高中数学组课堂观察评课记录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学组课堂观察评课记录
课题:同角三角函数的基本关系
主讲人:肖俊玲
本节课课标要求是了解同角三角函数的基本关系,课本内容只有两个公式和两道例题,课后配了少量习题。但这部分内容在高考中有较高的要求,特别对公式的灵活运用考查力度比较大,另外,同角公式的学习对后续两角和与差的三角函数的学习有很大的帮助。我在课堂设计时充分考虑学生的认知特点,从公式推到、公式变形、习题设置等环节,都是层层递进,由易到难逐步深入。在公式变形时,让学生充分发挥自己的想象力,大胆说出自己的想法,我只是做了必要的启发和引导,学生表现不错。上课前根据学生的认知特点,我将做好的课件进行了临时改动,把例题4和例题2、3做了调换,在上课中间,根据学生的课堂表现,及时调整了授课内容,当机立断去掉了一类题型,给了学生充分的展示空间和时间,事实证明这样的调整比较到位。在学生的思维处于兴奋状态时,千万不要扼杀他们的兴趣。我的想法是,学习数学不一定要做多少道题,而是要在做题和思考的过程中不断优化自己的思维品质,提升自己的解题能力,丰富自己的解题经验。
由于课堂时间只有四十分钟,所以感觉时间特别紧,还有两类题型没有涉及到,比较遗憾。通过学生作业反馈,大部分同学掌握比较好,有三位同学两道题没想到要分类讨论,有两位同学计算出现错误。一节课难免会出现不尽人意的地方,希望各位老师给与批评指正。谢谢!
二、评课
维度一:课程
观察内容:课程中的课程目标与内容
观察总结:
本节课的教学内容为:一、由三角函数定义导出同角三角函数的基本关系式;二、能利用同角三角函数关系进行简单应用;应用主要有三个方面:求值(知一求二);化简三角函数式;证明三角恒等式。
本节课是学生在学习了任意角的三角函数及三角函数线的基础上,通过对图形的理解与认识,提练出同角三角函数的基本关系的一节课,它即是对三角函数线这个几何图形的深层认识,更是后期学习三角函数化简及计算等问题的基础与铺垫,因此,不论是内容本身,还是学习方法,都将对今后学生的学习起到重要的基础作用。因此,结合课程标准要求和学生的实际情况,确定的本节课的教学目标是:通过本节课的学习,学生应明确如何进行三角函数式的化简与三角恒等式的证明;使学生养成探究、分析的学习习惯,提高三角恒等变形的能力,树立转化与化归的数学思想方法;本节课的主要内容就是两个公式的推导与应用,重点也在于此。
教学预设方面:由于高一(8)班学生的程度相对好,结合课程标准,本节课教师预设的教学内容多,题量大,题型多。
内容的展示上:教师紧扣定义,按照一切从实际出发的原则,通过对基本关系的推导,注重了学生对基本概念学习的良好习惯。教师对问题进行了归纳,分为4个题型,减轻了学生学习的负担,符合学生认知层次,体现了一切从学生实际出发的教学原则。同时,教师在教学过程中也很好地展示了因材施教的教学原则,如在教学预设中准备了4个题型,但是在教学过程中,为了让学生能充分地展示学生的思维形成过程与思维的多样性,教师能够依教学实际及时地将第四类问题舍去,教学效果好。
课堂观察记录人:冯士旭
指标1:方法
预设的教学方法:本节课是发现结论并活用公式一节课,教学前预设了启发式、发现法、探究式等方法,基本达到了预设的结果。依据是本节课首先是由图形进一步启发学生研究正、余弦函数,让学生从图形中发现结论,接着在公式的变形中采用探究式,引导学生一边观察,一边同伴合作。即前一个同学对公式的变形发散了其他同学的思维,为后面活用公式解题作铺垫,在探究例4时,由于前面的铺垫,以及题目的条件和式子的结构变换,使得同学应用公式解题方法灵活,同时提高了解题能力,思维更加敏捷,达到了活用的目的。(这是本节课的重、难点,同时也是最精彩的一部分)
预设的教学方法体现本学科的特点:本节课的设计注重了数形结合、化归思想、分类讨论的思想
指标2:资源
本节课预设了多媒体课件及相关练习题。
预设多媒体的出发点在于:多媒体的应用不仅节约时间,容量大,更主要的在于能够通过多媒体的动态演示,使学生容易发现图形中蕴含的更多内容,从而比较容易总结出公式,另一方面,也能够提高学生学习的兴趣和学习积极性。相关练习的设计从易到难,有梯度,有层次,不仅能够检验学生的认知情况,也能为学有余力的学生提供了学习的方向,效果好。