同步电动机励磁知识简介

合集下载

无刷励磁同步电机原理

无刷励磁同步电机原理

无刷励磁同步电机原理一、工作原理无刷励磁同步电机是一种先进的电机,其工作原理主要基于磁场与电流的相互作用。

电机的转子上安装有励磁绕组,通过向励磁绕组提供直流电流来产生恒定的磁场。

定子绕组在气隙中产生旋转磁场,当电机转动时,转子上的永磁体产生的磁场与定子绕组产生的旋转磁场相互作用,产生转矩,驱动电机旋转。

二、励磁系统无刷励磁同步电机的励磁系统主要包括励磁电源和控制系统。

励磁电源负责提供直流电流,控制系统则负责控制励磁电流的大小和方向,以实现电机的正常运行和调速控制。

三、控制方式无刷励磁同步电机的控制方式主要包括开环控制和闭环控制。

开环控制基于电机的工作原理,通过改变励磁电流的大小和方向来控制电机的输出转矩和转速。

闭环控制则引入了反馈环节,通过比较实际转速与设定转速的差异,调整励磁电流的大小和方向,以达到更高的控制精度和稳定性。

四、运行特性无刷励磁同步电机具有高效、节能、高精度和高可靠性的特点。

由于其励磁系统采用直流电源,可以方便地进行调速控制,同时减小了电机内部的损耗和温升,提高了电机的效率。

此外,由于无刷励磁同步电机采用永磁体产生磁场,其结构简单、维护方便,且具有较高的动态响应性能。

五、优点与缺点优点:1.效率高:由于采用永磁体产生磁场,电机的损耗和温升较低,因此效率更高。

2.结构简单:电机结构简单、紧凑,维护方便。

3.调速性能好:通过调整励磁电流的大小和方向,可以实现电机的平滑调速。

4.可靠性高:电机具有较高的稳定性和可靠性,能够适应恶劣的工作环境。

5.高响应性能:具有较高的动态响应性能,能够快速响应控制信号的变化。

缺点:1.成本较高:由于采用永磁体等高成本材料,电机的制造成本较高。

2.弱磁场能力较低:对于较大的磁场变化和较大的转矩输出,无刷励磁同步电机的性能可能不如其他类型的电机。

同步电动机励磁原理

同步电动机励磁原理

同步电动机励磁原理嘿,朋友们!今天咱来聊聊同步电动机励磁原理。

你想啊,同步电动机就好比是一辆超级跑车,而励磁系统呢,那就是让这跑车能风驰电掣的关键燃料!同步电动机要正常工作,励磁可太重要啦。

就好像人要有力气干活,得吃饱饭一样。

那励磁是怎么回事呢?简单来说,就是给电动机提供一个磁场。

这个磁场就像是给电动机注入了一股神奇的力量,让它能乖乖听话,按照我们的要求转起来。

你看啊,要是没有这个励磁,电动机就像没了方向的无头苍蝇,嗡嗡乱转可就是不往正道上跑。

而有了合适的励磁,它就能稳稳当当、高效快速地工作啦。

那励磁是怎么产生的呢?这就好比是变魔术一样神奇。

通过一些特殊的装置和电路,就能产生出这个关键的磁场来。

这就像是一个魔法师,轻轻挥动魔法棒,就出现了奇妙的景象。

而且啊,励磁的大小和方向还能调整呢,这多厉害呀!就像我们开车,可以根据路况随时调整油门和方向盘一样。

想要电动机转得快一点,就把励磁调大一点;想要它换个方向转,也能通过调整励磁来实现。

这不是很神奇吗?同步电动机的励磁原理其实并不复杂,只要我们用心去理解,就会发现它就像我们生活中的很多事情一样,有规律可循。

我们可以把它想象成是一场有趣的游戏,我们是游戏的玩家,通过掌握励磁的奥秘,让电动机成为我们手中的得力工具。

比如说,在工厂里,那些巨大的机器设备很多都是靠同步电动机来驱动的。

要是我们不懂励磁原理,那这些机器可就没法好好工作啦,那得耽误多少生产呀!所以说,了解这个原理真的很重要呢。

再想想,我们家里的很多电器,说不定也用到了同步电动机呢。

要是我们能明白励磁原理,那在使用这些电器的时候,是不是会觉得更有意思呀?总之呢,同步电动机励磁原理虽然听起来有点专业,但只要我们用一颗好奇的心去探索,就会发现它其实很有趣,也很实用。

