而4个选项中只有一个是正确的;故他选对的概率是.8.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最小.【答案】黄【解析】解:因为袋子中有7个红球、3个黄球和5个蓝球,从中任意摸出一个球,为红球的概率是,②为黄球的概率是,为蓝球的概率是,可见摸出黄球的概率最小.9.如图,有两个可以自由转动的均匀转盘A、B,转盘A、B被均匀地分成几等份,每份分别标上数字.有人为甲、乙两人设计了一个游戏,其规则如下:(1)同时自由转动转盘A与B;(2)转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次),指针同时指向的两个数都是偶数,那么甲胜;否则乙胜.你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明理由。
初一概率试题及答案
初一概率试题及答案一、选择题(每题2分,共10分)1. 抛一枚均匀硬币,正面朝上的概率是多少?A. 0.5B. 0.25C. 0.75D. 1答案:A2. 从一副52张的扑克牌中随机抽取一张,抽到红桃的概率是多少?A. 0.5B. 0.25C. 0.1D. 0.05答案:C3. 一个袋子里有5个红球和3个蓝球,随机取出一个球,是红球的概率是多少?A. 0.25B. 0.4C. 0.6D. 0.8答案:C4. 一个班级有50个学生,其中女生占40%,随机挑选一个学生,是女生的概率是多少?A. 0.4B. 0.5C. 0.6D. 0.8答案:A5. 一个袋子里有10个球,其中3个是黄球,随机取出两个球,两个都是黄球的概率是多少?A. 0.03B. 0.06C. 0.09D. 0.12答案:A二、填空题(每题3分,共15分)1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,取出红球的概率是________。
答案:0.62. 一个班级有30个学生,其中15个是男生,随机挑选一个学生,是男生的概率是________。
答案:0.53. 抛一枚均匀的六面骰子,得到偶数点数的概率是________。
答案:0.54. 一个袋子里有7个球,其中2个是白球,随机取出一个球,取出白球的概率是________。
答案:0.28575. 抛两枚均匀硬币,两枚都是正面朝上的概率是________。
答案:0.25三、解答题(每题5分,共20分)1. 一个袋子里有4个红球和6个蓝球,随机取出两个球,求两个球都是红球的概率。
答案:两个球都是红球的概率为4/10 * 3/9 = 2/15。
2. 一个班级有40个学生,其中20个是女生,随机挑选两个学生,求两个都是女生的概率。
答案:两个都是女生的概率为20/40 * 19/39 = 19/78。
3. 抛三枚均匀硬币,求至少有两枚硬币正面朝上的概率。
答案:至少有两枚硬币正面朝上的概率为1 - (1/2 * 1/2 * 1/2 +1/2 * 1/2 * 1/2 + 1/2 * 1/2 * 1/2) = 7/8。
七年级数学概率初步单元复习(北师版)(含答案)
概率初步单元复习(北师版)一、单选题(共10道,每道10分)1.已知事件A:小明刚到教室,上课铃声就响了;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6,下列说法正确的是( )A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件答案:A解题思路:事件A:小明到教室时,铃声响起是随机的,故是随机事件;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数必然不大于6,故是确定事件.试题难度:三颗星知识点:确定事件和随机事件2.下列说法错误的是( )A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得答案:C解题思路:A:必然事件必然发生,发生概率为1;B:大量重复试验,可以用频率估计概率;C:概率很小的事件,也有小概率发生,不可能事件不可能发生;D:一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,才可以通过列举试验结果的方法求出随机事件发生的概率.试题难度:三颗星知识点:频率估计概率3.下列说法正确的是( )A.367人中至少有2人生日相同B.任意掷一枚质地均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖答案:A解题思路:A:一年最多有366天,367人中至少有2人生日相同;B:任意掷一枚质地均匀的骰子,共有1,2,3,4,5,6六种情况,其中偶数有3个,故概率是;C:天气预报说明天的降水概率为90%,只能说明明天大概率降雨;D:错误.试题难度:三颗星知识点:用频率估计概率4.袋中装有除颜色外完全相同的a个白球、b个红球、c个蓝球,则任意摸一个球是蓝球的概率是( )A. B.C. D.答案:D解题思路:所有可能的结果共有(a+b+c)种,这(a+b+c)种结果出现的可能性相等,则出现蓝球的可能性为c种,故概率为试题难度:三颗星知识点:概率5.