水文统计方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

欢迎阅读

第5章水文统计方法

10.学习水文统计方法要注意什么?

水文统计方法部分内容这部分内容十分重要。因为水文统计的一些基本概念、基本方法,比如随机事件、随机变量、概率、统计规律、频率曲线、适线法、相关分析等,不但在水资源管理这门课程中要经常用到,而且是水利工程专业人员应当掌握的最基本的知识。

来)。这种在一定的条件下必然不发生的事件称为不可能事件。

必然事件或不可能事件虽然不同,但又具有共性,即在因果关系上都具有确定性。

除了必然事件和不可能事件以外,在客观世界中还有另外一类事件,这类事件发生的条件和事件的发生与否之间没有确定的因果关系。这种发生的条件和发生与否之间没有确定的因果关系的事件称为随机事件。

在长期的实践中人们发现,虽然对随机事件作一两次或少数几次观察,随机事件的发生与否没有什么规律,但如果进行大量的观察或试验,又可以发现随机事件具有一定的规律性。

比如一枚硬币,投掷一次或几次的时候看不出什么规律,但是在同样的条件下反复多次进行试验,把硬币投掷成千上万次,就会发现硬币落地时正面朝上和反面朝上的次数大致是相等的。

再比如,一条河流的某一个断面的年径流量在各个年份是不相同的,但进行长期观测,如观测30年、50年、80年,就会发现年径流量的多年平均值是一个稳定数值。

针对不同的情况,概率有不同的定义。

按照数理统计的观点,事物和现象都可以看为是试验的结果。

如果试验只有有限个不同的试验结果,并且它们发生的机会都是相同的,又是相互排斥的,则事件概率的计算公式为

式中?P(A)——随机事件A的概率;

n? ——进行试验可能发生结果的总数;

???????? m? ——进行试验中可能发生事件A的结果数。

例如,掷骰子(俗称“掷色子”)的情况就符合以上公式的条件。因掷骰子可能发生的结果是有限的(1到6点),试验可能发生结果的总数是6;同时骰子是一个均匀的6面体,掷骰子掷成1点到6点的可能性都是相同的,又是相互排斥的(一次掷一个骰子不可能同时出现两个点)。

如果定义Z为随即事件“掷骰子的点数大于2”,则符合Z的结果为3、4、5、6点4种情况,即事件Z可能发生的结果数是4。按照上述公式,Z的概率

中01环、2

当试验次数很大时,如果频率μ/n稳定地在某一数值p的附近摆动,而且一般说来随着试验次数的增多,这种摆动的幅度愈变愈小,则称A为随机事件,并称数值p为随机事件A的概率,记作

P(A)=? p ????????????????????????

(以上可简单地说成,频率具有稳定性的事件叫做随机事件,频率的稳定值叫作随机事件的概率)。

概率的统计定义它既适用于事件出现机会相等的情况,又适用于事件出现机会不相等的一般情况。

前述的必然事件和不可能事件发生的可能性也可以用概率表示。必然事件的概率等于1.0(表示事件必然发生);不可能事件的概率等于0(表示事件发生的可能性是0,必然不发生);一般随机事件的概率介于0和1.0之间。

对于概率的统计定义还需注意,进行统计试验的条件必须是不变的。如果条件发生了变化,即使试验的次数再多,也不能求得随机事件真正的概率。如要确定某一个射手打靶射中不同环数的

流,其历年的最大洪峰流量、最高水位、洪水持续时间等都可看为随机变量。

随机变量的数学定义为:在一组不变的条件下,试验的每一个可能结果都唯一对应到一个实数值,则称实数变量为随机变量(“唯一对应”又称“一一对应”,是指每一个试验结果,就只对应一个数据,而每一个数据,又只对应一个试验结果)。

随机变量常用大写字母来表示,如随机变量X(注意这里大写的X是变量,X的取值可以是x1、x2、……x n,即X表示随机取值的系列x1、x2、……x n)。

随机变量可以分为两类:

?(1)离散型随机变量

如果随机变量是可数的,即随机变量的取值是和自然数一一对应的,就称为离散型随机变量。离散型随机变量不能在两个相邻随机变量取值之间取值。

离散型随机变量可以是有限的,也可以是无限的,但必须是可数的。

对于离散型随机变量,可以用列举的方式表示它的概率分布。列举的方法可以是列表,画图等。我们的文字教材中举了例子。

对于连续型随机变量,因为它是不可数的,不能一一列举,所以也就也不能用列举的方法表示概率分布。

比如前面提到的乘客在长途汽车站等车的例子,等车时间可以是0到30分钟区间里的任何时间,故无法列举所有的随机变量及其相应概率。实际上,等车时间在0到30分钟的任何时间的可能性是相等的,对于这个区间的任意时间,其概率等于无穷大分之一,即近似等于0。

从这个例子可以看出,列举连续型随机变量各个值的概率不仅做不到,而且实际上是没有意义的。

为此,我们转而研究和分析连续性随机变量在某一个区间取值的概率。在工程水文里面,就是研究某一水文变量大于或等于某一数值的概率。

对于一个随机变量,大于或等于不同数值的概率是不同的。当随机变量取为不同数值时,随机变量大于等于此值的概率也随之而变,即概率是随机变量取值的函数。这一函数称之为随机变量的概率分布函数。分布函数的公式为

式中

?? ?P

按照概率论的定义,概率密度函数是分布函数的导数。概率密度函数在某一个区间的积分值,表示随机变量在这个区间取值的概率。?

在工程水文中,频率是水文变量取值大于或等于某一数值的概率,因此,水文变量的频率就是概率密度函数从变量取值到正无穷大区间的积分值。用公式表示,水文变量频率和概率密度函数之间的关系可以写为

??????

(字幕)

此式中,F(x)是随机变量X的分布函数值,也就是水文变量X取值为x时候的的频率,而p(x)是概率密度函数。

如前述,水文变量的分布函数可以用频率曲线表示。类似地,概率密度函数也可以用概率密度函数曲线表示。

因分布函数和概率密度函数之间存在着对应关系,频率曲线和概率密度函数曲线之间也存在着对应关系,这种对应关系可以用文字教材的图5.3表示。图5.3中,左边是概率密度函数曲线,右边是频率曲线。图中两边的纵坐标均表示随机变量的取值,左边的横坐标表示概率密度函数值,

中x i

】,

平均多少年发生一次。

“重现期”这个名词听起来很通俗,但需注意理解:

第一,重现期和概率一样,都表明随机事件或随机变量的统计规律。说某一条河流发生了“百年一遇洪水”,是指从很长一个时期来看,大于或等于这次洪水的情况,平均100年出现一次。

相关文档
最新文档