它就像是一把打开电动机世界大门的钥匙,让我们能更好地理解和利用这些神奇的机器。

所以呀,大家可别小瞧了它哟!。

同步发电机的励磁系统基础知识讲解

同步发电机的励磁系统基础知识讲解

目前无刷励磁系统主要存在的问题是: 1、不能监视转子电流和电压; 2、不能监视转子绝缘; 3、不能监视可控硅和二极管的运行情况; 4、维修困难较大。
三、无励磁机的发电机自励系统
目的在于解决励磁机本身可靠性不高问题。
1、自并励系统
优点: 1)、简单、运行可
靠性高; 2)、基建投资少,
便于检修维护; 3)、励磁电压响应速
E
Tt
I EE R
2)、自励直流励磁机的时间常数
①、由自励直流励磁机等效电路得:
I R LEE
dI EE dt
Ue
②、根据自励直流发电机端电压的建立过程
虚线(EEL的磁化曲线)上任何一点的 励磁机电动势为:
Ue
E0
Ue E0 I EE.1
I EE
E0
kIEE
E0 —— 剩磁电势; Ue —— 励磁机工作电压。
同步发电机的励磁系统基础知识讲解
励磁电流(同步发电机的转子电流) 是电力系统中唯一的电压资源。
电力系统电压的运行质量依赖于无功 功率的分区、分级就地平衡。
一、直流励磁机系统(转子回路的直流发电机,适用于100MW及以 下汽轮发电机)
1、分为自励和他励两类 2、自励直流励磁机系统
GE —— 直流励磁机;EEL —— 励磁机的励磁绕组; rL ——发电机转子绕组。
起励电源:解决交流励磁机的磁路经过交流电枢后,剩磁不如直流励 磁机那样高,不足以可靠的起动可控硅。中频发电机(MFG)可靠工作 后,退出。
起励电源在出现全厂性停电事故的情况下,将无法起励,所以一般不从 机组母线上获取。采用永磁式付励磁机就无此弊病了。
2、自励的交流励磁机系统 1)、自励的交流励磁机系统之一

三相交流同步发电机的励磁方式

三相交流同步发电机的励磁方式

三相交流同步发电机的励磁方式
三相交流同步发电机是电力系统中常用的发电设备,其励磁方式对于发电机的发电效率和稳定性有着重要的影响。

常见的三相交流同步发电机的励磁方式有独立励磁、并联励磁和串联励磁三种方式。

独立励磁是指发电机的励磁系统独立于整个电网系统,通过独立的励磁电源来控制发电机的磁场,使其产生电势。

这种励磁方式适用于小型发电机和紧急备用发电机,其优点是操作简单,但缺点是发电机独立于电网系统,对电网的稳定性和负载调节能力不利。

并联励磁是指发电机的励磁系统与电网系统并联,励磁电源来自电网,通过自动电压调节器AVR来控制发电机产生的电势,实现对发电机励磁的实时调节。

这种励磁方式适用于大型发电机和电网系统,其优点是对电网系统的稳定性和负载调节能力有利,但缺点是需要配备AVR等控制设备,并且对电网的负荷变化较为敏感。

串联励磁是指发电机的励磁系统串联于电网系统,励磁电源也来自电网,通过调节励磁电阻来控制发电机的电势,实现对发电机励磁的调节。

这种励磁方式适用于中小型发电机和一些特殊的应用场景,其优点是操作简单,对电网的稳定性和负载调节能力有一定的帮助,但缺点是需要频繁调节励磁电阻,不适用于大型发电机和高要求的电网系统。