边长为4cm的正方形纸上有一半径为1cm的圆形阴影,随机往纸上扎针,则纸落在阴影部分的概率是( )A. B.C. D.答案:D解题思路:正方形面积为16cm2,圆形阴影面积为πcm2,镖落在阴影部分的概率是试题难度:三颗星知识点:概率6.如图,在3×3的正方形网格中,点A,B在格点(网格线的交点)上,在其余14个点上任取一个点C,使△ABC成为以AB为腰的等腰三角形的概率是( )A. B.C. D.答案:C解题思路:如图,分别以A,B为圆心,AB长为半径作弧.则共有4个交点M,N,P,Q,即满足△ABC成为以AB为腰的等腰三角形的点共有4个,故概率为试题难度:三颗星知识点:等腰三角形存在性7.如图,五一旅游黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,现她选择从A入口进入,从C,D出口离开的概率是( )A. B.C. D.答案:B解题思路:共有6种情况,其中从A入口进入,从C,D出口离开的情况有2种,故从A入口进入,从C,D出口离开的概率是试题难度:三颗星知识点:概率8.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )个A.5B.15C.20D.35答案:A解题思路:设袋中共有白球n个,所有可能的结果共有(n+15)种,这(n+15)种结果出现的可能性相等;结果是黄球的可能有15种∴∴n=5试题难度:三颗星知识点:概率9.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A.0.85B.0.57C.0.42D.0.15答案:D解题思路:所有可能的结果共有(5+38+42+15)种,这(5+38+42+15)种结果出现的可能性相等;身高不低于180cm的可能有15种∴试题难度:三颗星知识点:概率10.小明将如图所示的转盘分成n(n是正整数)个扇形,并使得各个扇形的面积都相等,然后他在这些扇形区域内分别标连接偶数数字2,4,6,…,2n(每个区域内标注1个数字,且各区域内标注的数字互不相同),转动转盘1次,当转盘停止转动时,若事件“指针所落区域标注的数字大于8”的概率是,则n的取值为( )A.36B.30C.24D.18答案:C解题思路:所有可能的结果共有n种,这n种结果出现的可能性相等;指针所落区域标注的数字大于8的可能有(n-4)种∴∴n=24试题难度:三颗星知识点:概率。
(必考题)初中数学七年级数学下册第六单元《概率初步》检测卷(包含答案解析)
一、选择题1.下列说法正确的是()A.抛掷一枚质地均匀的硬币两次,必有一次正面朝上B.“汽车累积行驶10000km,从未出现故障”是不可能事件C.湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨D.“0a ”是必然事件2.下列说法中正确的是()A.“任意画出一个平行四边形,它是中心对称图形”是必然事件B.“正八边形的每个外角的度数都等于45°”是随机事件C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是不可能事件D.任意抛掷一枚质地均匀的硬币100次,则反面向上一定是50次3.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为13,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①②B.②③C.①③D.①④4.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A.15 个B.12 个C.8 个D.6 个5.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是()A.必然事件B.不可能事件C.确定事件D.随机事件6.下列事件中,是必然事件的为( )A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上7.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是P1,摸到红球的概率是P2,则()A.P1=1,P2=1B.P1=0,P2=1C.P1=0,P2=1 4D.P1=P2=1 48.下列说法中,正确的是( ) A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.“明天要降雨的概率为12”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次9.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为()A.0.42 B.0.50 C.0.58 D.0.7210.下列说法中正确的是()A.367人中至少有两人是同月同日生B.某商场抽奖活动的中奖率为1‰,说明每抽1000张奖券,一定有一张能中奖C.“打开电视机,正在播放《动物世界》”是必然事件D.“明天降雨的概率是80%”表示明天有80%的时间降雨11.下列成语描述的事件是必然事件的是()A.守株待兔B.翁中捉鳖C.画饼充饥D.水中捞月12.在七年(1)与七年(2)班举行拔河比赛前,根据双方的实力,环环预测:“七年(1)获胜的机会是80%”,那么下面四个说法正确的是()A.