2018年数学建模B“拍照赚钱”的任务定价模型
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、问题分析
4.1 问题一分析
问题一要求研究附件一中项目的定价规律,并分析任务未完成的原因。首先应在地 图中找出附件一中所有任务的位置,确定任务的分布规律,同时将附件二中会员的位置 定位于地图。观察出这些数据集中分布在广东、东莞、佛山、深圳四个城市。以深圳市
请浏览后下载,资料供参考,期待您的好评与关注!
关键词:聚类分析、RBF 神经、灰色关联分析法、网络爬虫
请浏览后下载,资料供参考,期待您的好评与关注!
一、问题重述
“拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载 APP,注册成为 APP 的会员,然后从 APP 上领取需要拍照的任务(比如上超市去检查某种商品的上架情况), 赚取 APP 对任务所标定的酬金。APP 是该平台运行的核心,而 APP 中的任务定价又是其 核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 1. 研究附件一中项目的任务定价规律,分析任务未完成的原因。 2. 为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3. 实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种考虑是 将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的 任务完成情况又有什么影响? 4. 对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。
为例,对深圳的任务进行聚类分析,分析聚类结果,从而得出项目的定价规律。分别计 算每个任务与所有会员之间的距离,结合每个任务周围十公里的会员数与任务的定价, 确定任务未完成的原因。
4.2 问题二分析
问题一可明显看出任务价格与任务周围人数和任务所在地区人口密度等有关。利用 网络爬虫爬取广州等四市医院、学校、小区、超市等人口密度大的场所,统计成功任务 方圆十公里内的人口密度大的场所个数。使用 RBF 神经网络分析,用所获得的数据训练 神经网络,从而确定新的任务定价方案。将新的任务定价方案与附件一中的任务定价做 出比较,说明两种定价方案的不同情况。
五、模型建立与求解
5.1 问题一模型
利用地图定位将附件一中经度纬度定位到地图中,发现这些数据集中分布在广东, 东莞,佛山和深圳四个城市中。分别分析四个城市的价格规律,以深圳市为例。考虑到 城市内部存在区的划分,因此对数据进行聚类分析,猜测聚类结果呈区域块状分布,结 果同样验证猜测。这是价格的分布规律,其内部原因是受每个任务周围会员数量的影响。 分别求出任务方圆每十公里会员人数,分析任务周围的会员数与任务定价的关系,从而 确定任务未完成的原因。
针对问题四:为了对新项目设计定价方案,并评价方案的实施效果,将新项目中任 务的位置定位于地图上,可以发现任务集中分布于两个区域,且两个区域距离较远,可 认为互不影响。结合前面问题的分析,可知任务定价与区域的经济发展情况和用户到任 务的距离有关。对用户而言,用户将优先选择距离较近且定价较高的任务,因此,可以 使用灰度关联分析的方法,建立不同任务对会员的吸引力,从而对定价方案做出评价。
4.3 问题三分析
问题三要求将任务打包发布并设计新的定价方案,以解决用户争相选择等问题。利 用问题二中 RBF 神经网络模型求出新的定价方案下的任务的定价;利用问题一中两点经 纬度坐标求出两点距离的计算方法求出每个任务与其他任务之间的距离,当两个任务之 间的距离小于一定值时,便可将这两个任务种做打包处理。对于打包的任务,可将每个 任务的定价结合附近会员的信息求出最终定价;对于未打包的任务,任务定价不变。
针对问题二:由问题一结果可知,任务定价与任务周围人数和任务周围人口密度等 因素有关。利用网络爬虫爬取广州、东莞、佛山、深圳四市医院,学校,小区,超市四 种人口密度较大场所的经纬度,统计成功任务周围十公里人口密集场所。用 RBF 神经网 络模型,从而确定新的定价方案。将此方案与原方案进行比较,得出两种定价方案的差 异。
请浏览后下载,资料供参考,期待您的好评与关注!
ห้องสมุดไป่ตู้
5.1.1 模型建立 此题采用 Q 型聚类法建立模型并求解。
二、模型假设
1.会员对任务没有主观偏好,不会因为自身原因不完成任务; 2.各个任务难度相等,不影响会员的选择; 3.假设会员与任务间的距离都是直线距离,不受道路、河流等的影响; 4.问题中所有数据都真实有效。
三、符号说明
符号
, P
含义 地球半径 两地之间的球面距离 两地的纬度 两地的经度差 打包后总价
针对问题三:为了解决用户争相选择位置集中任务等问题,可将多个任务联合打包, 以便用户更好得执行任务。利用问题二中 RBF 神经网络模型求出新的定价方案下的任务 定价;同问题一,求任意两个任务之间的距离。当两个任务之间的距离小于一定值时, 便可将这两个任务种做打包处理。对于打包的任务,可将每个任务的定价结合附近会员 的信息求出最终定价;对于未打包的任务,任务定价不变。
4.4 问题四分析
问题四要求对一个新项目设计定价方案,并评价该方案的实施效果,将附件三中的 任务的地理位置定位于地图上,可以发现任务集中分布于两个区域。通过前面的问题分 析可知,任务定价与地区经济发展水平和会员距离有关。对会员而言,可以从任务的难 易程度和会员到任务的距离两个方面判断会员对任务的偏好,从而使用灰度关联分析对 的方法,建立不同任务对会员吸引力的模型,便可以对这种方案的实施效果做出分析。
“拍照赚钱”的任务定价模型
摘要
本题要求分析“拍照赚钱”任务的服务模式,研究其定价规律,并设计新的任务定 价方案,结合实际情况,修改定价模型,最终对新项目设计任务定价方案,并评价方案 的实施效果。求解的具体流程如下:
针对问题一:为了研究项目的定价规律,分析任务未完成的原因,利用附件一的信 息,在地图上定位所有坐标的位置,发现任务集中在广东、东莞、佛山、深圳四市,分 别标明每个城市的成功任务和失败任务。以深圳为例,对深圳市任务进行聚类分析,结 果分成 5 类,由相应任务的定价可以得出,人口密集处定价较低,人口稀少处定价较高 的定价规律。将附件二的位置信息同理在地图上定位,分别计算任务周围的会员数,分 析其与定价的联系。