综上所述,三相交流同步发电机的励磁方式需要根据具体的应用场景和要求进行选择,以确保发电机的高效稳定运行。

- 1 -。

同步电机励磁系统原理

同步电机励磁系统原理

同步电机励磁系统原理同步电机励磁系统的原理主要是通过给同步电机的电磁绕组提供直流电源来产生磁场,以实现电机的励磁。

同步电机是一种在运行时需要外加磁场的电机,只有当电磁铁绕组中通以直流电时,才能产生磁通,从而使电机能够正常运行。

同步电机励磁系统的工作原理就是在电机转子与励磁系统之间建立一个稳定的磁场以使电机能够运转。

同步电机励磁系统主要包括直流电源、可调整电压源和励磁绕组。

直流电源一般采用整流器将交流电转换为直流电,以提供给励磁绕组。

可调整电压源用于控制励磁系统的磁场大小,从而实现对同步电机的转矩和速度的调控。

励磁绕组是同步电机中的一个特殊绕组,它通常由绝缘线圈组成,绕制在电机的转子上。

当励磁绕组通以电流时,将产生一个旋转的磁场,与电机的转子磁场相互作用,形成一个力矩,在电机上产生运动。

在同步电机励磁系统中,励磁绕组产生的磁场与转子磁场的相互作用决定了电机的转矩和速度。

当励磁磁场与转子磁场同向时,电机产生正转矩。

当励磁磁场与转子磁场反向时,电机产生反转矩。

同时,通过调整励磁绕组的电流或电压,可以控制励磁系统的磁场大小,进而调控电机的转矩和速度。

通常,同步电机励磁系统的控制方法有恒定励磁方法和可调励磁方法。

恒定励磁方法是指在电机运行时,励磁绕组的电流或电压保持不变,以维持一个恒定的励磁磁场。

可调励磁方法是指根据实际需要,通过调整励磁绕组的电流或电压,来改变励磁磁场的大小,以实现对电机的转矩和速度进行调节。

总之,同步电机励磁系统的原理是通过给励磁绕组提供直流电源,产生一个稳定的磁场来实现电机的励磁。

励磁绕组产生的磁场与转子磁场相互作用决定了电机的转矩和速度。

通过调节励磁绕组的电流或电压,可以控制励磁系统的磁场大小,从而调节电机的转矩和速度。

励磁系统的控制方法有恒定励磁和可调励磁两种方法。

同步电机励磁系统在实际应用中,能够满足各种工况要求,实现电机的稳定运行。

同步发电机励磁系统

同步发电机励磁系统

同步发电机励磁系统引言同步发电机是一种将机械能转换为电能的设备,它通过励磁系统来生成磁场,使得转子能够与电网同步运行。

励磁系统在同步发电机的运行中起着至关重要的作用,它对发电机的稳定运行和输出电能的质量产生着重要影响。

本文将介绍同步发电机励磁系统的原理、常见的励磁系统类型以及其在电能发电中的作用。

一、同步发电机励磁系统的原理同步发电机的励磁系统的主要作用是在转子上产生磁场,使得转子与电网的磁场同步,从而使得发电机可以向电网输出电能。

励磁系统的原理可以通过法拉第定律来解释,该定律表明磁场的变化会产生感应电动势。

在同步发电机中,励磁系统的磁场可以通过直流电流在转子上产生。

当通过励磁绕组的电流改变时,绕组周围的磁场也会发生变化,从而在转子内感应出电动势。

这个感应电动势会引起一定的电流流动,从而通过励磁绕组将转子磁场与电网磁场同步。

二、常见的励磁系统类型1. 直流励磁系统直流励磁系统是最常见的励磁系统类型之一。

在直流励磁系统中,励磁绕组通常由一组电枢绕组和磁极绕组组成。

电枢绕组通过直流电流产生磁场,并与磁极绕组相互作用,从而产生所需的磁场分布。

直流励磁系统具有调节灵活性好、响应速度快等优点,被广泛应用于各种类型的发电机。

2. 恒功率励磁系统恒功率励磁系统是一种在同步发电机中常用的励磁系统类型。

恒功率励磁系统通过自动调节输出的励磁电流,使得同步发电机在负载变化时能够保持输出功率不变。

该励磁系统利用负载的反馈信号对励磁电流进行调整,从而实现恒功率输出。

恒功率励磁系统在电能供应系统中起到了稳定电能输出的重要作用。

3. 智能励磁系统随着电力系统的发展,智能励磁系统逐渐成为同步发电机励磁系统的研究重点。

智能励磁系统利用现代控制技术和计算机技术,可以实现对励磁电流和磁场的精确控制,从而提高同步发电机的运行效率和稳定性。

智能励磁系统具有较高的灵活性和可扩展性,能够适应不同负载和电网变化的要求。

三、同步发电机励磁系统在电能发电中的作用1. 稳定发电机输出电压和频率同步发电机励磁系统是保证电力系统稳定运行的关键之一。

同步电动机励磁系统培训PPT课件

同步电动机励磁系统培训PPT课件

主要特点
把电能转换成机械能的定、转子双边励磁的交流电动机 优点 • 功率因数高 • 运行稳定性高 • 运行效率高 • 转速恒定不变 缺点 • 起动复杂 • 需要两种电源 • 结构复杂、维护保养要求高
与同步发电机的比较
工作原理
• 发电机 输出有功、机械能转换成电能 • 电动机 吸收有功、电能转换成机械能
结构组成
单柜结构 双柜结构
调节器——机械结构
励磁调节器结构紧凑,其功能单元完全 模块化。调节器合理地组装在调节柜中,调节柜 采用双门结构,前门为有机玻璃门,内门为摇门, 双门结构可方便设备的调试、维护及检修。右图 为内门打开的调节柜。柜体采用进口RITTL柜体。
MER6002调节器组成
调节器逻辑原理图
-A09
转子 参 量 检控板
CT -B01
组合变送器
-A90
总线 板
PT
-BV01 -PLC
可编程控制器
-A04
信号输出板
(to RTU)
to SCR
-K90
调节 板
-GT
RS232C 操 作显 示 屏
核心控制器件
日本松下电工的FP0型可编程控制器
16DI/16DO 2AI/1AO 5000步程序容量 0.9us/步
集成一体化移相触发模块 日本HAKKO公司的V608C彩色液晶触摸屏
人机界面——智能触摸屏
运行参数显示 运行状态显示 操作 故障报警 故障记录、追忆 故障处理帮助
人机界面欢迎画面
人机界面主菜单
状态显示-表计画面
主通道信息画面
备用通道信息画面
通道操作画面-OFF状态
通道操作画面-ON状态
——应用范围

同步发电机励磁调节原理

同步发电机励磁调节原理

同步发电机励磁调节原理
同步发电机励磁调节原理是通过对励磁系统的电流、电压进行调节,控制发电机的励磁电压和励磁电流,从而控制发电机的输出电压和输出功率。

具体原理如下:
1. 励磁电压调节:通过调节励磁电压的大小,可以控制发电机的输出电压。

一般情况下,发电机的励磁电压是由励磁系统中的励磁电源提供的。

调节励磁电压的大小可以通过调节励磁电源的电压来实现,如使用电位器或自动电压调节器(AVR)来调节发电机的输出电压。

2. 励磁电流调节:通过调节励磁电流的大小,可以控制发电机的输出功率。

励磁电流一般由励磁系统中的励磁电源提供,并且通过励磁电阻进行调节。

通过增大或减小励磁电阻的阻值,可以调节励磁电流的大小,从而控制发电机的输出功率。

同时,还需要根据发电机输出的电压和功率信号,通过控制回路,将励磁系统的电压和电流进行反馈控制,使发电机的输出能够稳定在设定值。

综上所述,发电机的励磁调节原理是通过对励磁电压和电流进行调节,控制发电机的输出电压和输出功率。

简述船舶无刷同步发电机励磁系统的基本原理

简述船舶无刷同步发电机励磁系统的基本原理

简述船舶无刷同步发电机励磁系统的基本原理船舶无刷同步发电机励磁系统是一种激发同步发电机的装置,用于在船舶上利用汽油机驱动发电机发电,具有发电质量好,使用范围广,故障发现快等特点,已经得到了广泛的应用。