七年(2)班肯定会输掉这场比赛B.七年(1)班肯定会赢得这场比赛C.若比赛10次,则七年(1)班会赢得8次D.七年(2)班也有可能会赢得这场比赛二、填空题13.从箱子中摸出红球的概率为14,已知口袋中红球有4个,则袋中共有球__________个.14.一个均匀的正方体,6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是____.15.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.16.六一期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外其余都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2附近,由此可以估计纸箱内有红球________个.17.掷一枚均匀的硬币,前20次抛掷的结果都是正面朝上,那么第21次抛掷的结果正面朝上的概率为______.18.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是()A.转盘②与转盘③B.转盘②与转盘④C.转盘③与转盘④D.转盘①与转盘④19.一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为偶数的卡片的概率是_____.20.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币 1000 次,第 1000 次正面向上,其中为随机事件的有_____个.三、解答题21.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.22.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取到红球的概率是1 4 .(1)取到白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只?23.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,35,5+(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,卡片上的实数是无理数的概率是________.(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或画树状(形)图法,求出两次抽取的卡片上的实数之差为有理数的概率.24.在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若设计一种游戏方案:若从中任取一球(不放回),再从中任取一球.两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?请用画树状图或列表格的方法说明理由.25.将分别标有数字2,3,5的三张颜色、质地、大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?并画树状图或列表求出抽取到的两位数恰好是35的概率.26.第20届世界杯足球赛正在如火如荼的进行,爸爸想通过一个游戏决定小明能否看今晚的比赛:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为3,, 2(每张卡片除了上面的实数不同以外其余均相同),爸爸让小明从中任意取一张卡片,如果抽到的卡片上的数是有理数,就让小明看比赛,否则就不能看.(1)请你直接写出按照爸爸的规则小明能看比赛的概率;(2)小明想了想,和爸爸重新约定游戏规则:自己从盒子中随机抽取两次,每次抽取一张卡片,第一次抽取后记下卡片上的数,再将卡片放回盒中抽取第二次,如果抽取的两数之积是有理数,自己就看比赛,否则就不看.请你用列表法或树状图法求出按照此规则小明看比赛的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据题意逐项分析,即可求解.【详解】解:A.“抛掷一枚质地均匀的硬币两次,必有一次正面朝上”,不一定发生,不是必然事件,判断错误,不合题意;B. “汽车累积行驶10000km,从未出现故障”,有可能发生,是随机事件,判断错误,不合题意;C. 湖州气象局预报说“明天的降水概率为70%”,意味着湖州明天一定下雨,70%意味着降雨的可能性较大,但不一定下雨,判断错误,不合题意;a ”是必然事件,判断正确,符合题意.D. “0故选:D【点睛】本题考查了必然事件、不可能事件、可能性大小等知识,理解题意,熟知相关概念,知识,理解可能性的意义是解题关键.2.A解析:A【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.A.“任意画出一个平行四边形,它是中心对称图形”是必然事件,故本选项正确;B.“正八边形的每个外角的度数都等于45°”是必然事件,故本选项错误;C.“200件产品中有8件次品,从中任抽9件,至少有一件是正品”是随机事件,故本选项错误;D.任意抛掷一枚质地均匀的硬币100次,则反面向上不一定是50次,故本选项错误;故选:A.【点睛】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.3.B解析:B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.4.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.5.D 解析:D【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.C解析:C【解析】【分析】根据随机事件与必然事件的定义逐一进行判断即可.【详解】A.3天内会下雨是随机事件,故该选项不符合题意,B.打开电视机,正在播放广告是随机事件,故该选项不符合题意,C.367人中至少有2人公历生日相同是必然事件,故该选项符合题意,D.抛掷1个均匀的骰子,出现4点向上是随机事件,故该选项不符合题意,故选C.【点睛】本题考查了随机事件与必然事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件;在一定条件下,必然会发生的事件称为必然事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.B解析:B【详解】解:由题意可知:摸到红球是必然发生的事件,摸到白球是不可能发生的事件,所以P1=0,P2=1故选B.【点睛】本题考查概率的意义及计算,掌握概念是关键,此题难度不大.8.A解析:A【解析】【分析】直接利用概率的意义分别分析得出答案.A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;C、“明天要降雨的概率为12”,表示明天有50%的可能降雨,故此选项错误;D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选A.【点睛】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.9.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】∵抛掷同一枚啤酒瓶盖420+580=1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为4201000=0.42,故选A.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.10.A解析:A【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A、367人中至少有两人是同月同日生,正确;B、某商场抽奖活动的中奖率为1‰,是随机事件,不一定每抽1000张奖券,一定有一张能中奖,故本选项错误;C、“打开电视机,正在播放《动物世界》”是随机事件,故本选项错误;D、“明天降雨的概率是80%”表示明天降雨的可能性大,但不一定是明天有80%的时间降雨,故本选项错误;故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.B解析:B【分析】根据必然事件指在一定条件下一定发生的事件对各选项分析判断利用排除法求解.【详解】A、守株待兔,是随机事件;B、瓮中捉鳖,是必然事件;C、画饼充饥,是不可能事件;D、水中捞月,是不可能事件;故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.D解析:D【分析】根据概率的意义和题意分析“获胜的机会是80%”的意义,逐项作出判断即可求解.【详解】解:80%的机会获胜是说明机会发生机会的大小,80%的机会并不是说明比赛胜的场数一定是80%.七年(1)获胜的机会是80%,七年级(1)班有可能会赢得比赛,也有可能输掉比赛,只不过获胜的可能性大,而七年(2)班有可能会赢得比赛,也有可能输掉比赛,,只不过获胜的可能性小,故A、B、C选项均不正确,只有D选项符合题意.故选:D.【点睛】本题考查了对概率的理解,正确理解概率的意义是解题关键.二、填空题13.16【分析】根据概率的求法找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个则解得x=16即箱子中共有16个球故答案为:16【点睛】此题考查了概率解析:16【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件得情况数;二者的比值就是其发生的概率;【详解】设箱子中共有球x个,则414x=,解得x=16,即箱子中共有16个球,故答案为:16.【点睛】此题考查了概率的求法:如果一个事件有n中可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.14.【分析】根据简单事件的概率公式计算解答【详解】6个面中有1个面是黄色的2个面是红色的3个面是绿色的任意掷一次该正方体则绿色面朝上的可能性是故答案为:【点睛】此题考查简单事件的概率理解事件中绿色发生的解析:1 2【分析】根据简单事件的概率公式计算解答.【详解】6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是31 62 =,故答案为:12.