下面将详细介绍其原理和特点。

一、无刷同步发电机励磁系统的原理
无刷同步发电机励磁系统是一种采用无刷电动机原理的发电机,它的电子控制装置是利用发电机内部的永磁体来提供静态励磁力,从而使电路的“静态”电压达到要求的标准。

在启动过程中,发电机的转子原来是静止的,但是连接在转子上的永磁体把转子启动起来,当发电机的转子达到预定的频率和角度时,控制电路就会开启一个调节器,把转子上的励磁电路中的电压降低到转子工作定子电流的要求。

此时,转子就能保持自身的转动,发电机就能正常工作了。

二、无刷同步发电机励磁系统的特点
1、发电质量好:由于无刷同步发电机励磁系统采用无刷电动机原理,迹磁体和转子上的永磁体电流可调,使发电机的运行稳定,输出的电压可调,并具有比较平稳的谐波分量,因此发电质量好。

2、使用范围广:无刷同步发电机励磁系统的使用范围很广,它不仅可以满足船舶的发电需求,还可以用于其他工业上的发电。

3、故障发现快:无刷同步发电机励磁系统在控制和检测方面采用了微机控制,电子元件采用了晶体管和可控硅等组合,使发电机的故障发现快,了解发电机故障的原始模式,有助于及时处理故障。

三、总结
以上就是船舶无刷同步发电机励磁系统的基本原理,它具有发电质量好,使用范围广,故障发现快等特点,已经得到了广泛的应用。

无刷同步发电机励磁系统有助于船舶发电供电,有利于更好地提高船舶运行效率。

同步发电机励磁系统原理

同步发电机励磁系统原理

同步发电机励磁系统一. 概述1-1 励磁系统的作用励磁系统是同步发电机的重要组成部分,是给发电机提供转子直流励磁电流的一种自动装置,在发电机系统中它主要有两个作用:1)电压控制及无功负荷分配。

在发电机正常运行情况下,自动励磁调节器应能够调节和维持发电机的机端电压(或升压变压器高压侧的母线电压)在给定水平,根据发电机的实际能力,在并网的发电机之间合理分配无功负荷。

2)提高同步发电机并列运行的稳定性;提高电力系统静态稳定和动态稳定极限。

电力系统在运行中随时可能受到各种各样的干扰,引起电力系统的波动,甚至破坏系统的稳定。

自动励磁调节器应能够在电力系统受到干扰时提供合适的励磁调节,使电力系统建立新的平衡和稳定状态,使电力系统的静态及动态稳定极限得到提高。

1-2 励磁系统的构成励磁系统主要由以下部分构成:1)功率部分:它由功率电源(励磁机或静止整流变压器提供)、功率整流装置(采用直流励磁机的励磁系统无整流装置)组成,是励磁系统向发电机转子提供励磁电流的主要部分。

功率部分的性质决定着励磁系统主接线的型式及使用的主要设备的类型。

如:采用直流励磁机的励磁系统不可能使用静止功率整流装置。

又如:采用静止它励型式的励磁系统不可能还有直流励磁机。

还如:使用静止励磁变压器的励磁系统必然采用静止整流功率装置。

2)自动励磁调节器:自动励磁调节器是励磁系统中的智能装置。

励磁装置对发电机电压及无功功率的控制、调节是自动励磁调节器的基本功能。

自动励磁调节器性能的好坏,决定着整个励磁系统性能的优劣。

但它只能通过控制功率部分才能发挥其作用。

现代同步电机励磁系统的两大部分是不可分离的,相互依存又相互制约,但他们又是各自独立发展的。

因此,有好的调节器未必一定有好的功率整流装置,而有了好的整流装置也未必一定有好的自动励磁调节器。

历史上出现过许多次励磁主要装置不配套的情况,他主要反映在某些新设备或新器件出现的时候。

旧式励磁系统的功率部分一般是直流励磁机,当生产出功率整流二极管(早期为汞弧整流器)以后,直流励磁机被交流励磁机取代,而生产出大功率整流二极管及大功率可控硅以后,交流励磁机又被静止励磁变压器所取代,这是历史发展的必然。

同步电机励磁变频控制原理

同步电机励磁变频控制原理

同步电机励磁变频控制原理一、同步电机的基本原理同步电机是一种交流电机,其转速与供给电源的频率和极对数有关,即N=60f/p,其中N为转速,f为电源频率,p为极对数。