【点睛】此题考查简单事件的概率,理解事件中绿色发生的可能性大小是解题的关键.15.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.16.200【分析】在同样条件下大量反复试验时随机事件发生的频率逐渐稳定在概率附近可以从比例关系入手列出等式解答【详解】设红球的个数为x根据题意得:解得:x=200故答案为:200考点:利用频率估计概率解析:200【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】设红球的个数为x,根据题意得:10000.2x解得:x=200故答案为:200.考点:利用频率估计概率.17.5【分析】根据概率的意义即可求出答案【详解】由于每一次正面朝上的概率相等∴第21次抛掷的结果正面朝上的概率为05故答案为:05【点睛】本题考查概率的意义解题的关键是正确理解概率的意义本题属于基础题型解析:5【分析】根据概率的意义即可求出答案.【详解】由于每一次正面朝上的概率相等,∴第21次抛掷的结果正面朝上的概率为0.5,故答案为:0.5【点睛】本题考查概率的意义,解题的关键是正确理解概率的意义,本题属于基础题型.18.D【解析】【分析】分别计算转盘1到4出现白色区域的概率选择相同的概率即可【详解】解:转盘1指针指向白色区域的概率为:转盘2指针指向白色区域的概率为:转盘3指针指向白色区域的概率为:转盘4指针指向白色解析:D【解析】【分析】分别计算转盘1到4出现白色区域的概率,选择相同的概率即可.【详解】解:转盘1指针指向白色区域的概率为:1 4转盘2指针指向白色区域的概率为:21 = 63转盘3指针指向白色区域的概率为:42= 105转盘4指针指向白色区域的概率为:21 = 84所以转盘1和4指向白色区域的概率相同.故选D.【点睛】本题主要考查概率的计算,这是中考的必考题,应当熟练掌握计算方法.19.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片它们的标号分别为12345其中偶数有24共2个再根据概率公式即可得出答案【详解】∵共有5个数字偶数有2个分别是2和4∴随机抽取一张抽中标号为解析:25.【解析】【分析】根据一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,其中偶数有2,4,共2个,再根据概率公式即可得出答案.【详解】∵共有5个数字,偶数有2个,分别是2和4,∴随机抽取一张,抽中标号为偶数的卡片的概率是25;故答案是:25.【点睛】考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.20.2【解析】【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件【解析:2【解析】【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.【点睛】本题主要考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.三、解答题21.()1不确定事件;()2不可能事件;()3必然事件【分析】(1)从口袋中任意取出一个球,可能是红球、篮球或白球,即可判断;(2)口袋中只有三个蓝球,则从口袋中一次任取5个球,不可能全是蓝球,即可判断; (3)由于口袋中有5个红球、3个蓝球和2个白球,任意一种或两种颜色的球的总数都小于9,所以从口袋中一次任意取出9个球,必然是三个颜色都有,即可做出判断.【详解】(1)从口袋中任意取出一个球,可能是红球、蓝球或白球,所以这个事件是不确定事件; (2)口袋中只有三个蓝球,则从口袋中一次任取5个球,不可能全是蓝球,所以这个事件是不可能事件;(3)由于口袋中有5个红球、3个蓝球和2个白球,任意一种或两种颜色的球的总数都小于9,所以从口袋中一次任意取出9个球,必然是三个颜色都有,因此这个事件是必然事件.【点睛】本题考查了不确定事件、不可能事件、必然事件的概念,熟练掌握各种事件的概念是判断此类问题的依据.22.(1)P (取到白球)是3 4;(2)袋中的红球有6只.【分析】根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;同时互为对立事件的两个事件概率之和为1.【详解】(1)P (取到白球)=1- P (取到红球)=1-14=34. (2)设袋中的红球有x 只,则有18x x +=14,解得x =6.所以袋中的红球有6只. 【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;组成整体的几部分的概率之和为1.23.(1)23;(2)13.【解析】试题分析:(1)由在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,5,5+3,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果与两次好抽取的卡片上的实数之差为有理数的情况,再利用概率公式求解即可求得答案.试题(1)23;(2)列表如下:因此,所求概率为:P=1 3 .