同步电机除了可以直接从交流电源供电外,还可以通过励磁受控来调节电机的转速和负载。

二、同步电机的励磁原理同步电机的励磁是指通过电流在电磁铁中产生磁场,使磁铁带动转子转动。

励磁的方式有直流励磁和交流励磁两种。

直流励磁是通过直流电源供电,在励磁电流的作用下,形成磁场,驱动转子运动。

而交流励磁是通过交流电源供电,在交流电流的作用下,形成磁场,并通过差动励磁控制实现加速和减速。

同步电机的变频控制原理是通过改变供电电源的频率和电压,从而改变同步电机的转速和扭矩。

变频器是变频控制的关键部件,通过调节变频器中的电路元件,可以改变电流和电压的频率,从而控制电机的转速和负载。

变频器的工作原理主要包括三个部分:整流、逆变和滤波。

整流是将交流电信号转换为直流电信号,逆变是将直流电信号转换为相应的交流电信号,滤波是将输出信号中的杂波和谐波滤除。

在变频控制系统中,变频器通过控制直流电流的大小和方向,控制同步电机的转速和负载。

变频器可以根据所需的转速和所接的负载情况,自动调整输出频率和电压,使得同步电机始终在最佳工作点运行。

此外,变频器还可以通过自动识别负载和调整电压大小,提高同步电机的效率和性能。

通过合理选择变频器的参数,可以实现同步电机的快速启动、平稳运行和精准控制。

总结起来,同步电机的变频控制原理是通过改变供电电源的频率和电压,通过变频器的整流、逆变和滤波,控制同步电机的转速和负载。

通过合理调整变频器的参数,可以实现同步电机的快速启动、平稳运行和精准控制。

同步发电机励磁方式

同步发电机励磁方式

同步发电机励磁方式
同步发电机励磁方式是指在同步发电机中,为了使发电机产生电能,
需要对发电机进行励磁,使其产生磁场。

同步发电机励磁方式有直流
励磁、交流励磁和静止励磁三种方式。

直流励磁是指通过直流电源对同步发电机进行励磁,使其产生磁场。

直流励磁的优点是励磁电流稳定,容易控制,适用于大型发电机。


是直流励磁需要使用大型的直流电源,成本较高。

交流励磁是指通过交流电源对同步发电机进行励磁,使其产生磁场。

交流励磁的优点是可以使用普通的交流电源,成本较低。

但是交流励
磁的励磁电流不稳定,需要使用电容器等元器件进行补偿,使得励磁
电流稳定。

静止励磁是指通过静止变流器对同步发电机进行励磁,使其产生磁场。

静止励磁的优点是可以实现精确的励磁控制,适用于高精度的发电机。

但是静止励磁需要使用复杂的电子元器件,成本较高。

在实际应用中,不同的同步发电机励磁方式有不同的适用场景。

对于
大型发电机,直流励磁是较为常见的选择;对于小型发电机,交流励
磁成本更低,更为适用;对于高精度的发电机,静止励磁可以实现更
为精确的控制。

总之,同步发电机励磁方式是影响同步发电机性能的重要因素之一。

在选择励磁方式时,需要根据实际情况进行综合考虑,选择最为适合的方式,以实现最佳的发电效果。

同步电机励磁

同步电机励磁

不难看出电机启动过程中+if和-if相差较大, 即: Uf
主 回 路 的 选 择
Er Er if 远大于 if Rf r r
因此出现如右图二的 转子感应电压、电流 曲线图。 现将感应电流做直流 交流成分分解如下:
If
图二
N
主 回 路 的 选 择
If
S
图二 定子转子示意图

电流if分解如上图。If1分解为if2和if3。由于 直流分量的存在,类似将转子提前投励磁, 因而电机在旋转磁场作用下强烈脉震。
同步电机的损坏主要表现
1.定子绕组端部绑线蹦断,线圈表面绝缘蹭坏, 连接处开焊;导线在槽口处断裂,进而引起短 路;运行中噪音增大;定子铁芯松动等故障 。 (见下一页图) 2.转子励磁起动绕组笼条断裂;绕组接头处产生 裂纹,开焊,局部过热烤焦绝缘;转子磁级的 燕尾锲松动,退出;转子线圈绝缘损伤;电刷 滑环松动;风叶断裂等故障。
KQ KZ
主 回 路 的 选 择
Rf
半控桥式励磁装置主回路
励磁控制系统半控桥主回路优点
(3)励磁控制系统可以充分利用半控桥式主电 路的结构特点,不停机更换励磁控制器; 当励磁装置控制部分出现故障时,可利用半空 桥电路“失控”的特点,实现不停机、不减载、 不失励的情况下从容更换。 其基本原理如下: 在投励后拔控制插件,由于电机励磁绕组的大 电感特性,使一只可控硅始终处于开通状态, 三分之二在整流状态,三分之一在续流状态。 (如下页图)


不能满足,将造成逆变灭磁不成功,造成逆变颠覆,损坏主回路 元件及电机,往往出现正常运行的励磁装置停车后不能再次顺利 开车,经检查发现主回路元件或控制回路损坏的实例。 (2)采用全控桥式电路,由于励磁绕组系电感性负载,当可控硅 导通角较小电压波形出现过零时,就会有电流从Rf、KZ回路续流, 这也是采用全控桥式电路经常发生灭磁电阻发热的原因之一。 (3)全控桥式电路作为励磁装置的主电路,不能实现不停机完全 更换控制插件。为了达到不停机更换插件的功能,只能将控制系 统做成双系统或多系统、互为热备用,即一套运行,一套热备用。 当一套控制系统故障时,自动切换到另一套备用系统。但是采用 多CPU备份没有实际意义,复杂的备份逻辑会减少系统的平均无 故障工作时间,影响可靠性。

同步电动机及励磁

同步电动机及励磁

IA 正向 导通
IH
IG2
IG1 IG=0
O
U DRM U bo + U A
U DSM
雪崩 击穿
- IA
图1-8 晶闸管的伏安特性 IG2>IG1>IG
可控硅导通和关断条件
状态
条件
说明
从关断到导通 维持导通 从导通到关断
1、阳极电位高于是阴极 电位 2、控制极有足够的正向 电压和电流
1、阳极电位高于阴极电 位 2、阳极电流大于维持电 流
➢2功率因数可调。同步电动机可以通过 调节其励磁电流,在超前的功率因数下 运行,因而,有利于改善电网的功率因 数。
➢3效率高。异步电动机功率因数较低, 因此,效率也低。而相应同步电动机的 效率则较高。尤其在低速同步电动机这 一点更明显。
同步电机的特点
➢4运行稳定性高。 • 在超前功率因数下运行的同步电动机
➢ 在正向阻断恢复时间内如果重新对晶闸管施加正 向电压,晶闸管会重新正向导通
➢ 实际应用中,应对晶闸管施加足够长时间的反向 电压,使晶闸管充分恢复其对正向电压的阻断能 力,电路才能可靠工作
关断时间tq:trr与tgr之和,即 tq=trr+tgr (1-7))
普通晶闸管的关断时间约几百微秒。
电力电子器件器件的保护
1、阳极电位低于阴极电 位 2、阳极电流小于维持电 流
两者缺一不可 两者缺一不可 任一条件即可
晶闸管的基本特性
➢ IG=0时,器件两端施加正向电压,正向阻断状态,只
有很小的正向漏电流流过,正向电压超过临界极限即
正向转折电压Ubo,则漏电流急剧增大,器件开通
➢ 随着门极电流幅值的增大,正向转折电压降低 ➢ 导通后的晶闸管特性和二极管的正向特性相仿

同步发电机励磁系统介绍

同步发电机励磁系统介绍

同步发电机励磁系统分类介绍1概述向同步发电机的转子励磁绕组供给励磁电流的整套装置叫做励磁系统。

励磁系统是同步发电机的重要组成部分,它的可靠性对于发电机的安全运行和电网的稳定有很大影响。

发电机事故统计表明发电机事故中约1/3为励磁系统事故,这不但影响发电机组的正常运行而且也影响了电力系统的稳定,因此必须要提高励磁系统的可靠性,而根据实际情况选择正确的励磁方式是保证励磁系统可靠性的前提和关键。

电力系统同步发电机的励磁系统主要有两大类,一类是直流励磁机励磁系统,另一类是半导体励磁系统。

2直流励磁机励磁系统直流励磁机励磁系统是采用直流发电机作为励磁电源,供给发电机转子回路的励磁电流。

其中直流发电机称为直流励磁机。

直流励磁机一般与发电机同轴,励磁电流通过换向器和电刷供给发电机转子励磁电流,形成有碳刷励磁。

直流励磁机励磁系统又可分为自励式和它励式。

自励与他励的区别是对主励磁机的励磁方式而言的,他励直流励磁机励磁系统比自励励磁机励磁系统多用了一台副励磁机,因此所用设备增多,占用空间大,投资大,但是提高了励磁机的电压增长速度,因而减小了励磁机的时间常数,他励直流励磁机励磁系统一般只用在水轮发电机组上。

采用直流励磁机供电的励磁系统,在过去的十几年间,是同步发电机的主要励磁系统。

目前大多数中小型同步发电机仍采用这种励磁系统。

长期的运行经验证明,这种励磁系统的优点是:具有独立的不受外系统干扰的励磁电源,调节方便,设备投资及运行费用也比较少。

缺点是:运行时整流子与电刷之间火花严重,事故多,性能差,运行维护困难,换向器和电刷的维护工作量大且检修励磁机时必须停主机,很不方便。

近年来,随着电力生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容量的直流励磁机无论在换向问题或电机的结构上都受到限制。