考点: 1.列表法与树状图法;2.概率公式.24.(1)12;(2)这种游戏方案设计对甲、乙双方公平.【解析】试题分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式说明游戏是否公平;试题解:(1)∵不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,∴从中任取一球,球上的数字为偶数的概率为:2142;(2)画树状图得:∵共有12种等可能的结果,两个球上的数字之和为偶数的有(1,3),(2,4),(3,1),(4,2)共4种情况,∴两个球上的数字之和为偶数的概率为:41123,∴p (甲胜)=,p(乙胜)=,,不公平.考点:1、概率公式;2、游戏公平性的判断.25.(1)P(抽到奇数)=23;(2)P(恰好抽到为35)=16【解析】试题分析:(1)先求出这组数中奇数的个数,再利用概率公式解答即可;(2)根据题意列举出能组成的数的个数及35的个数,再利用概率公式解答.试题(1)根据题意可得:有三张卡片,奇数只有“3和5”一张,故抽到奇数的概率P=;(2)根据题意可得:随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,共能组成6个不同的两位数:32,52,23,53,25,35.其中恰好为35的概率为.考点:概率公式26.(1).(2).【解析】试题分析:(1)三个数中有理数有一个3,求出所求概率即可;(2)列表得出所有等可能的情况数,找出抽取的两数之积为有理数的情况数,即可求出所求的概率.试题(1)按照爸爸的规则小明能看比赛的概率P=.(2)列表如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学《概率》复习检测题及答案
《概率》复习检测题
一、细心填一填(每题3分,计30分)
1.抛掷一枚伍角的硬币,印有国徽一面朝上的概率是___;
2.12瓶装的啤酒中有2瓶有奖,则P(摸出有奖)=___;
3.盒子里放有2个黑球和1个红球,它们除了颜色不同外,其余都相同.甲、乙、丙三人规定每人摸出一球,摸到红球者算胜.如果摸球顺序按先甲,后乙,最后轮到丙进行,那么这种游戏公平吗?答:___(填公平或不公平);
4.在第3题中,三人中有一人摸到红球是___事件(填必然或不可能或不确定);
5.如图是商场里为了招揽生意,设立的有奖转盘,转盘被分成相同的四部分.当转动的盘子静止后,顾客就可以得到指针所指的奖品.凡购买5元的商品,便有一次转盘的机会,小颖购买了20元的商品,获得了一次转盘的机会,则P(获得铅笔)___1(填“
6.小明从一副扑克牌中随意抽出一张,则P(抽到老K)=___;
7.抽屉里有2只黑色和1只白色的袜子,它们混在一起,随意抽出两只刚好配成一双的概率是___;
8.小猫在如图所示的地板砖上随意地走来走去,然后随意停留在某块砖上,则P(停在三角形砖上)=___;
9.随意抛掷两个均匀的骰子,P(朝上面的点数之和为1)=___;
10.为迎接新年,学校准备了外观一样的80个红包,里边装有100元的20个,50元的60个,则P(摸到50元)比P(摸到100元)
多___;
二、选择题(每题3分,计30分)
11.三双白色的袜子和1双黑色的袜子均混合在一起,随机摸出三只能够配成同色的一双是()
A.不可能事件;
B.不确定事件;
C.必然事件;
D.以上都不是.
12.甲、乙两人玩抽扑克牌游戏,他们准备了13张从1到K的牌,并规定如果甲抽到10到K的牌,那么算甲胜;如果抽到是10以下的牌,则算乙胜.这种游戏对甲、乙来说,正确的说法是()
A.是公平的;
B.不公平,甲胜的机会大些;
C.不公平,乙胜的机会大些;
D.无法确定.
13.某农夫在如图甲,乙,丙,丁四块田里插秧时,不慎将手表丢入土里,直到收工时才发现,则手表丢在哪一块田里的可能性大些?()
A.甲;
B.乙;
C.丙;
D.丁.
14.袋子里装有红球15个,黑球若干个.经测验知道摸出红球的概率为,则黑球的个数是()
A.35;
B.40;
C.45;
D.50.
15.小明和小颖玩抛掷硬币游戏,他们在硬币的正面涂上红色,背面涂上白色,每次抛掷三枚,如果面朝上的是2枚或3枚红色的,
则算小明输,小颖赢;如果面朝上的是2枚或3枚白色的,则算小明赢,小颖输.这种游戏对小明和小颖来说,正确的说法是()
A.是公平的;
B.不公平,小明输的机会较大;
C.不公平,小颖输的机会较大;
D.不能确定.
16.一种转盘游戏,每转一次赢得奖品的概率是,小明转了2次,他获得奖品的概率是()
A.1;
B.;
C.;
D..
17.一种彩票每发行1百万张设特等奖1名,小新的爸爸中了特等奖,人们对他购买彩票的张数说三道四,其中说法正确的是()
A.起码买了几十万张;
B.起码买了几万张;
C.起码买了几千张;
D.有可能只买一张.
18.甲乙两人在玩抛掷硬币游戏,每次抛出2枚,规定如果两枚硬币都是正面朝上,那么甲得3分,否则乙得1分,最后以得分多的为胜.如此游戏对两人来说,正确的是()
A.是公平的;
B.甲获胜的机会大;
C.乙获胜的机会大;
D.不能确定.
19.下列事件为必然事件的是()
A.28日的明天是29日;
B.冬天哈尔滨会下雪;
C.星期天没人在读书;
D.老师不会做错题.