因此,直流励磁机励磁系统愈来愈不能满足要求。

目前,在100MW及以上发电机上很少采用。

3半导体励磁系统半导体励磁系统是把交流电经过硅元件或可控硅整流后,作为供给同步发电机励磁电流的直流电源。

同步电动机励磁原理与维护

同步电动机励磁原理与维护

微机控制。采用微处理器对励磁系统 进行控制,可以实现更精确、快速的 控制,提高电动机的性能和稳定性。
控制方式二
自动控制。通过传感器检测电动机的 转速、电流等参数,自动调节励磁电 流的大小,以适应负载的变化。
PART 03
同步电动机励磁系统的维 护
REPORTING
WENKU DESIGN
日常维护与检查
励磁系统的组成
励磁系统通常由励磁绕组、励磁电源、调节器等部分组成。
工作原理
励磁绕组通过直流电源供电,产生磁场。调节器根据输入信 号(如转速、电流等)调节励磁电流的大小,以控制磁场强 度和电动机的输出。
励磁电流的控制方式
控制方式一
控制方式三
手动控制。通过调节器手动调节励磁 电流的大小,适用于负载变化不大的 情况。
经验总结
定期维护和优化励磁系统是保 持同步电动机高效稳定运行的
关键。
案例三
应用背景
随着技术的发展,新型励磁系统在同 步电动机中得到应用。
技术特点
新型励磁系统采用先进的数字控制技 术,能够实现更精确的励磁电流控制, 提高电机的性能和稳定性。
应用效果
新型励磁系统的应用显著提高了同步 电动机的启动转矩和运行效率,减少 了故障发生率。
状态匹配。
经验教训
定期对励磁系统进行维护和检 查,确保可控硅等关键元件工
作正常。
案例二:某电厂励磁系统维护与优化实践
维护目标
某电厂为了提高同步电动机的 运行效率和稳定性,对励磁系
统进行维护和优化。
优化效果
经过维护和优化,同步电动机的 运行效率提高了10%,稳定性也 得到了显著提升。
维护措施
定期清理和检查励磁系统中的灰尘和 污垢,检查元件是否老化或损坏,调 整励磁参数以优化电机性能。

同步电动机励磁知识详解

同步电动机励磁知识详解

第一章基本知识1.1 同步电动机起动方式同步电动机起动方式主要有异步起动和变频起动。

变频起动需一套专用调频电源,技术复杂且设备成本高,主要用于负载及转动惯量都很大的大容量高速同步电动机,国内钢厂有几套进口变频起动装置,其它行业一般不使用。

异步起动是同步电动机常用的起动方式,视供用电系统容量采用全压起动或降压起动,降压起动分为电抗器降压和自耦变压器降压。

1.1.1 电抗器降压起动图1-1为采用电抗器降压起动主接线及投全压开关合闸控制回路示意图。

电抗器降压时施加于电机端电压电流降低的同时起动力矩相应降低较大,适用于系统容量小不允许直接全压起动且对起动力矩要求不高的机组,如供电系统容量小但又要求起动力矩大的场合,需采用自耦变压器降压起动。

电抗器降压起动时,合1DL,机组转速加速至投全压滑差时(约0.9Ne ),励磁装置投全压继电器JQY 动作,控制2DL 合闸,将母线电压直接施加于电机定子。

1.1.2 自耦变压器降压起动图1-2示自耦变压器降压起动主接线及控制回路,两者都较电抗图1-2自耦变压器降压起动图1-1电抗器降压起动器降压起动复杂。

励磁装置投全压继电器JQY需控制2DL跳闸及3DL 合闸,操作顺序为1DL合闸---2DL合闸---JQY动作跳2DL,合3DL不论全压起动还是降压起动,机组起动时间长短与起动时机端电压及负载等有关,从励磁装置读写控制器上读出的机组各次起动时间有些差异属正常。

1.2 同步电动机无功调节特性同步电动机正常运行时需从电网吸收有功,吸收有功功率大小取决于所带负载及电机本身有功损耗。

同步电动机无功决定于励磁装置输出励磁电流,过励(超前)运行时,同步电动机向电网发无功;欠励(滞后)运行时,从电网吸收无功;正常励磁运行时,既不发无功,又不吸收无功,对应功率因数COS )=1。

同步电动机V 形曲线是指电机定子电流I 和励磁电同步电动机V 形曲线图表明,功率因数为1运行时,定子电流最小,在此基础上增/减磁,定子电流都将增加,增磁时功率因数超前运行,减磁时功率因数滞后运行。

同步电机励磁绕组

同步电机励磁绕组

同步电机励磁绕组介绍同步电机励磁绕组是电机中一个关键的组成部分,它起到了给电机提供励磁电流的作用。

励磁电流对于同步电机的正常运行至关重要,它能够控制电机的激磁磁场,从而使电机产生适当的输出转矩和功率。

在本文中,我们将深入探讨同步电机励磁绕组的工作原理、类型和应用。

工作原理同步电机励磁绕组是由线圈组成的,这些线圈通常被包裹在绝缘材料中,以防止电流外泄。

这些线圈可以通过外部直流电源或者内部发电机绕组供电。

当通过这些线圈通入电流时,它们会产生磁场,这个磁场将与电机的转子磁场进行交互作用。

同步电机励磁绕组的工作原理是利用电磁感应现象。

当励磁绕组中的电流通过时,它会创建一个磁场,这个磁场将与电机的转子磁场进行耦合。

这种电磁耦合现象将导致励磁电流在电机转子上产生一个磁场,进而使得转子在磁场的作用下运动。

类型根据不同的应用需求,同步电机励磁绕组可以分为两种主要类型:直流励磁和交流励磁。

直流励磁直流励磁是指将直流电源连接到励磁绕组的方式。

这种类型的励磁可以通过外部直流电源供电,也可以通过电机自身的发电机绕组供电。

直流励磁具有灵活性高、响应速度快和调节范围广的特点,因此在许多应用中被广泛采用。

交流励磁交流励磁是指将交流电源连接到励磁绕组的方式。

这种类型的励磁主要是通过变压器和稳压器来控制励磁电流。

交流励磁相对于直流励磁而言,具有结构简单、成本低和维护方便等优点,但其调节范围较小,响应速度也较慢。

应用同步电机励磁绕组在许多工业和电力领域中有着广泛的应用。

下面列举了一些典型的应用场景:1.发电机组:发电机组是励磁绕组应用的一个非常重要的领域。

发电机组中的励磁绕组通过调节励磁电流,可以控制电机的输出功率和电压稳定性。

2.同步电动机驱动系统:在工业生产中,同步电机常常用于驱动高功率的大型机械设备。

励磁绕组在同步电机驱动系统中起到了控制电机输出特性和提高运行效率的作用。

3.可调速驱动系统:同步电机励磁绕组还可以作为可调速驱动系统的一部分。

简述同步电机各种励磁方式的特点

简述同步电机各种励磁方式的特点

简述同步电机各种励磁方式的特点
同步电机是一种常见的交流电机,其特点是转速与电网频率同步。

为了使同步电机正常运行,需要对其进行励磁,即给定一个磁场使得转子与电网的磁场同步。

同步电机的励磁方式有直接励磁、串联励磁和并联励磁三种。

1.直接励磁方式:直接将励磁电流与电网电流相连,通过电网的电流来产生励磁磁场。

这种方式适用于小功率的同步电机,其特点是结构简单、成本低廉。

但是,直接励磁方式的励磁效果相对较差,容易受到电网电压的波动影响。

2.串联励磁方式:将励磁线圈串联在电机与电网之间,通过励磁电流产生励磁磁场。

串联励磁方式适用于大功率的同步电机,其特点是励磁电流可调节范围广,能够适应不同负载的需求。

但是,串联励磁方式的励磁电流与电网电压成正比关系,当电网电压波动较大时,励磁磁场也会发生变化。

3.并联励磁方式:将励磁线圈并联在电机与电网之间,通过独立的励磁电源产生励磁磁场。

并联励磁方式适用于需要稳定励磁的同步电机,其特点是励磁电流与电网电压无关,能够独立控制励磁磁场。

但是,并联励磁方式的结构复杂,成本较高。

除了以上三种常见的励磁方式外,还有一些其他的励磁方式,如自励励磁和电子励磁等。

自励励磁是通过转子上的励磁线圈产生励磁磁场,适用于小功率的同步电机。

电子励磁是通过电子器件对励磁电流进行控制,实现精确的励磁控制。

总之,同步电机的励磁方式多种多样,具有不同的特点和适用范围。

在选择励磁方式时,需要根据实际情况综合考虑经济性、稳定性和可调性等因素。

同步励磁电动机励磁方式

同步励磁电动机励磁方式

同步励磁电动机励磁方式今天就来好好聊聊同步励磁电动机的励磁方式。

这励磁方式啊,那可是关系到同步励磁电动机能不能好好工作的关键呢。

先说说啥是励磁吧。

励磁就是给同步励磁电动机提供磁场的过程。

就好像给一个大力士提供力量一样,有了磁场,同步励磁电动机才能转起来。

那这励磁方式都有哪些呢?一种常见的励磁方式是直流励磁。

这就好比给电动机送了一股直流电,让它产生磁场。

直流励磁呢,有个好处就是磁场比较稳定。

你想啊,直流电嘛,电流大小和方向都不怎么变,所以产生的磁场也比较稳定。

这样同步励磁电动机在工作的时候就会比较靠谱,不会一会儿转得快,一会儿转得慢。

不过呢,直流励磁也有它的缺点。

比如说,需要专门的直流电源,这就增加了成本和复杂性。

而且啊,如果直流电源出了问题,那电动机也就没法正常工作了。

还有一种励磁方式是交流励磁。

这就像是给电动机送了一股交流电,让它产生磁场。

交流励磁的好处呢,就是比较灵活。

交流电的大小和方向是不断变化的,所以可以通过调节交流电的参数来控制磁场的强度和方向。

这样同步励磁电动机就可以适应不同的工作条件。

但是呢,交流励磁也有它的问题。

那就是磁场不太稳定,因为交流电总是在变嘛。

这就可能会影响电动机的性能,让它转得不太顺畅。

除了这两种常见的励磁方式,还有一种叫永磁励磁。

啥是永磁励磁呢?就是用永磁体来给电动机提供磁场。

这就好像给电动机装了一块永远都有磁性的磁铁。

永磁励磁的好处可不少呢。

首先,它不需要额外的电源,所以比较节能。

而且啊,永磁体产生的磁场比较强,这样电动机的效率就会比较高。

但是呢,永磁励磁也有它的局限性。

比如说,如果永磁体的磁性减弱了,那就得更换永磁体,这可就有点麻烦了。

那在实际应用中,我们该怎么选择励磁方式呢?这就得看具体的情况了。

如果我们需要一个稳定的磁场,而且不在乎成本和复杂性,那直流励磁可能是个不错的选择。

如果我们需要灵活性,能够适应不同的工作条件,那交流励磁就比较合适。

如果我们想要节能高效,而且不担心永磁体磁性减弱的问题,那永磁励磁就可以考虑考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档