20.抛掷一颗正方体骰子朝上一面出现数字“1”的概率是,那么同时抛掷2颗这样相同的骰子,朝上一面至少有一个出现数字“1”的概率是()
A.;
B.;
C.;
D..
三、解答题(每题8分,计40分)
21.一个正方体骰子,其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,求将这个骰子掷出后:
(1)“2”朝上的概率;(2)朝上概率最大的数;(3)如果规定朝上的数为1或2时,甲胜;朝上的数为3时乙胜,则甲、乙谁获胜的机会大些?
22.袋子里装有红球42个,黑球若干个.经测验知道摸出黑球的概率为,求黑球的个数.
23.甲、乙两人玩一种赌博游戏,他们设置大小一样,编号依次从1到37的37个小球,由甲随意摇出一球,然后让乙猜测.如果乙猜对了,甲付给乙30元;如果乙猜错了,则乙输给甲1元.请你用学过的概率知识,分析一下甲、乙两人谁获胜的机会大些?
24.小明、小亮和小新三人在玩摸球游戏,他们轮流从一只口袋里各摸出一个球,结果发现摸出红球的概率是,摸出蓝球的概率是,摸出白球的概率是.已知口袋里红球的个数是6个,为了使摸出各色球的概率相同,小明建议说应再分别放入不等的各色球才能使摸出各色球的概率相同;小亮说能再放入的红球只有10只;小新说蓝球虽然还有很多,但白球却只剩3个.请你设计一个满足他们三人要求的方案,并且使口袋里的球尽可能多.
25.阅读以下故事,回答后面问题:
话说某村子里有一座关帝庙,庙里供奉着一樽关二爷雕像,据
老人们说关二爷非常灵验,有求必应.因此,慕名而来抽签卜挂的善
男信女络绎不绝,村子里凡难于决断的大事小事,人们也总是喜欢到庙里烧上三拄香,请关二爷定夺.
话说这一日,为了人们赶庙会时出入的方便,有人建议在庙宇
的围墙北面再放一个偏门,但同时也有人担心这样会破坏庙宇的风水,一时间公说公有理,婆说婆有理,双方争执不下,大家自然一致想到请关二爷定夺.
按照习惯,争议双方到关二爷面前,请村里的长辈点上三根香,拿出两块一模一样、十分精致的竹板,竹板只有正面和反面之分,然后口中念道:关二爷在上,弟子今有一事不明,恭请关二爷定夺.如
果可以放个北门请关二爷连允三次(如果竹板落地后一个正面朝上反
面朝上,则称为允,否则称为不允).
(1)请你先算一算:关二爷允许的概率有多大?
(2)由于村里大多数人都认为放这个北门十分必要的,但老人们还是坚持要让关二爷定夺,你有什么方法能提高关二爷允许的概率?
参考答案:
一、填空题
1.;
2.;
3.公平;
4.不确定;
5.<;
6.;
7.;
8.;
9.0;10.0.5;
二、选择题
11.C;12.C;13.D;14.A;15.A;D.17.D;18.A;19.B;20.C;
三、解答题
21.(1);(2)3;(3)甲、乙一样大;
22.设黑球的个数为x,则球的总数为x+42,由题意,得,解得
x=18.
23.甲每次猜对的概率为,赢钱×30=(元);乙每次获胜的概率为,赢钱×1=(元),故乙获胜的机会大些.
24.原来口袋里的球共有36个,其中红球6个,蓝球18个,白球12个,为了使摸出的各色球的概率相同,三色球的数量应相等,
为了使口袋里的球尽量多,各色球也应尽量多,但红球最多只能达
16个,白球只能达15个,因此,唯一的方案是再放入白球3个,红球9个,然后取出蓝球3个.
25.(1)抛掷一正一反两块竹板,面朝上的可能性有(正,正),(正,反),(反,正),(反,反)四种情况,每次“允”的概率为,故P(连允三次)=××=;
(2)可以动员长辈向关二爷这样说:如果不可以放个北门,请关二爷连允三次.这样,关二不允许放北门的概率是,而允许放北门的
概率是.。